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Abstract
The International Workshop on Data-Driven Computational and Theoretical Materials Design was held between 
October 9-13, 2024, in Shanghai, gathering leading scientists and researchers from around the world, representing 
various aspects of data-driven AI methodologies and applications in materials design. The topics covered over 46 
talks and 29 posters spanned a wide range of the latest advancements, including Machine Learning for Materials 
Design, Method Development, Machine Learning Interatomic Potentials, Advanced Computing, Infrastructure and 
Standards, Large Language Models, and Autonomous Labs. As part of the workshop, a panel discussion titled 
“Unlocking the AI Future of Materials Science” was held to disseminate the state-of-the-art of AI/ML in materials 
science and consider directions for the future. This report is a synthesis, for this Special Issue, of the panel 
discussion - drawing on insights gained from the workshop as a whole and surrounding conversations, in particular, 
the question of what constitutes success.
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INTRODUCTION
The International Workshop on Data-Driven Computational and Theoretical Materials Design (DCTMD) 
was held from October 9 to 13, 2024, in Shanghai, amidst the buzz surrounding the announcements of the 
Nobel Prizes in Physics and Chemistry. The workshop aimed to gather leading scientists and researchers 
from around the world, representing various aspects of data-driven artificial intelligence (AI) methodologies 
and applications in materials design, to facilitate the exchange of the latest research and stimulate 
discussion. There were 191 participants from 11 different countries, representing academia and industry, at 
various career levels, providing a diverse range of perspectives. The focus areas were chosen to highlight 
innovative approaches and technologies in materials research today, including: 
• Data management and stewardship for materials 
• AI for materials design 
• AI/autonomous/self-driving/automatic materials lab 
• High-throughput computational and experimental materials design 
• Advanced computing for materials design

As part of the workshop, a panel discussion titled “Unlocking the AI Future of Materials Science” was held - 
available in full on Koushare[1] - to disseminate the state-of-the-art of AI/ML in materials science and 
explore directions for the future. The following seed questions were posed to the panel to stimulate 
discussion: 
    - What has been the greatest success of AI/ML in the sciences? 
    - With growing skepticism about the validity of AI claims and the issue of hallucinations in large language 
models (LLMs), should we be putting standards in place to determine when AI claims can be taken 
seriously? Especially considering that robust scientific theories and models have clearly defined domains of 
validity (e.g., classical mechanics vs. quantum mechanics), and data come with error bars. What, then, can 
we say about machine learning models? 
    - AI/ML in materials science is undoubtedly data-driven, but compared to some other disciplines, we are 
not yet truly doing Big Data. What should the community be doing to ensure the integrity and accessibility 
of data? 
    - Looking to the future, what will be the next breakthrough area for AI in materials science - or, failing 
that, what problem would you most like to see AI solve?

These questions underpinned the many talks of the conference, especially in judging metrics for success and 
how to achieve them. The insights gained from the panel discussion, talks and accompanying conversations 
are given below.

DISCUSSION
The DCTDMD workshop indeed managed to cover a wide range of topics and themes in materials research 
as outlined by the focus areas above, and these could be roughly categorized across the 7 plenary talks, 25 
invited talks, 14 contributed talks, and 29 posters as follows: 
- Machine learning for materials design 
- Method development 
- Machine learning interatomic potentials (MLIP) 
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- Advanced computing 
- Infrastructure and standards 
- LLMs 
- Autonomous labs

and represented in Figure 1 as a pie chart. This is only a rough breakdown, as some talks covered multiple 
topics - though to varying extents - but it provides a good representation of where efforts are currently 
focused in AI/ML in materials science. Additionally, the categories above were chosen to better highlight 
certain points. By far, the majority of presentations dealt with the application of ML techniques - analyzing 
data to make predictions through supervised learning. There was also significant work in Method 
Development, focusing on building better models to more accurately represent materials and predict their 
properties. This was particularly evident in the plenary and invited talks, which were skewed by the 
selection of speakers recognized as pioneers in advancing the field. Furthermore, the MLIP category 
encompasses these two areas - method development and application to materials design - but has been 
separated to highlight the popularity of this approach. Indeed, this is the methodology underpinning the 
AlphaFold work, which won the Nobel Prize in Chemistry. There were a few talks on robotic labs, providing 
impressive evidence that robotic synthesis can be more systematically reproducible than when done by 
humans. Surprisingly, there was not a larger representation of talks on LLMs, especially given the internet’s 
perception that ChatGPT and DeepSeek are taking over the world. While LLMs were frequently mentioned 
in many talks, few concrete results were presented, reflecting the hype and showing that the use of LLMs in 
materials science is still in its early days. Notably, however, is the category labeled Advanced Computing. 
These talks focused on conventional computational materials science - without ML - and even in many of 
the ML talks, conventional computational materials science played a significant role. In the context of this 
audience, the findings of the panel questions are summarized in detail as follows.

Successes of AI/ML in materials science
Shortly before the workshop, the announcement of the Nobel Prizes in physics and chemistry was made. 
The prize for physics went to John Hopfield and Geoffrey Hinton for “foundational discoveries and 
inventions that enable machine learning with artificial neural networks” (https://www.nobelprize.org/
prizes/physics/). The chemistry prize was awarded to David Baker, Demis Hassabis and John Jumper for 
“computational protein design” and “protein structure prediction” (https://www.nobelprize.org/prizes/
chemistry/). For materials science the closest equivalent to breakthrough science was generally speculated to 
be the rise of high throughput materials discovery and autonomous labs (to be discussed in the next 
section). However, further consideration raised the question, “What does success look like?” The consensus 
was that there has yet to be an AlphaFold-equivalent breakthrough moment in materials science, but 
numerous small successes have demonstrated that AI/ML can be a useful tool when used in conjunction 
with other methods. In particular, as attested by the prevalence of studies, machine learning force fields are 
popular - indeed, they were part of the AlphaFold breakthrough. AI-driven materials design success stories 
are beginning to emerge in many areas of materials science, such as the design of application-specific 
practical polymeric materials[2] or the development of a tolerance factor to predict the stability of not yet 
synthesized perovskites[3]. Feature engineering, integrating digital materials representations, has provided 
insight into determining the capability and accuracy of material property prediction.

Autonomous labs
One of the biggest talking points in recent years was spurred by a pair of Nature papers[4,5] on the AI 
discovery of novel materials and the use of autonomous labs. In the first paper[4], machine learning 
techniques claim to have “discovered” 2.2 million novel structures, heralded as a breakthrough in materials 
discovery. Coupled with a workflow where these novel compounds can go straight to synthesis through 
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Figure 1. Breakdown of the topics and themes covered, to some extent, in the talks and posters.

ML-recommended processes via autonomous (robot-driven) laboratories[5], this heralded another 
breakthrough in the high-throughput creation of new materials. However, these papers were swiftly 
followed by disputes, notably Refs.[6,7], on the analyses questioning the claims of novelty - that some of the 
materials were already known, not all material classes had been included and a lot of the proposed new 
materials were not stable. There were questions about the value of novelty without functionality; although 
some of the structures were new, their utility was unclear, and whether proceeding to synthesize them 
without human quality control was cost-cutting or simply wasting money. Nevertheless, as Leeman et al. 
admitted, there are impressive aspects to autonomous labs, including AI’s ability to develop working recipes 
for synthesis and the simplification of procedures by removing labor-intensive steps from humans[7]. This 
view was certainly reflected in the workshop where rather than taking humans out of the loop, there was 
recognition of a need still for human intervention, and the focus was on integrating theory and 
experiment[8-10]. As Jiang pointed out, robots can improve efficiency as they do not need to rest and it is 
generally accepted that they can carry out experiments reproducibly and accurately[11]. However, data from 
experiment is still scarce and sparse and often incompletely characterized by metadata and so is mainly 
augmented by theoretical data to guide the next experiment in a feedback mechanism referred to as 
“inverse” or “adaptive design”. In this workflow, the data, obtained from theory or increasingly from LLMs, 
which may contain errors, is replaced by confirmed experimental data, and fed back into, thus improving, 
the training model. Following this protocol, robotic labs have been shown to be successful in tackling a 
variety of problems, e.g., the automated synthesis of oxygen-producing catalysts[12] or the design of 
chirooptical films[13]. With recent advances in the use of efficient algorithms and reinforcement learning to 
mimic reasoning, such as in “Chain of Thought” in next-generation LLMs[14] there is promise that data 
requirements and computations can be kept to a minimum, while achieving performance comparable to or 
exceeding the state of the art. Algorithms such as proximal policy optimization (PPO)[15] will undoubtedly 
play an increasingly important role in controlling autonomous workflows in these labs.

Sharing data and setting standards
From the core themes of the workshop, it was evident that data plays a very important role. AI/ML is very 
much dependent on data and to work well needs good quality data probably through well-curated 



Kobayashi et al. J. Mater. Inf. 2025, 5, 50 https://dx.doi.org/10.20517/jmi.2025.44 Page 5 of 7

databases. As Trunschke found from her experience in the field of catalysis, there is currently not enough 
data for standard ML techniques to be effectively used[16]. Such data are hard to find, often only available 
through papers, sometimes in the form of figures, and negative results often go unreported. She showed 
examples of how the SISSO method can work well with sparse data provided it is “clean”, i.e., well-
characterized data[17]. Consequently, her recent efforts have been concentrated on strategies for data 
acquisition, storage and use[18]. The importance of data sharing was found to be paramount, though there 
was recognition of possible limitations due to proprietary concerns, especially in industry. However, even 
with freely shared data there were still questions of trustworthiness and making sense of it. This 
immediately raised the thorny issue of setting standards, especially for interoperability, and brought out a 
lot of differing opinions, essentially who, what and why. There is an inherent belief that for data to be 
shareable it needs to be in a certain format following certain rules, such as in the philosophy of FAIR 
data[19]. However, who decides what rules to set? In reality, it is hard to get people to agree to which standard 
to adopt. A dominant publisher such as Materials Project[20] or the Protein Data Bank[21] has enough driving 
force for people to follow their lead, but, on the whole, most people want to do their own thing. The analogy 
was given of electrical plugs around the world. However, as with electrical plugs, why should people need to 
be forced to adhere to the one standard when it may be less troublesome to just work with converters.

Building community
As part of the discussion of setting standards, the primary question was “who sets the rules?” and it was 
agreed that it has to be done by community consensus rather than be imposed by some governing authority 
as happens all too often. It became clear that the materials science community needed to talk, for which the 
Workshop provided a good forum, but not how to start the conversation. There are the beginnings of 
communities being built in materials science through data and tools platforms, such as Materials Project[20], 
Materials Cloud[22] and DP Technology[23]. Also, there are community efforts to establish ontology for 
sharing data, such as NFDI4Cat[24]. However, these are not as established as the Molecular Sciences Software 
Institute (MolSSI)[25] nexus for science, education and co-operation for the global computational molecular 
sciences community[26]. The success of MolSSI is rooted in community engagement. Its origins were in 
identifying common needs and letting standards grow naturally. Notably, unlike the aforementioned 
materials science platforms, it encompasses a range of software packages and tools and works with the 
developers as being the drivers of what people will end up using.

CONCLUSION
The International Workshop on DCTMD demonstrated that work in the area of AI/ML in materials science 
is still going strong and producing new insights. Though there has yet to be an equivalent AlphaFold 
breakthrough moment there have been many small successes or achievements. AI/ML has improved greatly 
the success rate, saving time and reducing cost, by guiding iterative high-throughput experiments along the 
whole process of materials development, though humans are still needed in the loop. And there is still a lot 
of work for humans to do. There remains a strong feeling that AI/ML is not yet at a stage to be trusted in 
isolation and theory and modelling are still the way forward. Even so, AI/ML is proving a useful addition to 
the toolkit augmenting fundamental theory and experiment. AI can accelerate existing computational 
prediction, bridge the gaps across multiple length/time scales, and even map the relationships between 
structure-property relationships without an explicitly defined underlying theory. The rational design of 
physically meaningful ML features to do this is essential to materials science. More materials science-
adapted ML algorithms need to be developed to tackle the challenge of scarce materials data. For AI/ML to 
work well, high-quality data that are well-curated and fully characterized by metadata - so that they are 
accessible, shareable, and reusable - are essential. The community still needs to come together to achieve 
this, and conferences such as these provide a good way to move forward.
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