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ABSTRACT: The global transition to hydrogen-based energy infrastructures faces
significant hurdles. Chief among these are the high costs and sustainability issues associated
with acid−based proton exchange membrane fuel cells. Anion exchange membrane (AEM)
fuel cells offer promising cost-effective alternatives, yet their widespread adoption is limited
by rapid degradation in alkaline environments. Here, we develop a framework that integrates
mechanistic insights with machine learning, enabling the identification of generalized
degradation behavior across diverse polymeric AEM chemistries and operating conditions.
Our model successfully predicts long-term hydroxide conductivity degradation (up to 10,000
h) from minimal early time experimental data. This capability significantly reduces
experimental burdens and may expedite the design of high-performance, durable AEM
materials.

■ INTRODUCTION
Increasing global demand for clean energy has spurred
widespread interest in the development of cost-effective and
efficient fuel cell technology.1,2 Although proton exchange
membrane (PEM) fuel cells have received the majority of
research attention to date, their reliance on costly and
environmentally persistent perfluorinated polymers (e.g.,
Nafion) and platinum-based catalysts significantly limits their
scalability and sustainability.1,3

Anion exchange membrane (AEM) fuel cells operate under
alkaline conditions and conduct hydroxide ions with faster
reaction kinetics compared to their PEM counterparts, enabling
the use of inexpensive, fluorine-free hydrocarbon-based
polymers and nonprecious metal catalysts.4,5 These potential
cost advantages have driven significant research interest in
AEMs over the past two decades, positioning them as promising
alternatives to conventional acid−based fuel cells.5−8 This shift
not only reduces cost and environmental burden but also opens
pathways for more sustainable polymer design.8 However, the
commercialization of AEM fuel cells is still hindered by major
challenges, notably the chemical and mechanical instability of
AEMs in alkaline media, which leads to rapid degradation and
failure far before the 20,000−25,000 h target operational lifetime
set by the U.S. Department of Energy.9 This challenge is coupled
with the need for membranes with high hydroxide conductivity,
e.g., greater than 100 mS/cm.4 Unfortunately, chemical
durability and ionic conductivity are material properties that
are often in conflict.10

A significant body of research has focused on improving
individual aspects of AEM performance�such as enhancing ion

exchange capacity (IEC), reducing water uptake (WU) and
swelling ratio (SR), and improving hydroxide conductivity.1,8,11

Our previous work contributed to this area by leveraging
machine learning and atomistic models learning to predict these
static properties and identify fluorine-free AEM candidates that
strike a balance between performance and stability.12−14 Yet,
while such models capture initial performance, they offer limited
insight into the long-term degradation behavior that ultimately
governs membrane viability in real-world applications, and they
fail to capture the interplay between these individual aspects as
they relate to long-term durability.15−17

Recent advances in machine learning research have led to the
development of various types of robust algorithms suitable for
many science and engineering applications.18,19 In prior work,
we applied Gaussian process regression (GPR) to assess the
extrapolative capability of ML models for AEMs and to quantify
the chemical diversity of the available data set.13 That analysis
revealed that the limited diversity of reported chemistries
imposes inherent constraints on the accuracy of predictions for
entirely novel formulations. Building on this insight, the present
study shifts focus toward uncovering trends within the existing
chemical space using a Physics-Enforced Neural Network
(PENN).
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In this study, we extend our informatics-based approach to
address a critical missing dimension in AEM research: time-
dependent degradation. Specifically, we focus on the evolution
of hydroxide conductivity under prolonged alkaline exposure, a
key indicator of chemical and structural breakdown in
AEMs.10,15 Although prior studies have investigated the
degradation of specific AEMs by introducing structural
modifications (e.g., flexible spacers, cross-linking, branching,
or inorganic additives1,4,5,8), these efforts have largely remained
fragmented. They often focus on narrow design variations and
isolated degradation mechanisms, making it difficult to general-
ize findings across the broader AEM landscape.
To address this gap, we have created a comprehensive

database of time-resolved hydroxide conductivity measurements
from the literature. The database encompasses a wide diversity
of polymer backbones, cationic groups, solvents, additives,
temperatures, and relative humidities. Upon observing time-
dependent hydroxide conductivity trends across a breadth of
chemistries and environmental conditions, we identified a
consistent empirical relationship for the degradation of
hydroxide conductivity in any AEM system exposed to alkaline
media for prolonged periods. eq 1 is proposed to describe the
degradation of the hydroxide conductivity of AEMs.
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In this equation, σ0 represents the initial hydroxide conductivity
at time = 0, while σ∞ is the limiting conductivity at long times or
under equilibrium conditions. The parameter t0 is a character-
istic time scale that governs the halfway drop-off point from log
σ0 to log σ∞, and α is a shape parameter that determines the
steepness of the decay curve. This equation captures the time-
dependent degradation of conductivity due to complex chemical
processes under alkaline conditions, reflecting the initial
performance, long-term stability, and rate of performance
decay of AEMs.
We then introduce a PENN framework designed to uncover

universal degradation trends from this heterogeneous data set by
predicting the four parameters (σ0, σ∞, t0, α) for each AEM
sample. Figure 1 depicts the PENN architecture employed here:
polymer genome fingerprints20 are concatenated with environ-
mental variables and passed through a multilayer perceptron

(MLP) to predict the four output parameters of eq 1. These
predicted parameters are scaled to physically reasonable ranges
and then passed to the loss function along with themeasurement
time and ground truth conductivity value for each sample to
achieve model training.
AEM degradation is driven by complex coupled chemical

processes�such as β-elimination, nucleophilic substitution, and
polymer backbone scission�that occur under alkaline con-
ditions and are influenced by the chemistry of the polymer, the
IEC, the degree of cross-linking, the presence of stabilizing or
destabilizing additives, and the operating environment (e.g.,
temperature and relative humidity).1,10 These intertwined
effects make it difficult to isolate causal relationships using
traditional empirical studies and underscore the need for a
unified framework capable of modeling long-term behavior
across a chemically diverse set of AEMs.5

If eq 1 is true, then appropriately normalizing the degradation
curves would reveal a universal behavior across multiple
samples. eq 2 shows the normalized degradation equation, in
which the degradation curves of all systems may collapse onto a
single master curve, suggesting a universal degradation behavior
that transcends specific chemistries and environmental con-
ditions.
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By passing the predicted parameters and measurement time
for each sample through eq 2 and visually comparing the σ̂ vs t ̂
curves, we show that there is indeed a predictable set of
parameters for each sample such that the normalized predicted
and observed hydroxide conductivity are in agreement across
the observed range of AEM formulations.
Going further toward helping make efficient engineering

decisions, we demonstrate the ability of our PENN framework
to distinguish between different degradation modes and to
extrapolate long-term degradation behavior from short-term
data. A comparison of PENN vs baseline NN and GPR models
(in which eq 1 is not enforced) shows that our proposedmethod
excels at identifying samples that exhibit bimodal degradation
patterns (rapid initial degradation followed by smooth, gradual
degradation), where NN overfits (predicting nonphysical

Figure 1. Schematic of the PENN architecture. Polymer genome fingerprints and environmental features are passed through a multilayer perceptron
(MLP), which predicts four physically meaningful degradation parameters: initial conductivity σ0, limiting conductivity σ∞, characteristic time t0, and
decay shape parameter α. These parameters are then plugged into a mechanistic degradation equation and compared to experimental time series to
guide training via a physics-informed loss function.
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increasing trends) and GPR oversimplifies (predicting non-
physical smooth degradation trends). We achieve accurate
predictions of hydroxide conductivity at several thousands of
hours using only a few hundred hours of early time
measurements, and we show the jump in forecasting predictions
when using PENN compared to NN and GPR. These
capabilities have the potential to drastically reduce the
experimental burden associated with long-term stability testing.

■ METHODS AND MATERIALS

Data Set
The training data set used in this study contains over 5200 data points
manually extracted from tables and figures in academic articles with the
help of the WebPlotDigitizer tool.21 The data set, along with the
associated DOI of each entry, is publicly available on the polyVERSE
GitHub https://github.com/Ramprasad-Group/polyVERSE/tree/
main/Other/Conductivity_anionic_aging. Both static and time-
resolved property measurements are recorded, with over 2,200 unique
hydroxide conductivity data points, each corresponding to a distinct
AEM system. The property values were recorded at time points
spanning from initial synthesis and preparation (t = 0 h) to complete
membrane failure (t ≥ 10,000 h) under various experimental
conditions. The data set contains 112 unique profiles of time-resolved
hydroxide conductivity measurements of AEM formulations. In many
of these profiles, we observed an initial rapid increase in hydroxide
conductivity prior to its eventual decay. This “waking up” effect is likely
due to membrane hydration. To ensure consistent model training and
reflect the true onset of degradation, we shifted the time axis such that t
= 0 corresponds to the point of maximum conductivity for each sample.
A summary of the number of data points available for each property,
along with the percentage of each property in the data set and the
percentage of time-dependent data, is provided in Table 1.

In preparation for machine learning analysis, each profile was
annotated with its unique combination of chemical and environmental
descriptors, reflecting both polymer composition and test conditions.
These include:

1. Monomer structure: represented as SMILES strings (SMILES1-
SMILES3) for each monomeric repeat unit in the copolymer.

2. Monomer composition: mole fractions (c1-c3) indicating the
proportion of each monomer in the statistical copolymer
backbone.

3. Theoretical ion exchange capacity (IEC): the number of active
ion exchange sites per polymer repeat unit (reported in meq/g),
calculated from polymer structure and composition, as
described in our previous contribution.13

4. Relative humidity (RH): the ambient humidity (reported in
percent) during conductivity measurement.

5. Stability test temperature: the temperature (reported in °C) at
which the degradation experiment was conducted.

6. Measurement temperature: the temperature (reported in °C) at
which the conductivity measurement was recorded.

7. Solvent type and concentration: the identity of the solvent used
during degradation testing (e.g., KOH, NaOH) and its reported
concentration (reported as molarity [mol/L]).

8. Additive type and concentration: the identity of the additive(s)
used during degradation testing (e.g., stabilizers, cross-linkers,
inorganic fillers) and the corresponding concentration (reported
in wt %).

9. Time: the amount of time (reported in hours) that the sample
has been submerged in a particular solvent.

In addition to conductivity, the data set also includes both static and
time-resolved measurements for other key AEM properties (ion
exchange capacity, water uptake, swelling ratio, tensile strength,
elongation at break, and Young’s modulus), all of which have been
discussed in our previous contribution. Although this work focuses
exclusively on modeling the time evolution of hydroxide conductivity,
these additional properties offer valuable insight into mechanical and
transport degradation behavior. In the future, a multitask framework
that jointly models the degradation of conductivity, swelling, and
mechanical performance will be explored to enable holistic lifetime
prediction of AEMs given sparse time-resolved property data.

Feature Engineering
Chemical features were extracted from each sample using the co-
polymer genome fingerprinting scheme, which encodes the hierarchical
structure of copolymers and has been shown to accurately predict a
wide range of polymer properties, including hydroxide conductivity,
water uptake, and swelling ratio.20,22 Each monomeric repeat unit is
converted into a chemically informed descriptor vector, capturing
atomic, structural, and electronic features. These vectors are combined
into a single polymer fingerprint via a composition-weighted linear
combination, reflecting the molar ratios of monomers in the copolymer
backbone.
To this base representation, we append experimentally relevant

environmental descriptors, including IEC, RH, and temperature, as
described in eqs 1−3 of our prior work.13 In the present study focused
on modeling time-resolved degradation, we extend this fingerprinting
framework to include new physicochemical and environmental features
that influence degradation under alkaline conditions. These include:

1. Stability test temperature, reflecting the thermal environment
during degradation experiments.

2. Solvent concentration, capturing the identity and strength of the
alkaline medium (e.g., KOH, NaOH).

3. Additive concentration, encompassing stabilizers, cross-linkers,
or inorganic fillers added to enhance stability.

Continuous-valued concentration features of each solvent and
additive are used to encode the presence and relative amount of each
component in the sample. The final feature vector, comprising polymer
structure, environmental descriptors, and processing conditions, is fully
normalized on a scale of [0:1] to ensure numerical stability and effective
training. Although this work employed the co-polymer genome
fingerprinting scheme, the key conclusions of this work do not depend
on the use of a specific fingerprint. Rather, the machine learning
framework is agnostic to the particular polymer descriptor choice and
learns a mapping from any sufficiently expressive polymer representa-
tion, combined with environmental variables.
Machine Learning Framework
Three machine learning (ML) models were implemented to model
time-dependent degradation in AEMs: Gaussian process regression
(GPR), a classic neural network (NN) and a physics-enforced neural
network (PENN). GPR and NN served as nonphysics baselines, while
PENN incorporated physical constraints into its architecture to capture
degradation dynamics.

Table 1. Summary of Dataset Properties, Including the
Percentage of Dataset for Each Property, the Percentage of
That Property with Time-Dependent Data, and the Number
of Data Points for Each Property

property
number of data

points
% of data

set
% time

dependent

OH− cond. (mS/cm) 2,229 40.54 50.51
ion exchange capacity
(meq/g)

1,485 27.53 30.58

water uptake (wt %) 627 11.40 3.03
swelling ratio (%) 521 9.53 2.20
tensile strength (MPa) 171 3.11 10.52
elongation at break (%) 163 2.96 8.30
young’s modulus (MPa) 73 1.32 0
total 5,269 100 33.23
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GPR and NN: Non-Physics Baselines
GPR was implemented as a nonparametric Bayesian regression method
capable of producing both point predictions and associated uncertainty
estimates.23,24 Hydroxide conductivity was predicted directly from a
feature vector including polymer fingerprints, environmental variables,
additive descriptors, and time as an explicit input feature. A composite
kernel combining a radial basis function and white noise was employed
to capture both smooth nonlinear relationships and experimental noise.
GPR models were trained using Scikit-learn25 with 5-fold cross-
validation across five random seeds. Model performance was averaged
over the folds and seeds to ensure statistical robustness.
NN was implemented as an additional baseline to see if a simple

neural network approach could mitigate the issues with GPR, or if a
physics-enforced architecture was necessary for this application. The
NN was implemented as a fully connected feedforward neural network
model using PyTorch.26 The network comprised an input layer
matching the dimension of the fingerprinted feature vector (chemical
descriptors, time, etc), three hidden layers with nonlinear activation
functions and dropout layers, and an output layer predicting the log of
conductivity. Hyperparameter optimization was performed using
Optuna,27 which employed Bayesian optimization to explore.

• learning rate (1 × 10−4−1 × 10−3),
• hidden layer sizes (Layer 1:512−1024 units; Layer 2:128−512

units; Layer 3:64−128 units),
• dropout rates (0.1−0.5 for all layers).
The final model configuration corresponded to the hyperparameter

set yielding the lowest training loss. Models were trained using the
Adam optimizer with a learning rate scheduler that reduced the learning
rate by a factor of 0.5 after 100 epochs without validation loss
improvement, with a lower bound of 1× 10−6. Training was terminated
using an early stopping criterion after 200 epochs without improvement
in validation loss. Loss was defined as the mean squared error between
the predicted and true conductivity.
PENN: Physics-Enforced Neural Network
The PENN model was implemented similarly to the NN model
described above, with a few key differences. As illustrated in Figure 1,
instead of including time as an input feature and directly predicting
conductivity, the architecture was built such that the final layer was a
vector of length four, with each component of the final vector
corresponding to one of the scalar parameters of the degradation
profile. These parameters were then scaled to align the predicted values
with the empirically observed ranges and finally plugged into eq 1 along
with each sample’s recorded time value to get a conductivity prediction.
Hyperparameter optimization was again performed using Optuna,
which explored the same parameter space as the NN case but with the
addition of the physics weight parameter ω (0.00−0.50, step size 0.01),
which is discussed in the PENN Architecture Design section.

■ RESULTS AND DISCUSSION

Modeling Strategy for Time-Dependent Degradation
A central challenge in modeling AEM degradation is how to
incorporate time-dependent behavior without losing the identity
of the underlying material. A simple approach is to treat time as
an input feature�concatenated alongside polymer fingerprints,
environmental conditions, and additive concentrations. How-
ever, this method implicitly assumes that an AEM sample
observed at different time points corresponds to entirely
different materials, ignoring the continuity of its degradation
trajectory. To overcome this, we adopt a more physically
meaningful strategy: we decouple time from the input vector and
instead inject it directly into a custom loss function that
evaluates model predictions against the full temporal degrada-
tion profile. This allows the model to learn the universal
degradation dynamics from the data while preserving the
chemical identity. We compare these approaches by bench-

marking a GPR model and a classic NN which use time as an
input feature against a PENN that learns degradation behavior
by embedding time into the modeling process itself.
While eq 1 defines a parametric form for degradation, the

principal advantage of the PENN framework lies in how its
parameters are inferred. Conventional parametric or hierarchical
regression approaches typically fit degradation parameters
independently for each material, requiring extensive time-
resolved data per chemistry or strong external priors. In contrast,
the PENN learns a shared, nonlinear mapping from polymer-
genome descriptors and environmental variables to the
degradation parameters themselves.
This feature-conditioned parameter inference enables physi-

cally meaningful extrapolation even when only sparse or early
time data are available for a given system. Indeed, many samples
in the present data set lack extended alkaline aging data beyond
initial postsynthesis measurements. As demonstrated in the
forecasting experiments (Figures 6 and 8), the PENN can infer
long-term degradation behavior in such cases, whereas non-
physics neural networks and GPR baselines either fail to
extrapolate or produce nonphysical trends. In this sense, the
PENN functions as a data-efficient surrogate for mechanistic
parameter estimation rather than a curve-fitting model.
PENN Architecture Design

To address the limitations of GPR and classic NN, we
implemented a PENN framework that leverages a mechanistic
model of conductivity degradation. Rather than predicting
conductivity directly at each time point, the PENN is trained to
predict the parameters of eq 1. The neural network learns to
predict σ0, σ∞, t0, and α for each sample given its feature vector.
Time is not used as an input feature, but instead appears only in
the loss function, where the predicted degradation curve is
compared to the experimental conductivity time series. This
formulation ensures that the model respects known physical
behavior and enables accurate extrapolation beyond the training
time window.
The loss function is defined as the mean squared error

between predicted and true conductivity values after passing the
four parameters and the time data for each sample in a particular
batch through eq 1. Additional penalties are applied during
training to enforce known physical constraints. Given a time-
resolved sample, we can ascertain that the predicted σ0 should be
greater than or equal to the first property measurement at t = 0.
Similarly, the predicted σ∞ should be less than or equal to the
final property measurement, where t is the largest value. These
constraints are intended to modify the optimization landscape
toward more physically relevant spaces. A small weighting
parameter ω is used to optimize the amount of emphasis placed
on these additional constraints.
eq 1 is not intended to represent a single elementary reaction

mechanism, but rather an effective, coarse-grained description of
conductivity decay arising frommultiple concurrent degradation
processes. In alkaline AEMs, mechanisms such as β-elimination,
nucleophilic substitution, and polymer backbone scission each
contribute to a progressive loss of ion-conducting functionality.
Although mechanistically distinct, these processes share a
common macroscopic consequence: the gradual disruption
and isolation of connected ionic transport pathways.
As degradation progresses, the diminishing availability of

intact cationic sites and percolated water-rich domains naturally
leads to nonlinear saturation behavior, characterized by rapid
early performance loss followed by slower, asymptotic decay.
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Such behavior is well captured by sigmoidal or logistic-like decay
forms in transport properties. While more elaborate composite
kinetic models could in principle capture additional mechanistic
detail, the heterogeneous and limited nature of the available data
set precludes unique identification of multiple sequential rate
constants. eq 1 therefore represents the simplest empirically
consistent functional form that robustly captures degradation
behavior across thousands of measurements.
Comparison of GPR, NNand PENNPerformance on Training
Data

We begin by comparing the performance of the GPR and NN
baselines with PENN model on all time-resolved samples using
all data for training. Figure 2 presents parity plots for all three
models, where PENN achieves an overall R2 of 0.987, slightly
higher than NN’s R2 0.955 or GPR’s R2 of 0.951. Although this
small numerical gap might suggest similar performance, a closer
inspection of degradation forecasting profiles reveals significant
differences.

Figure 3 shows representative degradation profiles that
highlight the advantage of PENN over GPR and NN in
capturing the physics of AEM degradation. By learning to
predict physical parameters associated with observed degrada-
tion trends, PENN’s physics-informed architecture captures
both the sharp early transition and the subsequent leveling-off
phase, resulting in more accurate overall predictions and a more
reliable estimate of the time required to reach stabilization. In
contrast, GPR’s reliance on a stationary kernel oversmooths the
early rapid changes, causing it to underestimate the initial drop
and introduce slight misalignment in long-term predictions, and
NN models tend to overfit the training data, providing
nonphysical predictions (increasing conductivity with time).
This ability to represent distinct degradation phases is critical

for meaningful long-term forecasting. In real membranes, an
initial period of rapid damage is often followed by a slower,
stabilization-driven decay, and PENN’s mechanistic constraints
allow themodel to accurately capture this two-stage behavior. As
a result, PENN produces predictions that are not only more

Figure 2. Parity plots comparing predicted versus true hydroxide conductivity across all test samples using (a) PENN, (b) NN and (c) GPR models.
All models show good accuracy and consistency across the range of predicted conductivity values when using the entire data set for training.

Figure 3. Representative degradation curves comparing PENN (blue), NN (orange) and GPR (green) predictions against experimental data (black)
for six different AEM samples. Each model was trained on all available data. The top row depicts cases with more drastic degradation, while the bottom
row depicts more moderate degradation profiles.
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accurate but also more faithful to the underlying physical
processes driving membrane degradation.
Importantly, as will be demonstrated in the forecasting

section, the ability to distinguish between these degradation
regimes could inform the design of next-generation AEMs�
enabling targeted materials development for applications where
a short burst of high power output is acceptable, as well as for
scenarios demanding long-term, stable performance.
Emergence of a Universal Degradation Curve
By applying the PENNmodel across the full data set, we observe
that the predicted degradation behavior of all samples collapses
onto a single, normalized master curve when plotted using the
rescaled variables defined in eq 2. This result, shown in Figure 4,

confirms our hypothesis that despite the chemical and
environmental diversity in the data set, degradation follows a
shared empirical trajectory. This universal behavior reveals a
powerful abstraction: conductivity decay in AEMs can be
effectively parametrized using just four physically meaningful
quantities. The ability to normalize this behavior across systems
is crucial for guiding future design by establishing performance
benchmarks and degradation archetypes.
To quantitatively assess the quality of this collapse, we

evaluated the residual error of the normalized degradation
curves relative to the idealized master curve defined by 2 across
all samples, the normalized representation yields a global
average order-of-magnitude error (OME) of 0.0450 orders of
magnitude, and a standard deviation of 0.0538 orders of
magnitude. When grouped by unique material−environment
combinations (i.e., backbone, cation, additive, solvent, temper-
ature, and relative humidity), the average group-level OME is
0.0453 orders of magnitude with a standard deviation of 0.0243
orders of magnitude. These low and narrowly distributed errors
indicate that deviations from the master curve are small and
consistent across chemically and environmentally distinct
systems. Importantly, this universality does not imply identical
degradation kinetics across chemistries. Rather, it emerges only
after conditioning each system on its learned degradation
parameters (σ0, σ∞, t0, α), which encode chemistry- and
environment-specific behavior. Once normalized by these
parameters, the remaining degradation trajectory exhibits a
shared empirical form across diverse AEM formulations,
supporting the statistical validity of the universal master curve.

We further analyze the distribution of predicted parameters
σ0, σ∞, t0, and α across the data set. The histograms shown in
Figure 5 highlight trends such as the clustering of α between 1.5

and 3.0, the broader variation in t0, and the bimodal distribution
of σ∞, indicating differences in degradation kinetics between
chemistries. These distributions offer insight into material
design: a high α value corresponds to sharper decay after an
initial stable region, whereas longer t0 implies greater resistance
to degradation. Such correlations can inform rational design
strategies for more durable AEMs or those with high energy
burst capabilities but long-term susceptibility to degradation.
In this scheme, models are trained on the entire data set of

hydroxide conductivity profiles and predictions are made for
each time-resolved sample. Then, after predicting the four
parameters for each sample, they are plugged into eq 2 to
compare the fit of all of the time-resolved samples at once. The
goal of this approach is to identify generalizable patterns that
govern the degradation of anion exchange membranes across
diverse chemistries, processing conditions, and environmental
exposures. By training on the complete time series data for each
polymer, the model learns to capture the underlying structure of
conductivity decay across thousands of degradation trajectories.
For the PENN model, this enables the identification of a
normalized degradation manifold that describes how con-
ductivity evolves as a function of scaled time, independent of
specific chemical details. This universal trend is particularly
useful for uncovering shared degradation mechanisms and
benchmarking materials against common decay baselines.
The PENN does not explicitly classify degradation as

chemical or physical in origin. Instead, it infers chemistry-
dependent effective degradation parameters that reflect the
combined impact of all processes influencing hydroxide
conductivity. Nevertheless, different mechanisms tend to
manifest in distinct regions of parameter space. Physical aging
phenomena�such as water redistribution, microphase densifi-
cation, or counterion trapping�primarily influence early time
behavior and are reflected in variations of σ0. In contrast,

Figure 4. Normalized degradation behavior across all AEM samples.
The PENN-predicted degradation curves collapse onto a universal
master curve defined by eq 2. The blue line represents the idealized
form = +y

x
1

1
. This agreement across chemistries and conditions

reveals a shared empirical degradation mechanism and confirms the
ability of the PENN to uncover universal trends.

Figure 5. Distribution of PENN-predicted degradation parameters
across all AEM samples. Histograms show the learned values of σ0 (top
left), σ∞ (top right), α (bottom left), and t0 (bottom right). These
distributions reflect the variability in conductivity behavior across
different chemistries and testing conditions, highlighting materials with
sharper or more gradual degradation.
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irreversible chemical degradation processes more strongly affect
the long-time limit σ∞ and the characteristic time scale t0.
The ability of the PENN to capture two-stage degradation

behavior (Figure 3) and the structured distributions of learned
parameters (Figure 5) enables a phenomenological decom-
position of degradation behavior that can inform mechanistic
interpretation, while acknowledging that definitive attribution
requires complementary experimental or spectroscopic evi-
dence.
Forecasting Long-Term Degradation from Early-Time Data

One of the key strengths of the PENN framework is its ability to
forecast long-term degradation from short-term measurements.
We implement a time-threshold validation strategy to assess the
model’s ability to forecast long-term degradation from limited
early time data. For each time-resolved AEM sample, we
construct a model that is trained on the full data set excluding
that sample’s later-time measurements. Specifically, for a given
sample, only data points prior to a selected time threshold are
included, while all data from other samples are retained. We
repeat this procedure for every sample and for a series of
thresholds: 0 h (no data from this sample is included in the
training set), 50, 100, 200, 300, 400, 500, and 1000 h. Figure 6
shows PENN parity plots for the various time thresholds and
indicates that with no data for a particular sample, degradation
forecasting predictions are reasonable, and that even with as
little as 200 h of data, PENN achieves accurate predictions of
conductivity up to 10,000 h for most samples. The improvement
in performance with increasing threshold demonstrates the
value of early time data while also quantifying the point at which
degradation forecasting becomes reliable. This capability is
critical for real-world applications, where prolonged testing is
often infeasible. The results from this exercise (as highlighted in
the average Order of Magnitude Error (OME) vs threshold plot
in Figure 7) indicate that after about 200 h of performance data
there is a significant diminishing returns to collecting longer-
time data to predict longer time behavior, and that the PENN
models significantly outperform GPR and NN in forecasting

ability with limited data, making it an ideal approach for future
AEM design schemes. As reflected by the shaded regions in
Figure 7, which represent ±0.25σ (one-quarter of the standard
deviation) around the mean OME, the PENN model also
exhibits lower variability across samples, indicating greater
robustness and generalization capability.
An example degradation profile for one sample across each

cutoff value for each model is shown in Figure 8. The results
enforce the benefit of using physics-basedmodeling in long-term
degradation performance as a cost-saving measure for materials
design initiatives. This approach mimics realistic experimental
constraints, where extended aging studies may be infeasible due
to time, cost, or material limitations. By evaluating model
performance at increasing time thresholds, we identify the
earliest time point at which partial degradation data becomes
predictive of long-term behavior. This analysis provides insight
into the temporal data requirements for reliable forecasting and
supports the design of efficient experimental protocols.
Ultimately, this forecasting capability enables rapid, data-

Figure 6. Parity plots of predicted and true hydroxide conductivity for each cutoff value using the PENNmodels. Models were trained on all available
data except the portion of each sample’s data beyond the designated cutoff time (0−1000 h); data from other samples beyond that cutoff remained
available for training.

Figure 7. Average order-of-magnitude error (OME) as a function of
cutoff time for GPR, NN, and PENN models. Each data point
represents the mean prediction error across all test samples withheld
from training at a given cutoff. Shaded regions denote ±0.25σ (one-
quarter of the standard deviation) around the mean OME, illustrating
variability across cutoff values and training algorithms.
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efficient screening of AEM candidates based not only on their
initial properties but also on their projected durability.
Conclusions, Limitations, and Future Work

We introduced a physics-enforced neural network (PENN) that
couples polymer-genome fingerprints and environmental
descriptors with a mechanistic degradation equation to model
the time evolution of hydroxide conductivity in AEMs. Using a
literature-curated data set of time-resolved measurements,
PENN (i) learns four interpretable parameters (σ0, σ∞, t0, α)
that quantify initial performance, long-term limits, time scales,
and decay shape; (ii) reveals a normalized universal degradation
curve across diverse chemistries and conditions; and (iii)
outperforms baseline NN and GPR models in forecasting long-
term behavior from sparse early time data. Practically, we find
that ∼200 h of measurements often suffices to enable accurate
extrapolation toward thousands of hours, reducing experimental
burden while preserving physical fidelity. These capabilities
position PENN as a data-efficient, interpretable framework for
accelerated AEM screening and design based on both initial
performance and projected lifetime.
While the PENN framework offers strong predictive perform-

ance and interpretability, several limitations should be acknowl-
edged:

• Fixed Functional Form: The degradation model assumes
that conductivity decay universally follows eq 1. While
this empirically fits the data well, real-world degradation
may involve multistage or nonsigmoidal dynamics in
some chemistries.

• Chemical Space Limitations: The model generalizes most
reliably within the chemical space represented in the
training data, and predictions for novel polymer back-
bones, cations, or additives may carry increased
extrapolation uncertainty. Subgroup-specific master
curves (e.g., by backbone or cation class) are an
interesting future extension but are currently limited by
the number of time-resolved samples per subgroup. As the
data set size grows, this point may be adequately
addressed in the future. Although the present implemen-

tation does not include explicit Bayesian or conformal
uncertainty quantification, the PENN provides interpret-
able uncertainty proxies through the dispersion of
predicted degradation parameters (σ0, σ∞, t0, α), as
illustrated in Figure 5, enabling identification of lower-
confidence predictions in sparsely populated regions of
parameter space. Future work will incorporate explicit
out-of-distribution detection and calibrated uncertainty
estimates to establish trust boundaries for high-
throughput screening and long-term forecasting.

• Single-Property Focus: This work focuses solely on
hydroxide conductivity. However, mechanical degrada-
tion and dimensional stability are also critical to AEM
lifetime. A future extension to multitask PENNs could
jointly model conductivity, swelling, and tensile degrada-
tion.

• Morphological Descriptors: Hydration structure, ion
solvation, and microphase morphology strongly influence
hydroxide transport and degradation kinetics in AEMs. In
this study, these effects are incorporated implicitly
through experimentally accessible scalar descriptors
such as relative humidity, solvent concentration, and
temperature, which serve as proxies for hydroxide activity
and hydration state. While explicit morphology-aware
descriptors�such as water-channel connectivity from
atomistic simulations or domain spacing from scattering
experiments�could further strengthen the chemistry-
structure-kinetics linkage, such data are not consistently
available in the literature-curated data set. Future hybrid
PENN frameworks integrating simulation-derived struc-
tural features with experimental data represent a
promising direction as multiscale simulation-ML pipe-
lines mature.

• Operando Data: this study focuses on open-circuit
chemical aging to isolate intrinsic alkaline stability;
however, real fuel-cell operation involves coupled electro-
chemical stressors such as potential gradients, current
density, catalyst−polymer interfaces, and radical or
peroxide formation. The PENN framework is environ-

Figure 8. Representative degradation forecasting curves comparing PENN (blue), NN (orange) and GPR (green) predictions against experimental
data (black) for a single AEM sample across a range of cutoff values (trained on data for all other samples plus the data up until the cutoff point, and
predicted on data after the cutoff point). Predictions using the PENN models drastically improve with small amounts of data, and become more
accurate with the inclusion of more data. NN models behave nonphysically (increasing conductivity predictions with time) and GPR models are
unable to match the trend predicted by PENN.
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ment-agnostic and can be extended by incorporating such
variables as additional descriptors. Future work will
explore retraining the model on electrochemical or
operando data sets to capture field-assisted degradation
mechanisms relevant to device operation.

• Experimental Validation: model predictions�especially
forecasts beyond 1000 h�should be validated exper-
imentally. PENN provides hypotheses for long-term
behavior but should be used as a screening and guidance
tool.

Overall, the PENN framework demonstrates superior robust-
ness, physical consistency, and generalizability compared to
traditional regression models and neural networks. By
integrating domain-specific constraints and leveraging a para-
metrized degradation equation, it enables accurate modeling
across diverse chemical and environmental conditions, identi-
fication of universal trends in AEM degradation, quantification
of meaningful degradation parameters, and reliable forecasting
from sparse experimental data. This modeling framework
provides a foundation for accelerated screening of AEM
candidates, allowing researchers to prioritize materials based
not only on their initial performance but also their projected
lifetime.
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