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Performance trade-off analysis of polymeric membrane materials obtained via experimental studies has been
used to select materials for challenging separations and to identify opportunities for innovation. These types of
analyses not only highlight the potential and limitations of polymer membranes in different separation appli-
cations, but also serve as a reference for guiding the development of new membrane materials and modules.
Despite the growing interest in organic solvent reverse osmosis (OSRO) using polymer membranes, a stan-
dardized separation performance trade-off curve for OSRO has yet to emerge, primarily due to the limited
number of studies in this area. Therefore, there is a need for a comprehensive indicator that reflects the potential
separation capabilities of polymer membranes for various organic solvent mixtures. In this study, we generate
these performance trade-off curves for >800 polymer structures and three different solvent-solvent separations
using a predictive model. Existing data in the literature and new data are used to validate some of the predictions
in this work. As OSRO performance is often described in terms of engineering parameters such as permeance and
separation factor, we also explore the impact of factors such as permeation resistance in the support layer and the

impact of osmotic pressure on separation efficiency.

1. Introduction

In nearly all applications of polymer membranes — such as gas sep-
aration [1-3], water purification [4,5], and ion separation within elec-
trochemical devices [6] — a trade-off or upper bound exists between
productivity (i.e., permeability, the flux normalized by the driving force
and the inverse value of membrane thickness) and separation efficiency
(selectivity). Typically but not necessarily, polymer membranes that
exhibit high permeability tend to have low selectivity between different
substances, and vice versa. Consequently, the primary objective of most
membrane materials research is to develop membrane materials that can
effectively mitigate or overcome this trade-off [7]. In engineering work,
these types of trade-off curves are useful in designing membrane tech-
nologies and processes, as these often encapsulate the best possible
performance achievable via current membrane materials. Of course,
these types of trade-off plots are only a small component of the overall
membrane construction and operation design, but they are important for
process conceptualization and research benchmarking.

These trade-offs or upper bounds have typically been derived from a

database of numerous experimental separation results using polymer
membrane materials. As the volume of data increases, the relationship
between permeability and selectivity becomes more clearly established,
and in some cases, a fundamental justification for the basis of such a
trade-off has been developed. Notably, in the field of gas separation
membranes, a well-defined relationship has been observed based on the
properties of approximately 500-1000 unique polymer membranes for
specific gas pairs (O2/Ng, Hy/Np, Hy/CH4, COy/CH4, He/Nj, etc.)
[8-10]. A theoretical underpinning developed by Freeman has further
solidified this relationship [11-13]. These trade-offs, upper bounds, or
distribution of a large set of data points (as a typical trade-off relation-
ship does not always necessarily appear) have become an important
reference for many membrane scientists and industry professionals,
indicating not only the potential to guide materials development but
also the limitations of known polymer membrane chemistries. However,
in the relatively nascent field of organic solvent reverse osmosis (OSRO)
separations, these types of performance trade-offs remain undeveloped
due to a lack of comprehensive data and practical predictive models. We
suggest that the development of these performance trade-offs will better
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enable membrane process conceptualization and identify opportunities
for future membrane materials research, and that these trade-offs can be
initially generated using predictive models with experimental
validation.

Several machine learning (ML) models have been developed based
on widely reported data on pure solvent permeation [14-18]. These
models can potentially predict the permeability of common organic
solvent molecules (i.e., toluene, alkanes, alcohols, ketones etc.) within
polymer membranes. However, it is challenging to account for the va-
riety of chemicals used in industry, which are often different from the
common solvents. Moreover, there are limitations to the number of
polymer chemical structures to which the models can be applied.
Although some models are capable of predicting the permeability of any
pure solvent within a random polymer membrane, they fail to account
for the variations in separation results that arise from compositions of
different substances within the polymer membrane when dealing with
mixtures. More importantly, it is critical to recognize that inferring ideal
permselectivity — defined as the ratio of pure component permeabilities
for two different species — whether obtained experimentally or pre-
dicted, is of limited engineering relevance for OSRO separation. This is
because, in actual separations involving mixtures, competitive sorption,
diffusion coupling, and potential changes in polymer chain dynamics
induced by plasticization effects from one or multiple solvent species
can alter the transport behavior compared to pure component perme-
ation [19-21]. As a result, the separation behavior of mixed organic
solvent systems cannot be reliably extrapolated from pure component
permeability coefficient data alone.

The primary purpose of this work is to generate the initial set of
performance trade-off curves for polymer membrane-based OSRO sep-
arations of several classes of hydrocarbon mixtures using a predictive
model [21-23]. In this model, the diffusivity and sorption uptake of the
pure solvent within the polymer membrane are first predicted using two
machine learning (ML) models developed previously (ML diffusion
model and ML sorption model). These predicted parameters are then
incorporated into a Maxwell-Stefan-based solution-diffusion permeation
framework, enabling the final prediction of the polymer membrane’s
separation performance (e.g., permeance and separation factor) for a
given mixture. Note that the separation performance (permeance, sep-
aration factor) derived in this work reflects the permeation of an actual
binary mixture, not simply the permeability of pure components or an
ideal permselectivity obtained under the assumption of zero activity on
the downstream side. In this work, three different mixtures - toluene/1,
3,5-triisopropylbenzene, toluene/iso-octane, and n-octane/iso-octane —
as representatives of aromatic-aromatic, aromatic-aliphatic, and
aliphatic isomer separations are studied. Separation performances for
these mixture classes are predicted for a total of 857 polymer mem-
branes that have been widely used in gas and organic solvent separations
[23,24]. A subset of these predictions is validated by new experiments
discussed in this work as well as previously published experimental data.
In addition, it is impractical to use freestanding membranes with a
thickness of hundreds of nanometers to 1 pm in laboratory or industrial
applications. Instead, an asymmetric membrane that consists of a thin
selective layer integrated with, or on a porous and mechanically robust
support layer is more practical [25-27]. Considering that this support
layer also introduces resistance to the permeation of the mixture
through the membrane, a permeation resistance model is envisioned and
incorporated in the flux calculations. Lastly, this work also examines the
changes in the landscape of polymer membrane-based OSRO at varying
feed mixture concentrations.

2. Materials and methods
2.1. Materials

In this work, three polymer materials (Matrimid, SBAD-1, and
DUCKY-9 in Fig. S1) were fabricated as thin film composite membranes
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and tested for two types of binary hydrocarbon mixtures (e.g., toluene/
iso-octane, n-octane/iso-octane) used as a small set for experimental
validation. The prediction validation for toluene/TIPB separation was
conducted on previously reported data. Matrimid®5218 was purchased
from Huntsman. SBAD-1 and DUCKY-9 polymers were prepared by the
synthesis procedures as reported previously [28,29]. All chemicals
(p-xylylene diamine, lithium nitrate, chloroform, tetrahydrofuran,
1-methylpyrrolidone, ethanol, methanol, hexane, toluene, 1,3,5-triiso-
propyl benzene, n-octane, and iso-octane) were from Sigma Aldrich,
Alfa Aesar, or TCI and used as received.

2.2. Methods

2.2.1. Polymer membranes used for the separation performance trade-off
plots in this work

The list of the polymer membranes used in this work contains linear
polymer membranes that have been widely used for gas separation and
organic solvent separations. The polymer membranes have also been
used for an ML-based gas permeability model [24] and the ML organic
solvent diffusion and sorption models (used in this work) [23]. The
models are available at Polymer Genome (https://www.polymerge
nome.org/) — a web-based online platform. A total of 857 polymers
were used in this work and the chemical structures of the polymers are
provided in the Appendix of the Supporting Information file and in the
Supplementary Data file.

2.2.2. ML predictions for pure organic solvent diffusion and sorption in
polymers

The ML models for predicting solvent diffusion and sorption were
employed to estimate the diffusivities (cm?/s) and sorption uptakes
(mmol of solvent per gram of polymer) of toluene, n-octane, iso-octane,
and TIPB in all 857 polymers investigated in this study [23]. These
models were developed in our previous work, but re-trained with a small
set of additional data that has been revealed after the publication,
comprising 2066 datapoints (77 polymers, 151 solvents) for the ML
diffusion model and 2296 datapoints (50 polymers, 91 solvents) for the
ML sorption model. The full training sets are provided in the Supple-
mentary Data file. The input features to the ML models included the
chemical structures of polymers and solvents (based on SMILES,
simplified molecular input line entry system) and solvent activity (e.g.,
unity value). The models output diffusivity (cm?/s) and sorption uptake
(mmol of solvent per gram of polymer) at unit activity. Considering the
uncertainties in ML predictions, it is possible to attempt propagating the
uncertainties in the transport modeling conducted in this work. How-
ever, due to the extensive data utilized throughout this work involving a
total of 857 polymer membranes and the fact that the average values
predicted by the ML models are derived as the most probable prediction
outcomes, this work used only the average of the ML predictions in the
transport modeling. All ML predictions are also provided in the Sup-
plementary Data file.

2.2.3. Maxwell-Stefan (MS) transport modeling for OSRO

A Maxwell-Stefan (MS) framework was employed to predict mem-
brane performance in this work [21,22]. The MS equations governing
solution-diffusion permeation are briefly shown in Egs. (1)-(3).
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Here, the indices 1 through n refer to n components permeating
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through the membrane, while the membrane itself is represented as the
(n+1)" component. The superscript m denotes the membrane phase.
The vector (NV) is an (n x1) dimensional partial volumetric flux vector,
[B] is an (nxn) dimensional diffusion matrix, whose formulation is
described in the following paragraphs. [I] is an (nxn) dimensional

sorption coupling matrix. The term (¢1 ) represents the (n x1) vector of
volume fraction gradients across the membrane thickness (dz), with z =
0 at the upstream feed-membrane interface and z = / at the downstream
permeate-membrane interface. ¢[" is the volume fraction of permeating
speciesiand ¢;" , is the volume fraction of the polymer membrane; these
volume fractions represent the volume of species relative to the total
volume of the polymer-solvent system, which are obtained by unit
conversion of sorption uptake (mmol of solvent per gram of polymer)
predicted by the ML sorption model [23]. f™ and f; denote the fugacity
of component i in the membrane phase and at the reference state,
respectively. a" represents the activity of sorbed species i in the mem-
brane. Further details of the [I'] matrix construction using predicted
sorption uptakes (mmol of solvent per gram of polymer) from the ML
sorption model and the Flory-Huggins sorption model and the solution
procedure for the Maxwell-Stefan equations are available elsewhere [21,
23].

In the [B] matrix in Eq. (2), })1 )
diffusivity of pure component i in the membrane. This quantity is ob-
tained from mole-based Fickian diffusivity (D* ) predicted from the

denotes the volume-based MS

in+l
ML diffusion model used in this work. The mole-based Fickian diffusivity

is related to the volume-based Fickian diffusivity (D}, ) by Djf = D‘fv ,
J

where Vj is the partial molar volume of component j and V is the molar

S71"! xI"V;. Then, the volume-based Fickian

diffusivity (D} ,) is then thermodynamically corrected to the volume-

volume of mixture by V =

based MS diffusivity (B{},) by B{;}; = D:’,ﬂlg:g;m; In Eq. (2), By™

is the mutual diffusion coefficient for the diffusional cross-coupling
between molecules permeating through the membrane. The mutual
diffusion coefficient is estimated byusing the Vignes correlation, Eq. (4)
[30-32].

o 9
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The application of Eq. (4) implies that polymer membrane preserves
distinct diffusivities for individual permeants, and thus enables separa-
tion based on diffusivity difference as well as sorption difference.

However, polymer membrane exposed to organic solvents may un-
dergo plasticization and swelling, leading to loss of diffusivity-based
selectivity so that the separation becomes dominated by sorption dif-
ferences alone [22,33]. To model this transition, diffusivities are aver-
aged based on the volume fractions as in Eq. (5), and a transition factor Y
is introduced in Eq. (6) to interpolate between the Vignes-type diffusion
modality that assumes fully preserved individual diffusivities and
another diffusion modality that assumes complete loss of diffusivity
selectivity as a function of chemical affinity between the polymer and
the membrane (which is quantified by the Hansen solubility difference,
R, in unit of MPa®> by Eq. (7).

om

pvm 37 er/):'“
Dl n+1,averaged Vl Hk 1 ( i.n+1Vk) - (5)
D:/nnjrl .new YDY:J‘rl + (1 - Y) DY$1 averaged (6)

where, Y:%. [tanh{o (Ra _8 MPaO.S)} + 1]
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2 2
Ri =4 (5D,mixrure - 5D.polymer) + (5P,mixrure - 5P.polymer)

+ (6H,mi.xrure - 5H.polymer)2 (7)

where 6 mixwre and Spoymer are the Hansen solubility parameters of
mixture and polymer, respectively. The subscripts D, P, and H refer to
dispersion, polarity, and hydrogen bonding components. The Hansen
solubility parameters for the mixture are calculated in the following
way:

82 iveure = Z = ¢ 5jwm where A = D,P,and H ®)

Here, 84 mixwre and &4 jpure represent the solubility parameters of the
mixture and component j in unit of MPa®>, respectively. Subscript A is
used to describe three solubility factors: dispersion (D), polarity (P), and
hydrogen-bonding (H). ¢]" and 1 — ¢, denote the volume fractions of
component j and the entire mixture in the membrane phase each.
When R, is much larger than 8 MPa’® (indicating weak chemical
affinity between the polymer membrane and the mixture), the diffusion
transition factor Y approaches 1, and the original individual diffusivities
are preserved, maintaining separation based on diffusivity difference. In

such case, there is no distinction between the new diffusivity (B{; o)

and the original diffusivity (Dlvﬂl) Conversely, as R, decreases toward

0, the diffusion transition factor Y approaches 0, diffusivities converge
to a single value calculated by Eq. (5), leading to sorption-driven sepa-
ration with no diffusion selectivity. For intermediate R, values, diffu-
sivities transition smoothly between the two different diffusion
modalities according to Y (Eq. (6)).

A critical factor in this context is the constant ¢ in Eq. (6). The con-
stant ¢ controls the steepness of this transition as a function of R, and is
referred to as the “steepness constant” or “plasticization resistance
constant” (Fig. S2) [21]. Larger c values (e.g., 0.5) imply stronger
resistance to plasticization, preserving diffusion-based separation even
at moderate chemical affinities, while smaller c values (e.g., 0.1) imply
greater susceptibility to plasticization. Prior work has shown reasonable
prediction accuracy for c¢ values between 0.1 and 0.5 for different
polymer classes (e.g., polyimide, spirocyclic hydrophobic polymers), but
no universal single value has been established [21]. The constant may be
varied across different polymer and solvent classes. Therefore, this study
performed separation predictions using ¢ = 0.1, 0.3, and 0.5 and also
reported the arithmetic averaged of the prediction results, with full data
provided in the Supplementary Data file. For all predictions conducted
in this work, a temperature of 295 K and an upstream pressure of 50 bar
and a downstream pressure of 1 bar were always assumed. In addition,
membrane thickness was always assumed to be 1 pm.

2.2.4. Application of a data-driven solvent/non-solvent classification model

The objective of this work is to identify potential landscapes (or
trade-off plots) that reflect the potential of known polymer membranes
for use in OSRO separations. While including a large number of polymer
cases is essential for exploring broad chemical spaces, it is also impor-
tant to account for practical issues inherent to polymer membrane ap-
plications in organic solvent separations, such as the risk of dissolution,
swelling, and even plasticization. When polymeric materials are
employed as membranes, dissolution or excessive swelling can occur
depending on polymer-solvent interactions, potentially undermining
separation performance. To account for this, a solvent/non-solvent
classification model developed previously [34,35] and implemented in
PolymRize, a web-based platform (https://polymrize.matmerize.com)
was used for pre-screening polymer candidates for these mixture sepa-
rations. This model provides a solvent-likelihood score for 58 organic
liquids with respect to a given polymer, ranging from —1 (non-solvent)
to +1 (strong solvent). For example, a score of +0.5 for toluene with
respect to a given polymer implies approximately a 50 % probability
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that toluene would act as a solvent for that polymer. By using this model,
polymers were excluded from performance predictions if the main
component of the mixture exhibited a solvent-likelihood score above
0.5. Specifically, toluene was used as the criterion for the toluene/TIPB
and toluene/iso-octane systems, and heptane was used as a surrogate for
n-octane/iso-octane, as n-octane was not included in the model’s data-
base. Although solvent strength may be attenuated in a mixture due to
co-solvent interactions, dissolution remains a critical risk when a strong
solvent is present; therefore, this screening was based solely on the
predicted score of the primary solvent. The prediction results are pro-
vided in the Supplementary Data file. As a result of this pre-screening
step, 491 polymers were excluded from the toluene/TIPB and
toluene/iso-octane separation analyses, and 415 polymers were
excluded from the n-octane/iso-octane analysis.

2.2.5. Liquid mixture permeation measurement

Thin film composite (TFC) membranes for liquid mixture permeation
tests were fabricated by spin coating polymer materials (Matrimid,
SBAD-1, and DUCKY-9) onto a cross-linked, porous polyimide (Matri-
mid) support film. The preparation of the support films and the TFC
membranes with the selective layer was performed according to previ-
ously established methods [23,29]. Briefly, Matrimid powders (16 wt%)
and lithium nitrate (LiNO3, 3 wt%) were dissolved in a solvent mixture
consisting of 1-methyl-2-pyrrolidone (69 wt%), tetrahydrofuran (10 wt
%), ethanol (1 wt%), and deionized water (1 wt%). Prior to dissolution,
the solid powders (Matrimid and LiNO3) were dried under vacuum at
110 °C. The solution was then mixed on a roller for two days to ensure
complete dissolution. The resulting polymer solution was cast onto a
glass plate using a 10 MIL doctor blade, and after 10 s, it was rapidly
transferred to a water bath to induce a non-solvent phase inversion
process. The cast support films were immersed in deionized water for
three days and underwent three successive solvent exchanges in meth-
anol and hexane at 2 h-interval. The films were then air-dried for 1 h and
cut into circular coupons with an effective area of 10.25 cm?. Following
this, cross-linking was achieved by immersing the support films in a
solution of 5 g of p-xylene diamine dissolved in 100 ml of methanol for
24 h, followed by the same solvent exchange process with methanol and
hexane to remove any residual cross-linker. The final supports were
stored in hexane and air-dried for 24 h prior to use.

To fabricate the TFC membranes for this study, a polymer dope so-
lution (1 wt% polymer in chloroform) was spin-coated onto the cross-
linked polyimide support. Each polymer solution, stored at 5 °C, was
dispensed (0.7 ml) onto the support film located on a plate in a spin
coater, operating at 1200 rpm. The spin coater chamber was saturated
with chloroform vapor by placing cotton soaked in chloroform and
introducing dry N gas. The resulting TFC membranes were air-dried for
24 h before further testing.

Liquid permeation tests were carried out in a custom-built cross-flow
system pressurized up to 50 bar on the upstream side by an HPLC pump
(Azura P 4.1S, Knauer) at 295 K [21]. The feed flow rate was maintained
consistently at a 15 ml/min such that the stage cut was <3 %. The tested
mixtures were toluene/iso-octane mixture with concentrations of 90/10
(mol %), 80/20 (mol %), and 70/30 (mol %), and n-octane/iso-octane
with a concentration of 90/10 (mol %). The concentration of the
permeate was analyzed by gas chromatography (7890B GC, Agilent) and
the separation factor was calculated as the following way:

Cp,Toluene Cf ,TIPB

Separation factorroyene;ips =

Cf \Toluene Cp. TIPB

where G, 1oiuene and Cy roene are the permeate and feed concentration of
toluene, and C; rip and Cyyipp are the permeate and feed concentration
of TIPB. The experiments were typically run for more than 2-3 days to
allow for steady state permeation profiles to develop. For the mixture
permeation tests, different thin film composite samples were tested in
triplicate. All permeation tests were predicted by the Maxwell-Stefan
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model described in this work.
3. Results and discussion

In this work, three representative binary liquid hydrocarbon mix-
tures were investigated: toluene/TIPB, toluene/iso-octane, and n-oc-
tane/iso-octane, corresponding to aromatic, aromatic/aliphatic, and
aliphatic separations, respectively. The toluene/TIPB mixture is a
widely used benchmark for evaluating polymer-based OSRO mem-
branes. The toluene/iso-octane mixture is industrially relevant due to
environmental regulations requiring reduced aromatic content in gaso-
line [36,37]. Conventional separation methods, such as distillation, are
hindered by close boiling points (110.6 °C for toluene and 99 °C for
iso-octane) and azeotropic behavior [38-40], while alternative tech-
niques (i.e., extractive distillation) are costly and solvent-intensive [38,
41]. The n-octane/iso-octane mixture represents linear/branched
alkane separation, critical for upgrading gasoline octane ratings [42].
Conventional thermal and chromatographic methods for this separation
are energy-intensive [43-45], and membrane-based separation tech-
nologies such as OSRO have potential as an alternative.

This work explored the potential separation performance of polymer
membranes for the three representative OSRO-based binary hydrocar-
bon separations, accounting for key factors that constrain practical ap-
plications. Specifically, the study exmained the effects of polymer
dissolution and plasticization on separation performance landscape
(trade-off) plots, the reduction in achievable membrane productivity
due to permeation resistance in the support layer, and the separation
efficiency limits imposed by osmotic pressure when separation highly
concentrated mixtures beyond the dilute concentration ranges typically
used in material testing.

3.1. Accounting for polymer plasticization and dissolution

Predicted separation performances for the 857 polymer membranes
were evaluated for the three binary hydrocarbon mixtures, toluene/
TIPB (95/5 mol%), toluene/iso-octane (90/10 mol%), and n-octane/iso-
octane (90/10 mol%), as shown in Fig. 1a, b, and 1lc. For these pre-
dictions, a plasticization constant (c) of 0.5 in Eq. (6) was assumed and
no mass transfer resistance in the support layer was assumed in the
predictions. It is important to note that these plots report the permeance
of the main solvent component in each mixture (toluene for the toluene/
TIPB and toluene/iso-octane mixture, and n-octane for n-octane/iso-
octane mixture) and the corresponding separation factor rather than
simply the ratio of pure-component permeabilities and ideal permse-
lectivity. For all three mixture separation cases (Fig. 1a, b, and 1c¢), a
general trade-off was observed; polymers exhibiting higher permeance
tend to show lower separation factors, and vice versa. Among the three
separation cases, the toluene/TIPB separation exhibits the highest
potentially achievable separation factors, likely due to the large mo-
lecular weight differences among toluene (92.14 g mol 1), and TIPB
(204.35 g mol’l), and octanes (114.23 g mol’l), which may enhance
both diffusion and sorption selectivity.

While these predictions (Fig. 1a, b, and 1c) were made for all 857
polymers, it must be considered that polymers may dissolve when
exposed to the target organic solvent mixture, rendering them unsuit-
able for OSRO membrane applications. To account for this, a solvent/
non-solvent classification model implemented in PolymRize was used
to pre-screen polymers. Polymers for which the main component of the
mixture was predicted to behave as a strong solvent (i.e., solvent-
likelihood probability >50 %) were identified (also provided in the
Supplementary Data file). As shown in Fig. 1a, b, and 1c, 491 polymers
were predicted to have a high likelihood of dissolution in toluene and
415 polymers in heptane. These polymers (cyan triangles in the plots)
generally exhibited higher permeance than those predicted to be un-
likely dissolved (red circles in the plots). Although both separation
performance predictions and the solvent/non-solvent classification
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toluene/TIPB, (e) toluene/iso-octane, and (f) n-octane/iso-octane. The sphere represents the locus of points at a distance of 8 MPa%® from the test mixture at the
origin. Polymers with a solubility difference from the mixture less than 8 MPa’* (i.e., located within the sphere) are shown as blue dots (179, 169, and 99 polymers
for toluene/TIPB, toluene/iso-octane, and n-octane/iso-octane, respectively). Polymers with a solubility difference greater than 8 MPa®? (i.e., located outside the
sphere) are shown as red dots (187, 197, and 343 polymers, respectively). Separation performance plots including only the average predictions across three different
¢ values are shown for (g) toluene/TIPB, (h) toluene/iso-octane, and (i) n-octane/iso-octane; here, polymers for which the main solvent was classified as a strong
solvent by the solvent/non-solvent classification model were excluded. In panels (g), (h), and (i), blue inverted triangles represent the experimentally measured
separation performance of previously reported linear polymer membranes, while the light green diamonds indicate the corresponding predictions by the model used
in this work (Fig. S7 and Table S1). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

predictions are data-driven and carry some potential uncertainties,
polymers at high dissolution risk were excluded from subsequent ana-
lyses to derive reliable and possible OSRO separation performance
landscapes. The separation performance plots including only solvent-
compatible polymers are provided separately (Fig. S3).

Even when a polymer membrane does not fully dissolve in a given
mixture, plasticization may occur depending on the chemical affinity
between the polymer membrane and the mixture, potentially degrading
separation efficiency (i.e., separation factor). Fig. 1d, e, and 1f present
the Hansen solubilities of polymers and each mixture, where smaller
distance between polymer and mixture indicates stronger chemical af-
finity. Our prior work demonstrated that as the chemical affinity

between a polymer membrane and a mixture increases, the likelihood of
plasticization rises, leading to diminished separation selectivity driven
by the diffusivity difference [21]. To capture this phenomenon, Equa-
tions (4)-(6) were incorporated into the model, with chemical affinity
quantitatively represented by the Hansen solubility difference (R,) in
Eq. (7). In particular, it was shown previously that separation efficiency
begins to degrade noticably when the Hansen solubility difference falls
below approximately 8 MPa%®

The extent of this effect is captured in the model by the plasticization
resistance constant, c, in Eq. (6), which reflects the membrane’s resis-
tance to plasticization: larger values imply greater resistance, allowing
the membrane to maintain separation performance despite high
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chemical affinity with the mixture (Fig. S2). In contrast, smaller values
represent membranes that are more susceptible to performance loss due
to plasticization. The prior study indicated that reasonable plasticization
constant values may range from 0.1 to 0.5, but no universal value
applicable to all polymer-mixture pairs has been established. Therefore,
for the polymers that passed the initial solvent/non-solvent pre-
screening (Fig. 1a, b, and 1c), separation performances were predicted
using three different plasticization resistance constant values (¢ = 0.1,
0.3, 0.5) (Figs. S4, S5, and S6). As the plasticization constant c
decreased, the predicted separation performance of polymers with
initially high separation factors progressively declined. This trend was
particularly pronounced for toluene/TIPB (Fig. S4) compared to
toluene/iso-octane (Fig. S5) and n-octane/iso-octane (Fig. S6), likely
due to the larger molecular size difference between toluene and TIPB,
which enhances separation based on diffusivity difference, but also
makes it more vulnerable to plasticization if the membrane lacks suffi-
cient plasticization resistance.

Predictions for previously reported linear polymer membranes for
toluene/TIPB [28,29,46-48], and SBAD-1, Matrimid, and DUCKY-9 for
toluene/iso-octane and n-octane/iso-octane (which were newly tested in
this work) were compared across different ¢ values (Fig. S7 and
Table S1-S3). These comparisons reveal that the ¢ value yielding the
best agreement between predicted and experimental separation factors
varies depending on polymer and mixture class, indicating that plasti-
cization resistance may be polymer- and solvent-specific. Therefore, we
speculate that no single c value can be universally applied. However, ¢
values between 0.1 and 0.5 generally produced excellent prediction
accuracy, both in this work and in a prior study [21]. Accordingly, the
separation performance plots in Fig. 1g, h, and 1i report the arithmetic
averages of the predicted separation performance across the three c
values (0.1, 0.3, 0.5) to present a more balanced and realistic perfor-
mance landscape. Notably, the top-performing polymers identified in
Fig. 1g, h, and 1i show superior separation performance, achieving
higher separation factors and permeances than previously reported
polymer membranes (represented by green diamonds and blue inverted
triangles in the plots). As a result of the modeling, polymer structures
exhibiting both high permeance and separation efficiency (top 20 by
separation factor in each hydrocarbon separation case, with permeance
above 0.5 L. m? hr~! bar 1) were identified across the three hydrocarbon
mixtures examined in this work (Fig. S8). In particular, spirocyclic
polymers with polar groups such as esters incorporated in the backbone
and polyimides with ether functionalities were predicted to be especially
promising for these separations. Experimental verification of these
polymers will be needed in the future.

3.2. Permeation limited by mass transfer resistance in support layer

Asymmetric membranes such as thin film composite membranes
(TFC), which consist of a thin selective layer (~100 nm-1 pm) coated on
a porous support layer that possesses chemical and mechanical stability
are practical for membrane applications. TFC membranes exhibit a high
flux for gas, vapor, and liquid permeation and are viable for a wide range
of applications. However, due to the mass transport resistance in the
support layer, the high flux increases the importance of properties of the
support layer.

When predicting OSRO performance, it is essential to consider the
permeation resistance of the support layer used. In this context, several
studies have modeled the resistance generated in each layer (coated skin
layer and porous support layer) and the total resistance as a sum of these
individual resistances [49-52]. A notable example is the permeation
resistance model developed by Henis and Tripodi [51], which was
inspired by the resistance model of an electrical circuit (Fig. S9).

Inspired by this model, this work considered the resistance to
permeation rate that may occur in the support layer in the use of a
practical TFC format. However, contrary to previous work [51], there is
currently no information about small pores such as those found in skin
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layers or defects between the top selective skin layer and the highly
porous support layer (Fig. S9). Therefore, to simplify the use of this
model in transport modeling, it was assumed that the three distinct
layers (R, R3, and R4 in Fig. S9) were consolidated into a unified virtual
resistance layer, with the surface fraction set to 1 (Fig. 2).

The total permeation resistance (Ryrc) and total permeance
(P1pc/ 1rc) through TFC membrane are formulated as follows:

Rirc = Rkin + Rsuppon (9)

/ TFC (/ skin
H:)TFC

/. suppan)
o Lswpore 10)
Pskin quppon

where R is the resistance of the layer and P is the permeability, and
(P//) is the permeance (L m~2 hr™! bar™1). If the permeance of the
support (Psypport //support) is significantly low relative to the permeance
in the skin layer (Psn //skin), the overall permeance of the TFC mem-
brane becomes limited by the permeance of the support. On the other
hand, if the permeance of the support is enormously high relative to the
permeance of the skin layer, the TFC permeance is limited by the per-
meance of the dense skin layer (as desired).

In OSRO separations, ultrafiltration membranes with permeance of
50-100 L m~2hr~! bar ™}, or even that of up to 1000 Lm 2 hr ! bar ! in
exceptionally fast cases, are utilized as support materials. The cross-
linked Matrimid support fabricated and used in this work exhibits per-
meance of approximately 50-100 L m~2 hr~! bar~! with thickness of a
150-200 pm. The landscapes illustrating the variations in TFC
membrane-based OSRO as influenced by the use of the permeation
resistance model (Equations (9) and (10)) are shown in Fig. 3. For the
study of potential permeance of TFC membranes, various ranges of
maximum permeance values of the supports were employed: 10 L m ™2
hr! bar? (range of nanofiltration membrane for the slowest support
case), 50 and 100 Lm 2 hr ! bar? (range of ultrafiltration membrane),
and 1000 L m~2 hr ! bar™! (range of microfiltration membrane as the
fastest with minimal resistance support example). The resistance was
integrated into TFC permeance calculations and no selectivity was
assumed in the support layer; thus, the separation factor is not affected
throughout the support layer.

As expected, for all mixtures, no predicted permeance values
exceeded the maximum permeance determined by the permeation
resistance in the support layer. The permeation resistance model used in
this work assumed that the support layer imposes no selectivity, even for
supports with low permeance (e.g., 10 L m~2 hr™! bar 1), typical of
commercial nanofiltration membranes. However, in practice,
nanofiltration-type supports could influence selectivity, particularly for
molecules such as TIPB that lie near the upper molecular weight of
OSRO target (<200 g mol ') and the lower limit of nanofiltration targets
(200-1000 g mol~1). Thus, experimental results for these systems may
deviate from predictions assuming non-selective supports.

TFC membrane

\ Feed
—_—

skin layer (1 ym)

Retentate

porous support
(~50-200 pm)

Permeate

Fig. 2. Schematic representation of permeation resistance model used in this
work. Ryin and Rgyppore indicate the permeation resistance in the skin layer and
support layer, respectively.
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are included.

For the toluene/TIPB and toluene/iso-octane mixtures (Fig. 3a and
b), the fastest permeance, assuming a free-standing, defect-free dense
polymer membrane of 1 ym thickness, ranged from 10 to 200 L m 2 hr !
bar~!, although a few polymers exhibited that high permeance.
Imposing a support resistance typical of ultrafiltration membranes
(50-100 L m~2 hr! bar’l) or even higher (1000 L m~2 hr! bar ™))
produced minimal changes in the separation performance landscape. In
contrast, for the n-octane/iso-octane mixture separation (Fig. 3c), a
relatively larger number (still a few polymers) of polymers were pre-
dicted to exceed 100 L m~2 hr™! bar~! although with separation factors
close to unity, indicating marginal selectivity. For these cases, support
layer resistance could substantially limit achievable permeance.

While this work consistently assumed a 1 pm membrane thickness,
practical membrane fabrication often seeks thinner selective layers
(~100 nm) to achieve higher flux or permeance. Theoretically, per-
meance increases inversely with membrane thickness, necessitating
highly permeable support to minimize support layer resistance (i.e.,

1000 L m~2 hr~! bar™1). Achieving such high permeance typically re-
quires enlarging support pore sizes, which introduces challenges in
forming defect-free, dense skin layers, as excessive pore sizes can lead to
solution infiltration and caulking during coating [53,54]. This condition
may result in observed performance that reflects a combination of the
polymer coating and the underlying support rather than the true
intrinsic separation capability of the polymer membrane. Furthermore,
highly porous supports often suffer from inadequate mechanical
strength, limiting their suitability for high pressure OSRO applications
(~100 bar). These considerations also extend to integrally skinned
asymmetric membranes where the dense skin layer and porous support
are formed from a single polymer [55]. An alternative approach involves
increasing the surface porosity of supports while maintaining small pore
sizes, potentially facilitating both mechanical robustness and the for-
mation of high-quality selective layers.
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3.3. Effect of mixture concentration on membrane-based OSRO
separations

According to the thermodynamic entropy law of diffusion, molecules
are driven to diffuse from a region of high concentration to a region of
low concentration. When a polymer membrane selectively separates a
specific molecule or more in a mixture, osmotic pressure is formed for
the solvent (the more permeable molecule in the case of a binary
mixture). This osmotic pressure is determined by the concentrations of
feed fluid and permeate fluid (Equation (11)) as below:

T xfeed _eed
7 (osmotic pressure) = —Ii—-ln [ : y‘f

—ermeate permeaic 11
Vi xfermea[e erﬂnea[e ( )

where R is the gas constant (8.3145 J/mol/K), x{eed and XX are the

mole concentrations of component i, and yl.feed and /7™ are the activity
coefficients of component i at feed and permeate stream, respectively.
Assuming perfect separation, the lower the solvent concentration (the
greater the solute concentration), the higher osmotic pressure, necessi-
tating a sufficiently high transmembrane pressure to counteract the
osmotic pressure in the OSRO-based separation process. Regardless of
the selectivity that can be exhibited by the membrane, achieving a
permeate concentration that generates osmotic pressure exceeding the
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applied transmembrane pressure is difficult (Fig. 4a). However, in in-
dustrial applications, mixture concentrations span the entire range from
dilute to concentrated. Consequently, the concentration of a given
mixture can significantly impact the landscape of separation properties
for polymer membrane-based OSRO.

This work also investigated the effect of feed mixture concentration
on OSRO separations for the three binary hydrocarbon mixture classes
(toluene/TIPB, toluene/-iso-octane, and n-octane/iso-octane) (Fig. 4b,
¢, and 4d). In the predictions, all parameters including 50 bar pressure
applied at the upstream side were applied consistently, and the con-
centrations of toluene/TIPB mixture were 95/5 mol%, 90/10 mol%, and
80/20 mol%, while the concentrations of toluene/iso-octane mixture
and n-octane/iso-octane mixture were changed from 90,/10 mol% to 80/
20 mol%, 70/30 mol% and 60/40 mol%. The osmotic pressure that
could occur, assuming perfect separation (i.e., the permeate is pure
solvent with no solute molecule), for each mixture concentration was
calculated using Equation (11), and is listed in Table S4.

In the case of toluene/TIPB mixture (Fig. 4b), even when assuming
perfect separation at concentrations of 95/5 mol% and 90/10 mol%, the
osmotic pressure exerted by the toluene solvent across the membrane is
substantially lower than the applied transmembrane pressure of 50 bar
(Table S4), resulting in an effective driving force (activity gradient) and
achieving a high degree of separation efficiency. As the feed
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concentration changes, the activity gradient (driving force of molecular
diffusion) within the membrane also changes, leading to variations in
the separation capability and permeance. However, since the given
transmembrane pressure still exceeds the osmotic pressure in the cases
of these two mixture concentrations, no significant difference in sepa-
ration is predicted. However, when the concentration becomes 80/20
mol%, the osmotic pressure with the assumption of perfect separation
reaches around 51.6 bar (Table S4), exceeding the transmembrane
pressure. Consequently, a less effective activity gradient can be estab-
lished, leading to a sharp decline in separation efficiency. The permeate
concentration, which generates an osmotic pressure equal to the applied
transmembrane pressure, was calculated, and the corresponding sepa-
ration factor was determined to be 24.8. It is evident that this high os-
motic pressure acts as a thermodynamic resistance to separation.

In the toluene/iso-octane mixture separation cases (Fig. 4c), when
the feed concentration is 90/10 mol%, the osmotic pressure with the
assumption of perfect separation is 24.3 bar, which is noticeably lower
than the applied transmembrane pressure. As a result, the separation
resistance due to osmotic pressure is relatively low, resulting in high
separation selectivity, as illustrated in the figure. However, as the con-
centration of the solvent (toluene in this case) decreased to 80 mol%, 70
mol% and 60 mol %, the osmotic pressure of perfect separation scenario
rises to 51.6 bar, 82.5 bar, and 118.2 bar, respectively (Table S4),
exceeding the applied transmembrane pressure. In such cases, the os-
motic pressure formed across the membrane is likely to act as a signif-
icant resistance to selective separation. Accordingly, as shown in Fig. 4c,
a dramatic decrease in the predicted separation factors was observed as
the concentration of the toluene solvent in the feed decreased. In these,
permeation concentrations to generate osmotic pressures equal to the
applied transmembrane pressure were calculated; thereby, the separa-
tion factors predicted for the polymer membranes do not exceed the
theoretical limits of 24.8, 2.8, and 1.95 with the feed concentration of
80/20 mol%, 70/30 mol%, and 60/40 mol%, respectively.

In the case of n-octane/iso-octane mixture separations (Fig. 4d), the
applied transmembrane pressure exceeds the perfect separation-based
osmotic pressures of 15.9 bar and 33.7 bar with solvent (n-octane in
this case) concentrations of 90 mol% and 80 mol% (Table S4). Due to the
effective transmembrane pressures and induced activity gradients in
these cases, high separation efficiency is still anticipated. As the con-
centration of the mixture reaches 70/30 mol% and 60/40 mol%, the
osmotic pressure formed in complete separation assumption begins to
surpass the transmembrane pressure; therefore, the limit separation
factors of 13.8 and 3.25 are calculated, and the separation factors ach-
ieved by the polymers do not exceed the theoretical limit. In the cases of
toluene/iso-octane and n-octane/iso-octane separations, at high solute
concentration (e.g., 60/40 mol%), high separation factors cannot be
achieved due to inherent thermodynamic limitations imposed by os-
motic pressure. When the mechanical strength of membranes and
modules constrains the maximum applied pressure, such that it cannot
be increased indefinitely, the system must operate under reduced
effective driving force at high osmotic pressure. Under such conditions,
it may be more rational to select polymer membranes exhibiting
intrinsically high permeability rather than those demonstrating high
selectivity at low solute concentrations, as the achievable separation
factor is fundamentally limited by the osmotic pressure.

4. Conclusion

In this study, the landscapes of polymer-membrane-based organic
solvent reverse osmosis separation processes for three representative
hydrocarbon mixtures were investigated. Diffusivities and solubilities of
pure organic liquid molecules predicted via machine algorithms were
parameterized into Maxwell-Stefan permeation equations coupled with
the Flory-Huggins sorption models. To develop a practical polymer
membrane-based OSRO landscape, variables that account for the plas-
ticization resistance of polymer membranes to the hydrocarbon mixtures
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(plasticization resistance constant), permeation resistance in the porous
support layer (via the permeation resistance model), and separation
efficiency constrained by osmotic pressure relative to feed mixture
concentration were integrated into the landscape.

While this study focused on three representative binary hydrocarbon
mixtures, the modeling framework used in this work can readily be
applied to a wide variety of binary and more complex organic solvent
mixtures that require energy-efficient separation. Although approxi-
mately 800 polymer membranes were explored in this work, this set
does not comprehensively represent the full diversity of polymeric ma-
terials, and expanding this investigation to a broader range of polymers
would be an interesting and important direction for future research.
Moreover, as the separation performance landscapes presented in this
study are based on predictive models, experimental validation — at least
for a subset of the predictions that are not experimentally validated in
this work — will be essential to confirm the reliability and applicability of
the proposed approach.
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