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ABSTRACT
Machine learning and artificial intelligence have revolutionized polymer science by enhancing the ability to rapidly predict key
polymer properties and enabling generative design. The utilization of large language models (LLMs) in polymer informatics may
offers additional opportunities for advancement. Unlike traditional methods that depend on large labeled datasets, hand-crafted
representations of the materials, and complex feature engineering, LLM-based methods utilize natural language inputs via a
transfer learning process and eliminate the need for complex representation and fingerprinting, thus significantly simplifying
the training process. In this study, we fine-tune general-purpose LLMs—open-source Llama-3-8B and commercial GPT-3.5-on
a curated dataset of 11,740 entries to predict key thermal properties: glass transition (𝑇𝑔), melting (𝑇𝑚), and decomposition
(𝑇𝑑) temperatures. Using parameter-efficient fine-tuning and hyperparameter optimization, we benchmark these models against
traditional fingerprinting-based approaches including PolymerGenome, polyGNN, andpolyBERT, under both single-task (ST) and
multi-task (MT) learning frameworks.We find that while LLM informatics techniques can come close to traditional methods, they
generally underperform in terms of predictive accuracy and computational efficiency. The fine-tuned Llama-3 model consistently
outperforms GPT-3.5, likely due to the flexibility and tunability of the open-source architecture. Additionally, ST learning proves
more effective than MT for LLMs, which struggle to exploit cross-property correlations—a significant and known advantage of
traditional methods. The analysis of molecular embeddings learned by the models provides insight into the inner workings of the
LLMs, revealing fundamental limitations of general-purpose LLMs in capturing nuanced chemo-structural information compared
to the handcrafted features and domain-specific embeddings utilized in the traditional methods. These findings offer insights into
the interplay between molecular embeddings and natural language processing, and provide guidance for LLM model selection
within the context of polymer informatics.

1 Main

Machine learning (ML) techniques are beginning to favorably
impact materials property predictions and design [1, 2]. ML-
assisted efforts are contributing to the design of capacitive energy
storage systems [3–5], fuel cell materials [6, 7], membranes for

the separation of mixture of gases and solvents [8–10], recyclable
polymers [11–13], and so on.

Traditional ML approaches in polymer informatics typically
follow a two-step process: first, transforming polymer structures
into numerical representations known as fingerprints-essentially,
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fixed-length feature vectors that encode structural and chemi-
cal characteristics of the polymer; second, applying supervised
learning to predict target properties based on these representa-
tions. Over the years, numerous studies have been developed to
enhance predictive performance. For instance, the hand-crafted
Polymer Genome (PG) fingerprints represent polymers at three
hierarchical levels-atomic, block, and chain-capturing structural
details across multiple length scales [14]. Graph-based meth-
ods like polyGNN employ molecular graphs to learn polymer
embeddings, effectively balancing prediction speed and accuracy
[15–18]. Transformer-based models such as polyBERT utilize the
linguistic structure of SMILES (Simplified Molecular-Input Line-
Entry System) strings [19], using an adaptation for polymers
in which asterisks (*) mark the endpoints of repeating units,
allowing for precise encoding of polymer structures [20–23].

Once the materials’ structures are fingerprinted, in the next
stage, these representations are used to train downstreammodels
in a supervised fashion that learn the relationships between
structure and properties. Supervised learning algorithms can
range from simple linear regression models to complex deep
learning algorithms, such as Gaussian process regression (GPR),
artificial neural networks (NNs), and graph neural networks
(GNNs), tailored to specific properties and applications to ensure
target performance and predictive accuracy. Furthermore, the
performance of ML methods is often enhanced by multitask
learning (MT), which uses correlations between multiple proper-
ties, allowing themodel to learn them simultaneously even when
smaller amount of data is available [24].

Recently, LLMs have emerged as a promising tool for a range
of tasks in materials science - from extracting information from
literature [25], predicting polymer solubility in solvents [26], to
generating crystal structures [27, 28]. LLM-generated embeddings
have also demonstrated strong performance on high-dimensional
regression tasks [29], providing a promising pathway to improve
the predictive accuracy for molecular properties. When fine-
tuned on materials-specific datasets, the models can interpret
SMILES strings and predict properties directly from text, elim-
inating the need for handcrafted or graph-based fingerprints
while offering scalability and simplicity. Recent work has shown
substantial advances in molecular property prediction using
LLMs [30–34].

In polymer informatics, however, the potential of LLMs for prop-
erty prediction remains largely unexplored. Various challenges
arise because of the large size, repeating units, and structural
complexity of polymers, which differ significantly from those
of small molecules. Additionally, polymer property data are
scarce compared to the available molecular databases, potentially
limiting the ability of models to generalize across diverse polymer
chemistries. Even for widely reported thermal properties, such as
glass transition temperature (𝑇𝑔), melting temperature (𝑇𝑚), and
decomposition temperature (𝑇𝑑), the available datasets are only
a fraction of what is available for molecules to build reliable and
generalizable predictivemodels. As a result, the predictive perfor-
mance, strengths and limitations of LLMs compared to traditional
ML approaches in polymer informatics are not fully understood.

In this work, we investigate the use of LLMs for polymer property
prediction by fine-tuning Meta AI’s open-source Llama-3-8B-

Instruct [35] and OpenAI’s closed-source GPT-3.5 and GPT-4
models to predict key thermal properties-𝑇𝑔,𝑇𝑚, and𝑇𝑑.We show
that the general purpose, pre-trained, LLMs can be fine-tuned
to predict polymer properties directly from the SMILES strings,
eliminating the need for handcrafted or graph-based fingerprints.
We evaluate LLMs under three training strategies: single-task,
multi-task, and continual learning, and perform a comprehensive
comparison against traditional machine learning (ML) baselines
to assess their respective strengths and limitations in the context
of polymer informatics. Our results show that fine-tuned LLMs
achieve predictive performance that approach (but do not sur-
pass) classical ML methods, with the Llama-3 models generally
outperforming GPT-3.5 - largely due to the flexibility of open-
source fine-tuning and more effective hyperparameter optimiza-
tion. Notably, we find that LLMs can jointly learn both polymer
embeddings and structure–property relationships during fine-
tuning, removing the need for a separate fingerprinting stage. To
evaluate the quality of these learned embeddings, we compare
LLM-derived representations with domain-specific alternatives,
including polyBERT, polyGNN, and Polymer Genome, assessing
their effectiveness in capturing polymer structure-property rela-
tionships. Through this comparative study, we provide critical
insights into the feasibility, advantages, and limitations of LLMs
for polymer property prediction tasks, highlighting their potential
as scalable alternatives to traditional ML models.

2 Results and Discussion

2.1 Overview of the Property Prediction Pipeline

In the polymer literature, thermal properties are the most fre-
quently reported properties of homopolymers. To train and assess
the performance of LLMs for property prediction, we manually
curated a benchmark dataset of experimental thermal property
values containing the SMILES string and property values. The
curated dataset contains 5,253 Glass Transition Temperature (𝑇𝑔),
2,171 Melting Temperature (𝑇𝑚), and 4,316 Thermal Decomposi-
tion Temperature (𝑇𝑑) values, as summarized in Table 1. Details
regarding the source of the data can be found in the Data
Availability section.

Polymer structures in the dataset are represented using SMILES,
which provides a detailed and machine-readable format for
polymer representations. However, a given polymer can have
multiple syntactic variants of the SMILES string. To address this
non-uniqueness, we performed canonicalization of SMILES to
ensure a standardized and consistent representation for each
unique polymer structure.

The dataset was subsequently transformed into an instruction-
tuning format for fine-tuning LLMs. Since prompt design criti-
cally influences the performance of LLMs, a systematic prompt
optimization process was employed to determine the most effec-
tive structure. The final prompt, which demonstrated superior
accuracy, was structured as follows:

User: If the SMILES of a polymer is
<SMILES>, what is its <property>?

Assistant: smiles: <SMILES>, <property>:
<value> <unit>

2 of 10 Macromolecular Rapid Communications, 2025

 15213927, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

arc.202500388 by R
am

pi R
am

prasad , W
iley O

nline L
ibrary on [14/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 1 Benchmark thermal property datasets used to train the ML models and finetune the LLMs.

Property Range [K] Number of data points

Glass transition temperature [80.0, 873.0] 5,253
Melting temperature [226.0, 860.0] 2,171
Thermal decomposition temperature [291.0, 1167.0] 4,316
Total 11,740

where the <SMILES>, <property>, <value> and <unit>
placeholders were replaced by the actual SMILES string, property
name, value and unit from the dataset for each row. The
additional variations of the different prompts evaluated are
listed in the Supporting Information and the corresponding
performance are plotted in Figure S1 (Supporting Informa-
tion). An analysis of the token length distributions of both
the SMILES dataset and the instruction-tuned inputs across all
properties, using the OpenAI and LLama tokenizers, is provided
in the Supporting Information. This analysis offers insight into
the typical sequence lengths encountered during training and
inference.

Model availability and architecture play a significant role in
the performance of the LLMs. Open-source models such as
Meta AI’s Llama-3 provide greater flexibility for customization
and control during fine-tuning, but require significant compu-
tational resources available on premise. OpenAI’s GPT models,
on the other end, offer ease of training and prediction with
the utilization of Application Programming Interfaces (APIs),
but are constrained by limited control over the hyperparameters
one can tune and the black-box nature of the employed fine-
tuning method. Understanding these trade-offs is essential for
determining the most suitable approach for different polymer
informatics tasks, balancing customization, computational effi-
ciency, and ease of use. We therefore fine-tuned both Llama-3
and GPT-3.5 models using the instruction-formatted dataset. For
Llama-3, fine-tuning was carried out on in-house servers uti-
lizing Low-Rank Adaptation (LoRA) [36], a parameter-efficient
method that approximates large pre-trained weight matrices
with smaller, trainable matrices. This approach significantly
reduced computational overhead, accelerated training times, and
lowered memory usage while preserving model performance. We
optimized a range of hyperparameters, including the rank (𝑟),
scaling factor (𝛼), number of epochs, and softmax temperature
(𝑇) during inference to achieve the best results. In contrast,
the fine-tuning of GPT-3.5 models was performed using the
OpenAI API. Due to limited control over the fine-tuning process,
the optimization of GPT-3.5 models was restricted only to the
number of training epochs and the inference temperature, 𝑇.
Additionally, the exact mechanism of the fine-tuning technique
and model architecture implemented by OpenAI is not publicly
available.

To comprehensively evaluate the performance of the models, we
implemented three learning strategies: Single-Task (ST), Multi-
Task (MT), and Multi-Task Sequential (MT-Seq). In the Single-
Task framework, separate models were independently fine-tuned
for each property, (𝑇𝑔, 𝑇𝑚, and 𝑇𝑑), focusing exclusively on a
single target at a time. The MT framework, by contrast, involved

simultaneously fine-tuning a singlemodel on all three properties,
allowing the model to leverage shared parameters and capture
inherent correlations across the properties. By leveraging the
correlations between properties, multitask framework reduces
the risk of overfitting to any single property and improve pre-
dictive accuracy across all properties. This approach is supported
by prior ML-based studies with deep neural networks [24]
and graph neural network models [15]. The MT-Seq approach,
inspired by the continual or transfer learning approach, extended
this idea by fine-tuning a single model in a stepwise manner,
beginning with 𝑇𝑔, then 𝑇𝑚, and finally 𝑇𝑑, aiming to build
on the knowledge gained from earlier tasks to improve adap-
tation and performance on the subsequent ones. A continual
fine-tuning could enable progressive adaptation to later tasks
hopefully without “forgetting” earlier ones, thus assessing the
model’s ability to retain and build upon previously acquired
knowledge. Our overall finetuning workflow is illustrated in
Figure 1.

2.2 Optimization of Hyperparameters

2.2.1 GPT Optimization

OpenAI’s GPT-4o was initially tested by fine-tuning on the 𝑇𝑔
dataset using the ST method. However, the performance of GPT-
4o was comparable to that of GPT-3.5 (Figure S4, Supporting
Information), with no notable improvement in predictive accu-
racy. We quantified the performance of the fine-tuned model by
calculating the RMSE of the predictions made on the held-out
test split of the dataset. Given this similarity and performance
of GPT-4o, we opted to proceed with GPT-3.5 for subsequent
experiments due to its cost-effectiveness. We optimized GPT-3.5
by testing different numbers of epochs (5 and 10) and the softmax
temperatures (𝑇 = 0.5 and 𝑇 = 0.8) during the inference stage.
Parity plots for all fine-tuned models, corresponding to 𝑇𝑔, 𝑇𝑚,
and 𝑇𝑑, are available in the Supporting Information. The best
performance was achieved when GPT-3.5 was fine-tuned for 5
epochs and inference was conducted with 𝑇 = 0.5. Using these
optimized hyperparameters, we also trained a multitask thermal
property model (GPT-MT) and a multitask sequential model
(GPT-MT-Seq) on the three thermal properties. The final results
of the fine-tuned GPT-3.5 models are detailed in the Performance
section, where they are compared with Llama models across all
tasks and training strategies.

2.2.2 Llama-3 Optimization

The initial fine-tuning of the Llama-3-8B-Instruct model involved
optimizing multiple additional hyperparameters, namely, alpha
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FIGURE 1 Overall workflow for adapting LLMs to predict thermal properties of polymers. (1) The thermal properties dataset, including Glass
Transition Temperature (𝑇𝑔), Melting Temperature (𝑇𝑚), and Thermal Decomposition Temperature (𝑇𝑑), is curated and processed into a standardized
format using SMILES. (2) The dataset is transformed into an instruction-tuning format with an optimized prompt for property prediction tasks. (3) Large
language models (LLama-3 and GPT-3.5) are fine-tuned using three strategies: Single-Task (ST), where separate models are trained independently for
each property; Multi-Task (MT), where a single model is simultaneously trained on all three properties; and Multi-Task Sequential (MT-Seq), where
properties are learned in a stepwise manner (𝑇𝑔 → 𝑇𝑚 → 𝑇𝑑).

(𝑎) and rank (𝑟), in addition to evaluating the softmax tem-
peratures (T) of 0.5 and 0.8 during inference. When T =
0.8, the combination of 𝑎 = 16 and 𝑟 = 16 yielded the best
performance for the 𝑇𝑔 dataset (cf. Figure S8, Supporting Infor-
mation). Increasing both alpha and rank progressively to 128
resulted in a performance decline. This configuration (𝑎 = 16, 𝑟 =
16, 𝑇 = 0.8) also performed consistently well across the 𝑇𝑚 and
𝑇𝑑 datasets. For 𝑇𝑚, similar analysis revealed two optimum
configurations, (16, 16) and (32, 32), that achieved comparable
performance. Similarly, for𝑇𝑑, multiple configurations, including
(16, 16), (32, 16), and (64, 16), delivered similar results. It is
important to note that stochastic variations across multiple
inference trials can lead to slight fluctuations in these values,
as elaborated in the later sections. Despite this variability, the
results indicate a consistent pattern, with (16, 16) emerging as the
most effective hyperparameter combination for these datasets.
Building on our initial hyperparameters tuning, we explored
the effect of the number of epochs, increasing them from 5
to 30 in increments of 5 while keeping 𝑎 = 16 and 𝑟 = 16. As
shown in Figure S7 (Supporting Information), RMSE initially
decreased with increasing epochs, reaching an optimal value
at 25 epochs. At this point, the RMSE for the 𝑇𝑔, 𝑇𝑚, and 𝑇𝑑
datasets at 𝑇 = 0.8 was 39.48, 56.89, and 75.79 K, respectively,
with inference temperature 𝑇 = 0.8 consistently outperforming
𝑇 = 0.5. Interestingly, a similar RMSE minimum was observed
at 5 epochs; however, upon closer inspection of the parity plots
(cf. Figure S5, Supporting Information), significant clustering
of the predicted values became evident, suggesting poor gener-
alization and learning by the model despite the lower RMSE
values.

This clustering phenomenon highlighted the need for an addi-
tional metric to better evaluate model performance. From our
experiments, similar clustering effects were observed for both
Llama-3 andGPT-3.5models, usually prominent at lower softmax
temperatures. We introduced the Bin Height Dispersion Index
(BHDI), described in Methods section, to measure clustering in
predictions. As shown in Figure S7 (Supporting Information),
BHDI decreased with increasing epochs suggesting the absence
of clustering, reaching its lowest at 25 epochs. For 𝑇𝑔, BHDI
dropped from 4.67 at 5 epochs to 0.98 at 25 epochs. Similarly, for
𝑇𝑚, it decreased from 7.52 to 1.48, and for 𝑇𝑑, from 7.03 to 2.02.
The reduction in BHDI demonstrates that 25 epochs not only
minimize clustering but also promote a well-distributed range
of predictions, reflecting improved model performance. These
results also underscored the importance of moving beyond tradi-
tional metrics like RMSE to evaluate the distribution, variability,
and generalization of predictions.

2.3 Single-Task vs. Multi-Task Performance

The best performing fine-tuned LLM models were benchmarked
against state-of-the-art (SOTA) approaches, including Polymer
Genome (PG), polyGNN, and polyBERT, which primarily func-
tion as fingerprinting techniques to encode polymer structures
for machine learning models. The training details for the SOTA
approaches are provided in the Supporting Information.

Among the traditional informatics methods, the PG-
fingerprinting approach achieved the best performance,
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FIGURE 2 Parity plots for T𝑔 , T𝑚 , T𝑑 under ST learning using the fine-tuned LLaMa-3 model (𝛼 = 16, 𝑟 = 16, epochs = 25, 𝑇 = 0.8), fine-tuned
GPT-3.5 model (epochs = 5, 𝑇 = 0.5), and traditional fingerprinting-based models: PG, polyGNN and polyBERT.

FIGURE 3 Comparison of 𝑇𝑔 , 𝑇𝑚 , and 𝑇𝑑 predictions for PG,
PolyGNN, PolyBERT, and fine-tuned LLaMA-3-8B-Instruct (LoRA: 𝑎 =
16, 𝑟 = 16, 𝑇 = 0.8, epochs = 25) and GPT-3.5 models (epochs = 10, 𝑇 =
0.5) under the single-task (ST) and multi-task (MT) learning framework.
Error bars for LLaMA-3 models were calculated based on three separate
inference runs for each configuration. GPT-3.5 models do not include
error bars, as only a single run was performed for each configuration to
reduce costs.

followed closely by polyGNN. Fine-tuned Llama-3 performed
on par with polyBERT, a domain-specific chemical language
model, demonstrating that a general-purpose LLM can achieve
competitive accuracy without requiring extensive polymer-
specific pretraining. However, LLMs did not surpass traditional
ML models, reinforcing the advantage of domain-specific
fingerprinting and feature engineering during polymer property
prediction. Figure 2 presents the corresponding parity plots.

Figure 3 presents the comparative model performance under
Single-Task (ST) and Multi-Task (MT) configurations. With opti-

mal hyperparameter settings, fine-tuned Llama-3 (a = 16, r =
16, epochs = 25, T = 0.8) consistently outperformed GPT-3.5
(epochs = 5, T = 0.5) across all datasets. The ST models for
Llama-3 achieved lower RMSE values in predicting 𝑇𝑔, 𝑇𝑚, and
𝑇𝑑, recording 39.48, 58.23, and 77.11 K, respectively compared to
47.2, 63.8, and 80.5 K for GPT-3.5. Error bars for Llama-3 models
represent variability across three independent inference runs for
each configuration. GPT-3.5 models do not include error bars, as
only a single run was performed for each configuration to reduce
API cost. These results indicate the efficiency of the smaller, fine-
tuned Llama-3 model over GPT-3.5 under single-task learning for
thermal property prediction.

In addition to general-purposemodels, ChemLLM[37], a domain-
specific LLM, instruction-tuned on materials science corpora,
was also evaluated. Themodel was fine-tuned under a single-task
setup using the same optimized hyperparameter configuration
as Llama-3 (𝛼 = 16, 𝑟 = 16, epochs = 25, 𝑇 = 0.8). As seen from
the parity plots in Figure S13, ChemLLM captured the overall
distributional trends reasonably well but did not outperform
either Llama-3 or GPT-3.5, yielding higher RMSE values across
all three thermal properties. This highlights that further fine-
tuning of a domain-specialized model does not necessarily
translate to improved regression performance when compared to
well-optimized general-purpose LLMs.

Under the Multi-Task (MT) configuration, neither Llama-3 nor
GPT-3.5 demonstrated substantial improvements over their ST
counterparts. For both 𝑇𝑔 and 𝑇𝑚, the RMSE values were similar
to those of the ST models, though performance for 𝑇𝑑 showed a
degradation in accuracy. As shown in Figure 3, PG, PolyGNN, and
PolyBERT benefited from MT learning, while Llama-3 and GPT-
3.5 models failed to achieve similar improvements, suggesting
that LLMs struggle to efficiently share learned representations
across multiple polymer properties. This is a notable divergence
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of the LLMs from the trends observed in traditional ML-based
methods, wheremulti-task learning typically enhances predictive
performance by leveraging cross-property correlations [15, 20].

Interestingly, the fine-tuned Llama-3 models consistently
achieved lower RMSE values than fine-tuned GPT-3.5
models, highlighting its greater adaptability. While the
GPT-3.5 models required fewer epochs and incurred lower
on-premise computational costs, its black-box nature and limited
hyperparameter tuning options restricted its optimization
potential. In contrast, Llama’s open-source flexibility enabled
more effective fine-tuning, which potentially led to a better
predictive accuracy. Ultimately, the advantage of LLMs
lies in their scalability and ease of fine-tuning compared to
traditional ML models, which require extensive domain-specific
customization and computationally expensive pretraining.
However, domain-specific approaches still hold an edge in
predictive accuracy, emphasizing the need for future research
to integrate the strengths of LLMs with specialized polymer
informatics models.

2.4 Continual Learning and Forgetfulness of
LLMs

To explore the feasibility of continual learning, referred to in
this paper as MT-Seq, we tested a method where models were
fine-tuned iteratively to study a hypothetical scenario where
additional data or data for new properties become available
at a later time. The goal was to evaluate whether a model
could retain previously learned knowledge while integrating new
information. Two tests were conducted to investigate this.

In the first test, sequential training was applied to the 𝑇𝑔 dataset
only. The dataset was split into 90% training and 10% testing
data. The training set was further divided into two halves, with
the model being fine-tuned iteratively: the first iteration involved
fine-tuning on the first half of the training data, and the second
iteration fine-tuned the model using the remaining half. The
same testing dataset was used to evaluate performance across
iterations. As shown in Figure 4a, the fine-tuned Llama-3 model
achieved RMSE of 60.76 K after the first iteration and 56.81 K
after the second iteration, demonstrating improved performance
as additional data was introduced. Similarly, for GPT-3.5, a
similar improvement in performancewas noted,where theRMSE
slightly decreases from 43.73 K in the first iteration to 42.22 K in
the second.

The second test extended this sequential training approach to the
entire thermal properties dataset, where LLMs were first fine-
tuned on the (𝑇𝑔 dataset, next on the 𝑇𝑚 dataset, and finally
on the 𝑇𝑑) dataset. Both GPT-3.5 and Llama-3 showed degraded
performance compared to the previously discussed ST and
MT training configurations. For the GPT-MT-Seq configuration,
RMSE values for 𝑇𝑔 and 𝑇𝑚 significantly increased during the
later stages of training, indicating that the model failed to retain
previously learned information. However, for 𝑇𝑑, GPT’s perfor-
mance remained comparable to the MT and ST configurations,
potentially due to overfitting on the 𝑇𝑑 dataset. Interestingly,
GPT-3.5 exhibited an intuitive trend where the oldest dataset (𝑇𝑔)
suffered the greatest forgetting, while information about more

recent dataset, (𝑇𝑚) were retained to a greater degree. In con-
trast, Llama-MT-Seq showed consistent performance degradation
across all three datasets, without any clear retention of recent
data, further highlighting its susceptibility to the phenomenon
known in computer science as ‘catastrophic forgetting’.

These results underscore the limitations of continual learning
in LLMs, with both models exhibiting “catastrophic forgetting”
when fine-tuned iteratively on datasets. These findings align
with existing literature, where continual fine-tuning has shown
to result in similar forgetting behavior [38]. This phenomenon,
also known as the palimpsest effect, occurs when newly learned
information overwrites previously acquired knowledge [39].

2.5 Effects of Polymer Representations via
Embeddings

Leveraging molecular embeddings as input feature vectors is
essential to achieve accurate predictions of chemical properties
using traditional machine learning [40]. For embeddings to
be effective, they must not only capture the intricate chemo-
structural attributes of materials but also remain robust to trans-
formations that leave the material’s physical state unchanged.
Over the years, a variety of approaches, such as PG, polyGNN and
polyBERT fingerprinting, have been developed to generate such
robust embeddings [15, 20, 41].

To assess the chemical understanding captured by traditional fin-
gerprinting methods and general-purpose LLM embeddings, we
compared fingerprints generated using PG, polyGNN, polyBERT
with those produced by OpenAI’s text-embedding-3-small model,
and Llama-3-8B embeddings. For Llama-3, the embeddings were
extracted from the output of the model’s final layer. The quality
of these embeddings was assessed based on their ability to dif-
ferentiate between distinct polymer structural features, including
functional groups, cyclic vs non-cyclic structures, and aromatic vs
non-aromatic compounds. Figure 5 showcases scatter plots of 2D
t-SNE projections of embeddings for three comparisons: a) amide
vs. ester functional groups, b) cyclic vs. non-cyclic structures,
and c) aromatic vs. non-aromatic compounds. Polymers with
amide and ester functional groups were selected for analysis due
to their substantial representation in the dataset, with 1920 and
1457 data points, respectively, ensuring a fair comparison across
methods. Similarly, cyclic and aromatic classes were chosen for
their relevance in structural and chemical diversity, providing
additional insight into the embedding quality. Centroids for each
cluster, calculated as the mean of all data points within a cluster,
are also included for clarity.

Figure 5a illustrates the embeddings derived for polymers with
amide and ester functional groups. The PG fingerprints exhibit
distinct and well-separated clusters, demonstrating the effective-
ness of handcrafted features in capturing the chemo-structural
attributes of these polymer classes. PolyGNN and PolyBERT
embeddings also show clustering for the two classes, though
the separation is less pronounced compared to PG. Llama-
3 embeddings, while not as refined as the domain-specific
methods, still reveal evident clustering, showcasing its capability
to capture underlying chemical and structural differences from
SMILES representations. In contrast, embeddings generated by
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FIGURE 4 Performance evaluation of continual fine-tuning experiments. (a) RMSE values for the 𝑇𝑔 dataset across two iterations of fine-tuning
using the LLaMA-3 andGPT-3.5models. (b) RMSE values for continual fine-tuning on𝑇𝑔 ,𝑇𝑚 , and𝑇𝑑 datasets under theMulti-Task-Sequential (MT-Seq)
configuration, comparing LLaMA-3 and GPT-3.5 models.

FIGURE 5 2D t-SNE projections of polymer embeddings, showcasing: (a) amide vs. ester functional groups, (b) cyclic vs. non-cyclic polymers, and
(c) aromatic vs. non-aromatic polymers.

GPT display minimal separation between the two functional
groups, indicating limited clustering. This suggests that GPT
struggles to distinguish between these chemical classes, elucidat-
ing a deficiency in its understanding of chemical relationships
when compared to both handcrafted fingerprints and domain-
specific embeddings.

Figure 5b showcases embeddings for cyclic vs. non-cyclic poly-
mers, with the PG fingerprinting taken as the reference due
to its superior performance across tests. Both PG and Llama-
3 embeddings demonstrate a clear separation between the two
classes, effectively capturing the structural distinctions. In con-

trast, GPT embeddings show significant overlap and interspersed
clusters, highlighting its potentially limited ability to differentiate
between cyclic and non-cyclic polymers. Similarly, Figure 5c
compares aromatic and non-aromatic compounds. All models
exhibit overlapping clusters in this case, reflecting the inherent
difficulty of distinguishing between these two classes in a 2D
representation.While Llama-3 embeddings provide slightly better
separation than GPT, the overlap remains significant. Distance
between the centroids of the clusters further emphasizes these
overlaps, illustrating the challenges and limitations of these
embeddings in effectively capturing chemical distinctions in this
context. These observations are consistent with prior studies,
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where Llama-2 demonstrated superior performance in generating
molecular embeddings from SMILES strings compared to GPT’s
text-small-3-embedding’s embedding model [42].

Overall, these results emphasize Llama-3’s ability to generate
embeddingswhich better capture chemical and structural distinc-
tions compared to GPT-3.5, particularly for distinct classifications
like cyclic vs. non-cyclic polymers. However, the findings also
highlight the importance of chemically informed embeddings,
such as those generated by PG and domain-specific ML models,
in achieving superior representation of polymers.

3 Conclusion

In this study, we investigated the capabilities of LLMs in polymer
informatics, benchmarking their performance against traditional
domain-specific approaches. The findings demonstrate thatwhile
LLMs are effective for property predictions of polymers, their per-
formance is significantly shaped by task-specific requirements,
model configurations and the quality of the learned embeddings.
Notably, while LLMs can reach the performance of the SOTA
ML models, they are not able to surpass them, highlighting the
ongoing need for optimization and hybrid approaches. Notably,
ST learning methods consistently outperformed MT approaches
using LLMs, a deviation from the trends seen in the traditional
ML models. This suggests that LLMs benefit from specialized
tuning for individual properties rather than relying on shared
parameter spaces across multiple properties. Another limita-
tion of LLM finetuning is catastrophic forgetting- a significant
challenge when integrating new data without compromising
previously learned knowledge. These findings highlight the need
for customizing training strategies to align with both the model
architecture and dataset characteristics.

A comparison between GPT-3.5 and Llama-3 revealed that the
smaller LLama-3 model achieved superior performance, show-
casing both its efficiency and adaptability. However, analysis of
RMSE parity plots exposed limitations such as clustering and
reduced variability in predictions. These findings emphasize the
inadequacy of relying solely on traditional metrics like RMSE to
evaluate performance. Advanced metrics, such as the Bin Height
Dispersion Index (BHDI) introduced here, enabled a deeper and
more nuanced assessment of model predictions.

Embeddings emerged as a critical factor in model perfor-
mance. Handcrafted fingerprints and domain-specific embed-
dings excelled at capturing chemo-structural details, leading to
more accurate property predictions. In contrast, GPT embed-
dings exhibited insufficient chemical understanding, leading to
poor differentiation and clustering of polymer classes. Llama-3’s
embeddings, on the other hand, demonstrated greater consis-
tency and effectively captured critical aspects of polymer chem-
istry. This advantage, coupled with its flexibility in hyperparame-
ter tuning, likely contributed to Llama-3’s superior performance
over GPT-3.5.

Overall, while LLMs have demonstrated substantial promise in
polymer informatics, their current performance suggests they
provide ease rather than accuracy relative to SoTA traditional
models, atleast for the type of tests considered here. Future

research should focus on integrating domain knowledge with
LLM-driven approaches, refining training methodologies, and
improving embedding strategies to enhance their generalizability
and predictive power in polymer property prediction.

4 Methods

Prompt Optimization To evaluate the impact of prompt design
on model performance, we conducted prompt optimization
experiments using GPT-3.5 on a dataset for 𝑇𝑔. Given the cost
constraints associated with using GPT-3.5, a 10/90 data split was
employed, with only 10% of the dataset used for training and
90% for testing. Inference was performed with a temperature
(T) of 0.5. These considerations were made to maximize insights
while minimizing computational expenses. Five different prompt
designs were tested, each varying in structure and the specificity
of the query-response format. These prompts were carefully
crafted to assess their influence on the model’s ability to generate
accurate predictions, as measured by Root Mean Squared Error
(RMSE).

The results, as shown inFigure S5 (Supporting Information), indi-
cate significant variability in RMSE across the prompts. Prompt
01, which employed a straightforward and well-structured
question-response format, achieved the lowest RMSE, highlight-
ing its effectiveness in eliciting accurate predictions. In contrast,
Prompt 04, designed to handle uncertainty, resulted in the highest
RMSE, likely due to the added complexity and potential for
generating ambiguous responses. Similarly, Prompt 03 showed
a relatively high RMSE, which may be attributed to its overly
simplistic format that asked the model to predict only a numeric
value. These findings emphasize the importance of prompt design
in optimizing the predictive capabilities of LLMs.Awell-balanced
prompt structure, as demonstrated by Prompt 01, structured as:

User: If the SMILES of a polymer is
<SMILES>, what is its <property>?

Assistant: {smiles: <SMILES>, <property>:
<value> <unit>}

enables the model to leverage its contextual understanding
effectively while maintaining accuracy.

Llama Model The Meta Llama-3-8B-Instruct model was
employed for fine-tuning, leveraging pretrained weights
available on the Hugging Face hub via the Transformers library.
To enhance computational and memory efficiency parameter
efficient fine-tuning was performed with Low-Rank Adaptation
(LoRA) [36] method on two NVIDIA L40S GPUs (46 GB, 350 W)
hosted on our in-house servers. Hyperparameter optimization
included variations in alpha and rank values (16, 32, 64, and
128), with the number of epochs tested incrementally from 5 to
30. Inference temperatures of 0.5 and 0.8 were also explored to
achieve optimal performance.

GPT Model The GPT-3.5-turbo-0125 model was fine-tuned
through the OpenAI API, accessed via the OpenAI Python
package. Although GPT-4o-2024-08-06 was initially tested, its
performance was comparable to GPT-3.5, leading to the selection
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of the latter due to its cost efficiency. Performance comparisons
between the two models are detailed in the Supporting Informa-
tion. The use of an API-based approach streamlines deployment
but limits flexibility in hyperparameter control. Optimization
focused on the number of epochs (varied between 5 and 10) and
inference temperatures (evaluated at 0.5 and 0.8).

Evaluation Metrics Model performance was evaluated using
the coefficient of determination (𝑅2) and the root mean square
error (𝑅𝑀𝑆𝐸), standardmetrics inmaterials science for assessing
precision and the fit between predictions and ground truth.
However, these metrics fail to capture the distributional charac-
teristics and clustering of the predictions. To address the gap, we
introduce BinHeight Dispersion Index (BHDI), a complementary
metric designed to assess the uniformity and variability of model
predictions. BHDI quantifies the clustering of predicted values,
often observed as horizontal lines in parity plots or sharp spikes
in Predicted vs. Ground Truth distribution plots, offering deeper
insights into prediction diversity and enhancing the overall
evaluation of model performance.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)
2

∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(1)

𝑅𝑀𝑆𝐸 =

√√√√ 1

𝑛

𝑛∑
𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (2)

Bin Height Dispersion Index Bin Height Dispersion Index
(BHDI) quantifies clustering by measuring the deviation of bin
heights in the histogram ℎ𝑝𝑟𝑒𝑑 of the predicted values from those
in the histogram ℎ𝑡𝑟𝑢𝑒 of the ground truth values.We define BHDI
as:

𝐵𝐻𝐷𝐼 =
∑𝑁

𝑖=1(ℎ
𝑖
𝑝𝑟𝑒𝑑

− ℎ𝑖𝑡𝑟𝑢𝑒)
2

∑𝑁

𝑖=1 ℎ
𝑖
𝑡𝑟𝑢𝑒

where, 𝑁 represents the total number of bins in the histograms,
ℎtrue,𝑖 is the height (number of times a property value is pre-
dicted) of the 𝑖-th bin in the ground truth histogram, and ℎpred,𝑖
is the corresponding height in the predicted histogram. The
denominator,

∑𝑁

𝑖=1 ℎtrue,𝑖 , represents the total frequency count of
the ground truth histogram, ensuring normalization. A lower
BHDI value reflects a well-distributed range of predictions,
indicating good variability and robust generalization across the
data space. In contrast, a higher BHDI value highlights significant
clustering, where predictions are overly concentrated in specific
bins, signaling poor generalization and limited variability. By
addressing the limitations of traditional evaluationmetrics, BHDI
offers a more comprehensive assessment of model performance,
especially in tasks like property prediction where balanced and
diverse predictions are critical.
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