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A B S T R A C T

Performance trade-off analysis of polymeric membrane materials obtained via experimental studies has been 
used to select materials for challenging separations and to identify opportunities for innovation. These types of 
analyses not only highlight the potential and limitations of polymer membranes in different separation appli
cations, but also serve as a reference for guiding the development of new membrane materials and modules. 
Despite the growing interest in organic solvent reverse osmosis (OSRO) using polymer membranes, a stan
dardized separation performance trade-off curve for OSRO has yet to emerge, primarily due to the limited 
number of studies in this area. Therefore, there is a need for a comprehensive indicator that reflects the potential 
separation capabilities of polymer membranes for various organic solvent mixtures. In this study, we generate 
these performance trade-off curves for >800 polymer structures and three different solvent-solvent separations 
using a predictive model. Existing data in the literature and new data are used to validate some of the predictions 
in this work. As OSRO performance is often described in terms of engineering parameters such as permeance and 
separation factor, we also explore the impact of factors such as permeation resistance in the support layer and the 
impact of osmotic pressure on separation efficiency.

1. Introduction

In nearly all applications of polymer membranes – such as gas sep
aration [1–3], water purification [4,5], and ion separation within elec
trochemical devices [6] – a trade-off or upper bound exists between 
productivity (i.e., permeability, the flux normalized by the driving force 
and the inverse value of membrane thickness) and separation efficiency 
(selectivity). Typically but not necessarily, polymer membranes that 
exhibit high permeability tend to have low selectivity between different 
substances, and vice versa. Consequently, the primary objective of most 
membrane materials research is to develop membrane materials that can 
effectively mitigate or overcome this trade-off [7]. In engineering work, 
these types of trade-off curves are useful in designing membrane tech
nologies and processes, as these often encapsulate the best possible 
performance achievable via current membrane materials. Of course, 
these types of trade-off plots are only a small component of the overall 
membrane construction and operation design, but they are important for 
process conceptualization and research benchmarking.

These trade-offs or upper bounds have typically been derived from a 

database of numerous experimental separation results using polymer 
membrane materials. As the volume of data increases, the relationship 
between permeability and selectivity becomes more clearly established, 
and in some cases, a fundamental justification for the basis of such a 
trade-off has been developed. Notably, in the field of gas separation 
membranes, a well-defined relationship has been observed based on the 
properties of approximately 500–1000 unique polymer membranes for 
specific gas pairs (O2/N2, H2/N2, H2/CH4, CO2/CH4, He/N2, etc.) 
[8–10]. A theoretical underpinning developed by Freeman has further 
solidified this relationship [11–13]. These trade-offs, upper bounds, or 
distribution of a large set of data points (as a typical trade-off relation
ship does not always necessarily appear) have become an important 
reference for many membrane scientists and industry professionals, 
indicating not only the potential to guide materials development but 
also the limitations of known polymer membrane chemistries. However, 
in the relatively nascent field of organic solvent reverse osmosis (OSRO) 
separations, these types of performance trade-offs remain undeveloped 
due to a lack of comprehensive data and practical predictive models. We 
suggest that the development of these performance trade-offs will better 
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enable membrane process conceptualization and identify opportunities 
for future membrane materials research, and that these trade-offs can be 
initially generated using predictive models with experimental 
validation.

Several machine learning (ML) models have been developed based 
on widely reported data on pure solvent permeation [14–18]. These 
models can potentially predict the permeability of common organic 
solvent molecules (i.e., toluene, alkanes, alcohols, ketones etc.) within 
polymer membranes. However, it is challenging to account for the va
riety of chemicals used in industry, which are often different from the 
common solvents. Moreover, there are limitations to the number of 
polymer chemical structures to which the models can be applied. 
Although some models are capable of predicting the permeability of any 
pure solvent within a random polymer membrane, they fail to account 
for the variations in separation results that arise from compositions of 
different substances within the polymer membrane when dealing with 
mixtures. More importantly, it is critical to recognize that inferring ideal 
permselectivity – defined as the ratio of pure component permeabilities 
for two different species – whether obtained experimentally or pre
dicted, is of limited engineering relevance for OSRO separation. This is 
because, in actual separations involving mixtures, competitive sorption, 
diffusion coupling, and potential changes in polymer chain dynamics 
induced by plasticization effects from one or multiple solvent species 
can alter the transport behavior compared to pure component perme
ation [19–21]. As a result, the separation behavior of mixed organic 
solvent systems cannot be reliably extrapolated from pure component 
permeability coefficient data alone.

The primary purpose of this work is to generate the initial set of 
performance trade-off curves for polymer membrane-based OSRO sep
arations of several classes of hydrocarbon mixtures using a predictive 
model [21–23]. In this model, the diffusivity and sorption uptake of the 
pure solvent within the polymer membrane are first predicted using two 
machine learning (ML) models developed previously (ML diffusion 
model and ML sorption model). These predicted parameters are then 
incorporated into a Maxwell-Stefan-based solution-diffusion permeation 
framework, enabling the final prediction of the polymer membrane’s 
separation performance (e.g., permeance and separation factor) for a 
given mixture. Note that the separation performance (permeance, sep
aration factor) derived in this work reflects the permeation of an actual 
binary mixture, not simply the permeability of pure components or an 
ideal permselectivity obtained under the assumption of zero activity on 
the downstream side. In this work, three different mixtures - toluene/1, 
3,5-triisopropylbenzene, toluene/iso-octane, and n-octane/iso-octane – 
as representatives of aromatic-aromatic, aromatic-aliphatic, and 
aliphatic isomer separations are studied. Separation performances for 
these mixture classes are predicted for a total of 857 polymer mem
branes that have been widely used in gas and organic solvent separations 
[23,24]. A subset of these predictions is validated by new experiments 
discussed in this work as well as previously published experimental data. 
In addition, it is impractical to use freestanding membranes with a 
thickness of hundreds of nanometers to 1 μm in laboratory or industrial 
applications. Instead, an asymmetric membrane that consists of a thin 
selective layer integrated with, or on a porous and mechanically robust 
support layer is more practical [25–27]. Considering that this support 
layer also introduces resistance to the permeation of the mixture 
through the membrane, a permeation resistance model is envisioned and 
incorporated in the flux calculations. Lastly, this work also examines the 
changes in the landscape of polymer membrane-based OSRO at varying 
feed mixture concentrations.

2. Materials and methods

2.1. Materials

In this work, three polymer materials (Matrimid, SBAD-1, and 
DUCKY-9 in Fig. S1) were fabricated as thin film composite membranes 

and tested for two types of binary hydrocarbon mixtures (e.g., toluene/ 
iso-octane, n-octane/iso-octane) used as a small set for experimental 
validation. The prediction validation for toluene/TIPB separation was 
conducted on previously reported data. Matrimid®5218 was purchased 
from Huntsman. SBAD-1 and DUCKY-9 polymers were prepared by the 
synthesis procedures as reported previously [28,29]. All chemicals 
(p-xylylene diamine, lithium nitrate, chloroform, tetrahydrofuran, 
1-methylpyrrolidone, ethanol, methanol, hexane, toluene, 1,3,5-triiso
propyl benzene, n-octane, and iso-octane) were from Sigma Aldrich, 
Alfa Aesar, or TCI and used as received.

2.2. Methods

2.2.1. Polymer membranes used for the separation performance trade-off 
plots in this work

The list of the polymer membranes used in this work contains linear 
polymer membranes that have been widely used for gas separation and 
organic solvent separations. The polymer membranes have also been 
used for an ML-based gas permeability model [24] and the ML organic 
solvent diffusion and sorption models (used in this work) [23]. The 
models are available at Polymer Genome (https://www.polymerge 
nome.org/) – a web-based online platform. A total of 857 polymers 
were used in this work and the chemical structures of the polymers are 
provided in the Appendix of the Supporting Information file and in the 
Supplementary Data file.

2.2.2. ML predictions for pure organic solvent diffusion and sorption in 
polymers

The ML models for predicting solvent diffusion and sorption were 
employed to estimate the diffusivities (cm2/s) and sorption uptakes 
(mmol of solvent per gram of polymer) of toluene, n-octane, iso-octane, 
and TIPB in all 857 polymers investigated in this study [23]. These 
models were developed in our previous work, but re-trained with a small 
set of additional data that has been revealed after the publication, 
comprising 2066 datapoints (77 polymers, 151 solvents) for the ML 
diffusion model and 2296 datapoints (50 polymers, 91 solvents) for the 
ML sorption model. The full training sets are provided in the Supple
mentary Data file. The input features to the ML models included the 
chemical structures of polymers and solvents (based on SMILES, 
simplified molecular input line entry system) and solvent activity (e.g., 
unity value). The models output diffusivity (cm2/s) and sorption uptake 
(mmol of solvent per gram of polymer) at unit activity. Considering the 
uncertainties in ML predictions, it is possible to attempt propagating the 
uncertainties in the transport modeling conducted in this work. How
ever, due to the extensive data utilized throughout this work involving a 
total of 857 polymer membranes and the fact that the average values 
predicted by the ML models are derived as the most probable prediction 
outcomes, this work used only the average of the ML predictions in the 
transport modeling. All ML predictions are also provided in the Sup
plementary Data file.

2.2.3. Maxwell-Stefan (MS) transport modeling for OSRO
A Maxwell-Stefan (MS) framework was employed to predict mem

brane performance in this work [21,22]. The MS equations governing 
solution-diffusion permeation are briefly shown in Eqs. (1)–(3). 
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Here, the indices 1 through n refer to n components permeating 
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through the membrane, while the membrane itself is represented as the 
(n + 1)st component. The superscript m denotes the membrane phase. 
The vector 

(
NV

)
is an (n×1) dimensional partial volumetric flux vector, 

[B] is an (n×n) dimensional diffusion matrix, whose formulation is 
described in the following paragraphs. [Γ] is an (n×n) dimensional 

sorption coupling matrix. The term d(ϕm
1:n)

dz represents the (n×1) vector of 
volume fraction gradients across the membrane thickness (dz), with z =

0 at the upstream feed-membrane interface and z = l at the downstream 
permeate-membrane interface. ϕm

i is the volume fraction of permeating 
species i and ϕm

n+1 is the volume fraction of the polymer membrane; these 
volume fractions represent the volume of species relative to the total 
volume of the polymer-solvent system, which are obtained by unit 
conversion of sorption uptake (mmol of solvent per gram of polymer) 
predicted by the ML sorption model [23]. fm

i and f ◦

i denote the fugacity 
of component i in the membrane phase and at the reference state, 
respectively. am

i represents the activity of sorbed species i in the mem
brane. Further details of the [Γ] matrix construction using predicted 
sorption uptakes (mmol of solvent per gram of polymer) from the ML 
sorption model and the Flory-Huggins sorption model and the solution 
procedure for the Maxwell-Stefan equations are available elsewhere [21,
23].

In the [B] matrix in Eq. (2), Ðv,m
i,n+1 denotes the volume-based MS 

diffusivity of pure component i in the membrane. This quantity is ob
tained from mole-based Fickian diffusivity (Dm

i,n+1
)

predicted from the 
ML diffusion model used in this work. The mole-based Fickian diffusivity 

is related to the volume-based Fickian diffusivity (Dv,m
i,n+1

)
by Dm

ij =
Dv,m

ij V̂
Vj

, 

where Vj is the partial molar volume of component j and V̂ is the molar 
volume of mixture by V̂ =

∑j=n+1
j=1 xm

j Vj. Then, the volume-based Fickian 
diffusivity (Dv,m

i,n+1) is then thermodynamically corrected to the volume- 

based MS diffusivity (Ðv,m
i,n+1) by Ðv,m

i,n+1 = Dv,m
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. In Eq. (2), Ðv,m
ij 

is the mutual diffusion coefficient for the diffusional cross-coupling 
between molecules permeating through the membrane. The mutual 
diffusion coefficient is estimated byusing the Vignes correlation, Eq. (4)
[30–32]. 
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The application of Eq. (4) implies that polymer membrane preserves 
distinct diffusivities for individual permeants, and thus enables separa
tion based on diffusivity difference as well as sorption difference.

However, polymer membrane exposed to organic solvents may un
dergo plasticization and swelling, leading to loss of diffusivity-based 
selectivity so that the separation becomes dominated by sorption dif
ferences alone [22,33]. To model this transition, diffusivities are aver
aged based on the volume fractions as in Eq. (5), and a transition factor Y 
is introduced in Eq. (6) to interpolate between the Vignes-type diffusion 
modality that assumes fully preserved individual diffusivities and 
another diffusion modality that assumes complete loss of diffusivity 
selectivity as a function of chemical affinity between the polymer and 
the membrane (which is quantified by the Hansen solubility difference, 
Ra, in unit of MPa0.5 by Eq. (7)). 
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where δ mixture and δpolymer are the Hansen solubility parameters of 
mixture and polymer, respectively. The subscripts D, P, and H refer to 
dispersion, polarity, and hydrogen bonding components. The Hansen 
solubility parameters for the mixture are calculated in the following 
way: 

δ2
A,mixture =

∑n

j

ϕm
j

1 − ϕm
n+1

δ2
A,j,pure where A = D,P, and H (8) 

Here, δA,mixture and δA,j,pure represent the solubility parameters of the 
mixture and component j in unit of MPa0.5, respectively. Subscript A is 
used to describe three solubility factors: dispersion (D), polarity (P), and 
hydrogen-bonding (H). ϕm

j and 1 − ϕm
n+1 denote the volume fractions of 

component j and the entire mixture in the membrane phase each.
When Ra is much larger than 8 MPa0.5 (indicating weak chemical 

affinity between the polymer membrane and the mixture), the diffusion 
transition factor Y approaches 1, and the original individual diffusivities 
are preserved, maintaining separation based on diffusivity difference. In 
such case, there is no distinction between the new diffusivity (Ðv,m

i,n+1,new) 
and the original diffusivity (Ðv,m

i,n+1). Conversely, as Ra decreases toward 
0, the diffusion transition factor Y approaches 0, diffusivities converge 
to a single value calculated by Eq. (5), leading to sorption-driven sepa
ration with no diffusion selectivity. For intermediate Ra values, diffu
sivities transition smoothly between the two different diffusion 
modalities according to Y (Eq. (6)).

A critical factor in this context is the constant c in Eq. (6). The con
stant c controls the steepness of this transition as a function of Ra and is 
referred to as the “steepness constant” or “plasticization resistance 
constant” (Fig. S2) [21]. Larger c values (e.g., 0.5) imply stronger 
resistance to plasticization, preserving diffusion-based separation even 
at moderate chemical affinities, while smaller c values (e.g., 0.1) imply 
greater susceptibility to plasticization. Prior work has shown reasonable 
prediction accuracy for c values between 0.1 and 0.5 for different 
polymer classes (e.g., polyimide, spirocyclic hydrophobic polymers), but 
no universal single value has been established [21]. The constant may be 
varied across different polymer and solvent classes. Therefore, this study 
performed separation predictions using c = 0.1, 0.3, and 0.5 and also 
reported the arithmetic averaged of the prediction results, with full data 
provided in the Supplementary Data file. For all predictions conducted 
in this work, a temperature of 295 K and an upstream pressure of 50 bar 
and a downstream pressure of 1 bar were always assumed. In addition, 
membrane thickness was always assumed to be 1 μm.

2.2.4. Application of a data-driven solvent/non-solvent classification model
The objective of this work is to identify potential landscapes (or 

trade-off plots) that reflect the potential of known polymer membranes 
for use in OSRO separations. While including a large number of polymer 
cases is essential for exploring broad chemical spaces, it is also impor
tant to account for practical issues inherent to polymer membrane ap
plications in organic solvent separations, such as the risk of dissolution, 
swelling, and even plasticization. When polymeric materials are 
employed as membranes, dissolution or excessive swelling can occur 
depending on polymer-solvent interactions, potentially undermining 
separation performance. To account for this, a solvent/non-solvent 
classification model developed previously [34,35] and implemented in 
PolymRize, a web-based platform (https://polymrize.matmerize.com) 
was used for pre-screening polymer candidates for these mixture sepa
rations. This model provides a solvent-likelihood score for 58 organic 
liquids with respect to a given polymer, ranging from − 1 (non-solvent) 
to +1 (strong solvent). For example, a score of +0.5 for toluene with 
respect to a given polymer implies approximately a 50 % probability 
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that toluene would act as a solvent for that polymer. By using this model, 
polymers were excluded from performance predictions if the main 
component of the mixture exhibited a solvent-likelihood score above 
0.5. Specifically, toluene was used as the criterion for the toluene/TIPB 
and toluene/iso-octane systems, and heptane was used as a surrogate for 
n-octane/iso-octane, as n-octane was not included in the model’s data
base. Although solvent strength may be attenuated in a mixture due to 
co-solvent interactions, dissolution remains a critical risk when a strong 
solvent is present; therefore, this screening was based solely on the 
predicted score of the primary solvent. The prediction results are pro
vided in the Supplementary Data file. As a result of this pre-screening 
step, 491 polymers were excluded from the toluene/TIPB and 
toluene/iso-octane separation analyses, and 415 polymers were 
excluded from the n-octane/iso-octane analysis.

2.2.5. Liquid mixture permeation measurement
Thin film composite (TFC) membranes for liquid mixture permeation 

tests were fabricated by spin coating polymer materials (Matrimid, 
SBAD-1, and DUCKY-9) onto a cross-linked, porous polyimide (Matri
mid) support film. The preparation of the support films and the TFC 
membranes with the selective layer was performed according to previ
ously established methods [23,29]. Briefly, Matrimid powders (16 wt%) 
and lithium nitrate (LiNO3, 3 wt%) were dissolved in a solvent mixture 
consisting of 1-methyl-2-pyrrolidone (69 wt%), tetrahydrofuran (10 wt 
%), ethanol (1 wt%), and deionized water (1 wt%). Prior to dissolution, 
the solid powders (Matrimid and LiNO3) were dried under vacuum at 
110 ◦C. The solution was then mixed on a roller for two days to ensure 
complete dissolution. The resulting polymer solution was cast onto a 
glass plate using a 10 MIL doctor blade, and after 10 s, it was rapidly 
transferred to a water bath to induce a non-solvent phase inversion 
process. The cast support films were immersed in deionized water for 
three days and underwent three successive solvent exchanges in meth
anol and hexane at 2 h-interval. The films were then air-dried for 1 h and 
cut into circular coupons with an effective area of 10.25 cm2. Following 
this, cross-linking was achieved by immersing the support films in a 
solution of 5 g of p-xylene diamine dissolved in 100 ml of methanol for 
24 h, followed by the same solvent exchange process with methanol and 
hexane to remove any residual cross-linker. The final supports were 
stored in hexane and air-dried for 24 h prior to use.

To fabricate the TFC membranes for this study, a polymer dope so
lution (1 wt% polymer in chloroform) was spin-coated onto the cross- 
linked polyimide support. Each polymer solution, stored at 5 ◦C, was 
dispensed (0.7 ml) onto the support film located on a plate in a spin 
coater, operating at 1200 rpm. The spin coater chamber was saturated 
with chloroform vapor by placing cotton soaked in chloroform and 
introducing dry N2 gas. The resulting TFC membranes were air-dried for 
24 h before further testing.

Liquid permeation tests were carried out in a custom-built cross-flow 
system pressurized up to 50 bar on the upstream side by an HPLC pump 
(Azura P 4.1S, Knauer) at 295 K [21]. The feed flow rate was maintained 
consistently at a 15 ml/min such that the stage cut was <3 %. The tested 
mixtures were toluene/iso-octane mixture with concentrations of 90/10 
(mol %), 80/20 (mol %), and 70/30 (mol %), and n-octane/iso-octane 
with a concentration of 90/10 (mol %). The concentration of the 
permeate was analyzed by gas chromatography (7890B GC, Agilent) and 
the separation factor was calculated as the following way: 

Separation factorToluene/TIPB =
Cp,Toluene

Cf ,Toluene
×

Cf ,TIPB

Cp,TIPB 

where Cp,Toluene and Cf ,Toluene are the permeate and feed concentration of 
toluene, and Cp,TIPB and Cf ,TIPB are the permeate and feed concentration 
of TIPB. The experiments were typically run for more than 2–3 days to 
allow for steady state permeation profiles to develop. For the mixture 
permeation tests, different thin film composite samples were tested in 
triplicate. All permeation tests were predicted by the Maxwell-Stefan 

model described in this work.

3. Results and discussion

In this work, three representative binary liquid hydrocarbon mix
tures were investigated: toluene/TIPB, toluene/iso-octane, and n-oc
tane/iso-octane, corresponding to aromatic, aromatic/aliphatic, and 
aliphatic separations, respectively. The toluene/TIPB mixture is a 
widely used benchmark for evaluating polymer-based OSRO mem
branes. The toluene/iso-octane mixture is industrially relevant due to 
environmental regulations requiring reduced aromatic content in gaso
line [36,37]. Conventional separation methods, such as distillation, are 
hindered by close boiling points (110.6 ◦C for toluene and 99 ◦C for 
iso-octane) and azeotropic behavior [38–40], while alternative tech
niques (i.e., extractive distillation) are costly and solvent-intensive [38,
41]. The n-octane/iso-octane mixture represents linear/branched 
alkane separation, critical for upgrading gasoline octane ratings [42]. 
Conventional thermal and chromatographic methods for this separation 
are energy-intensive [43–45], and membrane-based separation tech
nologies such as OSRO have potential as an alternative.

This work explored the potential separation performance of polymer 
membranes for the three representative OSRO-based binary hydrocar
bon separations, accounting for key factors that constrain practical ap
plications. Specifically, the study exmained the effects of polymer 
dissolution and plasticization on separation performance landscape 
(trade-off) plots, the reduction in achievable membrane productivity 
due to permeation resistance in the support layer, and the separation 
efficiency limits imposed by osmotic pressure when separation highly 
concentrated mixtures beyond the dilute concentration ranges typically 
used in material testing.

3.1. Accounting for polymer plasticization and dissolution

Predicted separation performances for the 857 polymer membranes 
were evaluated for the three binary hydrocarbon mixtures, toluene/ 
TIPB (95/5 mol%), toluene/iso-octane (90/10 mol%), and n-octane/iso- 
octane (90/10 mol%), as shown in Fig. 1a, b, and 1c. For these pre
dictions, a plasticization constant (c) of 0.5 in Eq. (6) was assumed and 
no mass transfer resistance in the support layer was assumed in the 
predictions. It is important to note that these plots report the permeance 
of the main solvent component in each mixture (toluene for the toluene/ 
TIPB and toluene/iso-octane mixture, and n-octane for n-octane/iso- 
octane mixture) and the corresponding separation factor rather than 
simply the ratio of pure-component permeabilities and ideal permse
lectivity. For all three mixture separation cases (Fig. 1a, b, and 1c), a 
general trade-off was observed; polymers exhibiting higher permeance 
tend to show lower separation factors, and vice versa. Among the three 
separation cases, the toluene/TIPB separation exhibits the highest 
potentially achievable separation factors, likely due to the large mo
lecular weight differences among toluene (92.14 g mol− 1), and TIPB 
(204.35 g mol− 1), and octanes (114.23 g mol− 1), which may enhance 
both diffusion and sorption selectivity.

While these predictions (Fig. 1a, b, and 1c) were made for all 857 
polymers, it must be considered that polymers may dissolve when 
exposed to the target organic solvent mixture, rendering them unsuit
able for OSRO membrane applications. To account for this, a solvent/ 
non-solvent classification model implemented in PolymRize was used 
to pre-screen polymers. Polymers for which the main component of the 
mixture was predicted to behave as a strong solvent (i.e., solvent- 
likelihood probability >50 %) were identified (also provided in the 
Supplementary Data file). As shown in Fig. 1a, b, and 1c, 491 polymers 
were predicted to have a high likelihood of dissolution in toluene and 
415 polymers in heptane. These polymers (cyan triangles in the plots) 
generally exhibited higher permeance than those predicted to be un
likely dissolved (red circles in the plots). Although both separation 
performance predictions and the solvent/non-solvent classification 
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predictions are data-driven and carry some potential uncertainties, 
polymers at high dissolution risk were excluded from subsequent ana
lyses to derive reliable and possible OSRO separation performance 
landscapes. The separation performance plots including only solvent- 
compatible polymers are provided separately (Fig. S3).

Even when a polymer membrane does not fully dissolve in a given 
mixture, plasticization may occur depending on the chemical affinity 
between the polymer membrane and the mixture, potentially degrading 
separation efficiency (i.e., separation factor). Fig. 1d, e, and 1f present 
the Hansen solubilities of polymers and each mixture, where smaller 
distance between polymer and mixture indicates stronger chemical af
finity. Our prior work demonstrated that as the chemical affinity 

between a polymer membrane and a mixture increases, the likelihood of 
plasticization rises, leading to diminished separation selectivity driven 
by the diffusivity difference [21]. To capture this phenomenon, Equa
tions (4)–(6) were incorporated into the model, with chemical affinity 
quantitatively represented by the Hansen solubility difference (Ra) in 
Eq. (7). In particular, it was shown previously that separation efficiency 
begins to degrade noticably when the Hansen solubility difference falls 
below approximately 8 MPa0.5.

The extent of this effect is captured in the model by the plasticization 
resistance constant, c, in Eq. (6), which reflects the membrane’s resis
tance to plasticization: larger values imply greater resistance, allowing 
the membrane to maintain separation performance despite high 

Fig. 1. OSRO separation performance predictions for 857 polymers for (a) toluene/TIPB (95/5 mol%), (b) toluene/iso-octane (90/10 mol%), and (c) n-octane/iso- 
octane (90/10 mol%). Red circles indicate polymers for which the main solvent is predicted to act as a non-solvent, while cyan triangles indicate polymers for which 
the main solvent is predicted to act as a strong solvent. Among the 857 polymers, 491 and 415 polymers were predicted to have toluene and heptane (used as a 
surrogate for n-octane), respectively, as strong solvents. Hansen solubility parameters of the test hydrocarbon mixtures and the 857 polymers are shown for (d) 
toluene/TIPB, (e) toluene/iso-octane, and (f) n-octane/iso-octane. The sphere represents the locus of points at a distance of 8 MPa0.5 from the test mixture at the 
origin. Polymers with a solubility difference from the mixture less than 8 MPa0.5 (i.e., located within the sphere) are shown as blue dots (179, 169, and 99 polymers 
for toluene/TIPB, toluene/iso-octane, and n-octane/iso-octane, respectively). Polymers with a solubility difference greater than 8 MPa0.5 (i.e., located outside the 
sphere) are shown as red dots (187, 197, and 343 polymers, respectively). Separation performance plots including only the average predictions across three different 
c values are shown for (g) toluene/TIPB, (h) toluene/iso-octane, and (i) n-octane/iso-octane; here, polymers for which the main solvent was classified as a strong 
solvent by the solvent/non-solvent classification model were excluded. In panels (g), (h), and (i), blue inverted triangles represent the experimentally measured 
separation performance of previously reported linear polymer membranes, while the light green diamonds indicate the corresponding predictions by the model used 
in this work (Fig. S7 and Table S1). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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chemical affinity with the mixture (Fig. S2). In contrast, smaller values 
represent membranes that are more susceptible to performance loss due 
to plasticization. The prior study indicated that reasonable plasticization 
constant values may range from 0.1 to 0.5, but no universal value 
applicable to all polymer–mixture pairs has been established. Therefore, 
for the polymers that passed the initial solvent/non-solvent pre- 
screening (Fig. 1a, b, and 1c), separation performances were predicted 
using three different plasticization resistance constant values (c = 0.1, 
0.3, 0.5) (Figs. S4, S5, and S6). As the plasticization constant c 
decreased, the predicted separation performance of polymers with 
initially high separation factors progressively declined. This trend was 
particularly pronounced for toluene/TIPB (Fig. S4) compared to 
toluene/iso-octane (Fig. S5) and n-octane/iso-octane (Fig. S6), likely 
due to the larger molecular size difference between toluene and TIPB, 
which enhances separation based on diffusivity difference, but also 
makes it more vulnerable to plasticization if the membrane lacks suffi
cient plasticization resistance.

Predictions for previously reported linear polymer membranes for 
toluene/TIPB [28,29,46–48], and SBAD-1, Matrimid, and DUCKY-9 for 
toluene/iso-octane and n-octane/iso-octane (which were newly tested in 
this work) were compared across different c values (Fig. S7 and 
Table S1–S3). These comparisons reveal that the c value yielding the 
best agreement between predicted and experimental separation factors 
varies depending on polymer and mixture class, indicating that plasti
cization resistance may be polymer- and solvent-specific. Therefore, we 
speculate that no single c value can be universally applied. However, c 
values between 0.1 and 0.5 generally produced excellent prediction 
accuracy, both in this work and in a prior study [21]. Accordingly, the 
separation performance plots in Fig. 1g, h, and 1i report the arithmetic 
averages of the predicted separation performance across the three c 
values (0.1, 0.3, 0.5) to present a more balanced and realistic perfor
mance landscape. Notably, the top-performing polymers identified in 
Fig. 1g, h, and 1i show superior separation performance, achieving 
higher separation factors and permeances than previously reported 
polymer membranes (represented by green diamonds and blue inverted 
triangles in the plots). As a result of the modeling, polymer structures 
exhibiting both high permeance and separation efficiency (top 20 by 
separation factor in each hydrocarbon separation case, with permeance 
above 0.5 L m2 hr− 1 bar− 1) were identified across the three hydrocarbon 
mixtures examined in this work (Fig. S8). In particular, spirocyclic 
polymers with polar groups such as esters incorporated in the backbone 
and polyimides with ether functionalities were predicted to be especially 
promising for these separations. Experimental verification of these 
polymers will be needed in the future.

3.2. Permeation limited by mass transfer resistance in support layer

Asymmetric membranes such as thin film composite membranes 
(TFC), which consist of a thin selective layer (~100 nm-1 μm) coated on 
a porous support layer that possesses chemical and mechanical stability 
are practical for membrane applications. TFC membranes exhibit a high 
flux for gas, vapor, and liquid permeation and are viable for a wide range 
of applications. However, due to the mass transport resistance in the 
support layer, the high flux increases the importance of properties of the 
support layer.

When predicting OSRO performance, it is essential to consider the 
permeation resistance of the support layer used. In this context, several 
studies have modeled the resistance generated in each layer (coated skin 
layer and porous support layer) and the total resistance as a sum of these 
individual resistances [49–52]. A notable example is the permeation 
resistance model developed by Henis and Tripodi [51], which was 
inspired by the resistance model of an electrical circuit (Fig. S9).

Inspired by this model, this work considered the resistance to 
permeation rate that may occur in the support layer in the use of a 
practical TFC format. However, contrary to previous work [51], there is 
currently no information about small pores such as those found in skin 

layers or defects between the top selective skin layer and the highly 
porous support layer (Fig. S9). Therefore, to simplify the use of this 
model in transport modeling, it was assumed that the three distinct 
layers (R2, R3, and R4 in Fig. S9) were consolidated into a unified virtual 
resistance layer, with the surface fraction set to 1 (Fig. 2).

The total permeation resistance (RTFC) and total permeance 
(PTFC/l TFC) through TFC membrane are formulated as follows: 

RTFC =Rskin + Rsupport (9) 

l TFC

PTFC
=

(
l skin

Pskin
+

l support

Psupport

)

(10) 

where R is the resistance of the layer and P is the permeability, and 
(P/l ) is the permeance (L m− 2 hr− 1 bar− 1). If the permeance of the 
support (Psupport /l support

)
is significantly low relative to the permeance 

in the skin layer (Pskin /l skin), the overall permeance of the TFC mem
brane becomes limited by the permeance of the support. On the other 
hand, if the permeance of the support is enormously high relative to the 
permeance of the skin layer, the TFC permeance is limited by the per
meance of the dense skin layer (as desired).

In OSRO separations, ultrafiltration membranes with permeance of 
50–100 L m− 2 hr− 1 bar− 1, or even that of up to 1000 L m− 2 hr− 1 bar− 1 in 
exceptionally fast cases, are utilized as support materials. The cross
linked Matrimid support fabricated and used in this work exhibits per
meance of approximately 50–100 L m− 2 hr− 1 bar− 1 with thickness of a 
150–200 μm. The landscapes illustrating the variations in TFC 
membrane-based OSRO as influenced by the use of the permeation 
resistance model (Equations (9) and (10)) are shown in Fig. 3. For the 
study of potential permeance of TFC membranes, various ranges of 
maximum permeance values of the supports were employed: 10 L m− 2 

hr− 1 bar− 1 (range of nanofiltration membrane for the slowest support 
case), 50 and 100 L m− 2 hr− 1 bar− 1 (range of ultrafiltration membrane), 
and 1000 L m− 2 hr− 1 bar− 1 (range of microfiltration membrane as the 
fastest with minimal resistance support example). The resistance was 
integrated into TFC permeance calculations and no selectivity was 
assumed in the support layer; thus, the separation factor is not affected 
throughout the support layer.

As expected, for all mixtures, no predicted permeance values 
exceeded the maximum permeance determined by the permeation 
resistance in the support layer. The permeation resistance model used in 
this work assumed that the support layer imposes no selectivity, even for 
supports with low permeance (e.g., 10 L m− 2 hr− 1 bar− 1), typical of 
commercial nanofiltration membranes. However, in practice, 
nanofiltration-type supports could influence selectivity, particularly for 
molecules such as TIPB that lie near the upper molecular weight of 
OSRO target (<200 g mol− 1) and the lower limit of nanofiltration targets 
(200–1000 g mol− 1). Thus, experimental results for these systems may 
deviate from predictions assuming non-selective supports.

Fig. 2. Schematic representation of permeation resistance model used in this 
work. Rskin and Rsupport indicate the permeation resistance in the skin layer and 
support layer, respectively.
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For the toluene/TIPB and toluene/iso-octane mixtures (Fig. 3a and 
b), the fastest permeance, assuming a free-standing, defect-free dense 
polymer membrane of 1 μm thickness, ranged from 10 to 200 L m− 2 hr− 1 

bar− 1, although a few polymers exhibited that high permeance. 
Imposing a support resistance typical of ultrafiltration membranes 
(50–100 L m− 2 hr− 1 bar− 1) or even higher (1000 L m− 2 hr− 1 bar− 1) 
produced minimal changes in the separation performance landscape. In 
contrast, for the n-octane/iso-octane mixture separation (Fig. 3c), a 
relatively larger number (still a few polymers) of polymers were pre
dicted to exceed 100 L m− 2 hr− 1 bar− 1 although with separation factors 
close to unity, indicating marginal selectivity. For these cases, support 
layer resistance could substantially limit achievable permeance.

While this work consistently assumed a 1 μm membrane thickness, 
practical membrane fabrication often seeks thinner selective layers 
(~100 nm) to achieve higher flux or permeance. Theoretically, per
meance increases inversely with membrane thickness, necessitating 
highly permeable support to minimize support layer resistance (i.e., 

1000 L m− 2 hr− 1 bar− 1). Achieving such high permeance typically re
quires enlarging support pore sizes, which introduces challenges in 
forming defect-free, dense skin layers, as excessive pore sizes can lead to 
solution infiltration and caulking during coating [53,54]. This condition 
may result in observed performance that reflects a combination of the 
polymer coating and the underlying support rather than the true 
intrinsic separation capability of the polymer membrane. Furthermore, 
highly porous supports often suffer from inadequate mechanical 
strength, limiting their suitability for high pressure OSRO applications 
(~100 bar). These considerations also extend to integrally skinned 
asymmetric membranes where the dense skin layer and porous support 
are formed from a single polymer [55]. An alternative approach involves 
increasing the surface porosity of supports while maintaining small pore 
sizes, potentially facilitating both mechanical robustness and the for
mation of high-quality selective layers.

Fig. 3. Separation performance predictions for polymer membranes for (a) toluene/TIPB (95/5 mol%), (b) toluene/iso-octane (90/10 mol%), and (c) n-octane/iso- 
octane (90/10 mol%) with a permeation resistance model (Eqs. (9) and (10)). Each panel from top to bottom corresponds to different productivity thresholds: 10, 50, 
100, and 1000 L m− 2 hr− 1 bar− 1 (LMHbar), respectively. Note that no influence of the support layer on the separation factor was assumed. Vertical lines indicate the 
specified support permeance in each plot. Only polymers passing the solvent compatibility screening (i.e., main solvent predicted to act as a non-solvent) 
are included.
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3.3. Effect of mixture concentration on membrane-based OSRO 
separations

According to the thermodynamic entropy law of diffusion, molecules 
are driven to diffuse from a region of high concentration to a region of 
low concentration. When a polymer membrane selectively separates a 
specific molecule or more in a mixture, osmotic pressure is formed for 
the solvent (the more permeable molecule in the case of a binary 
mixture). This osmotic pressure is determined by the concentrations of 
feed fluid and permeate fluid (Equation (11)) as below: 

π (osmotic pressure)= −
RT
V̂i

⋅ln

[
xfeed

i γfeed
i

xpermeate
i γpermeate

i

]

(11) 

where R is the gas constant (8.3145 J/mol/K), xfeed
i and xpermeate

i are the 
mole concentrations of component i, and γfeed

i and γpermeate
i are the activity 

coefficients of component i at feed and permeate stream, respectively. 
Assuming perfect separation, the lower the solvent concentration (the 
greater the solute concentration), the higher osmotic pressure, necessi
tating a sufficiently high transmembrane pressure to counteract the 
osmotic pressure in the OSRO-based separation process. Regardless of 
the selectivity that can be exhibited by the membrane, achieving a 
permeate concentration that generates osmotic pressure exceeding the 

applied transmembrane pressure is difficult (Fig. 4a). However, in in
dustrial applications, mixture concentrations span the entire range from 
dilute to concentrated. Consequently, the concentration of a given 
mixture can significantly impact the landscape of separation properties 
for polymer membrane-based OSRO.

This work also investigated the effect of feed mixture concentration 
on OSRO separations for the three binary hydrocarbon mixture classes 
(toluene/TIPB, toluene/-iso-octane, and n-octane/iso-octane) (Fig. 4b, 
c, and 4d). In the predictions, all parameters including 50 bar pressure 
applied at the upstream side were applied consistently, and the con
centrations of toluene/TIPB mixture were 95/5 mol%, 90/10 mol%, and 
80/20 mol%, while the concentrations of toluene/iso-octane mixture 
and n-octane/iso-octane mixture were changed from 90/10 mol% to 80/ 
20 mol%, 70/30 mol% and 60/40 mol%. The osmotic pressure that 
could occur, assuming perfect separation (i.e., the permeate is pure 
solvent with no solute molecule), for each mixture concentration was 
calculated using Equation (11), and is listed in Table S4.

In the case of toluene/TIPB mixture (Fig. 4b), even when assuming 
perfect separation at concentrations of 95/5 mol% and 90/10 mol%, the 
osmotic pressure exerted by the toluene solvent across the membrane is 
substantially lower than the applied transmembrane pressure of 50 bar 
(Table S4), resulting in an effective driving force (activity gradient) and 
achieving a high degree of separation efficiency. As the feed 

Fig. 4. (a) Schematic illustration of transmembrane pressure (Δ p) and opposing osmotic pressure (π) in membrane separations. Predicted separation performances 
for (b) toluene/TIPB, (c) toluene/iso-octane, and (d) n-octane/iso-octane mixtures under varying feed concentrations. For toluene/TIPB, feed concentrations range 
from 95/5 to 80/20 mol%, while for toluene/iso-octane and n-octane/iso-octane, feed concentrations range from 90/10 to 60/40 mol%. Within each row, plots are 
arranged from left to right in order of decreasing main component concentration (i.e., increasing solute concentration). An applied transmembrane pressure of 50 bar 
(Δ p) was assumed for all cases.
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concentration changes, the activity gradient (driving force of molecular 
diffusion) within the membrane also changes, leading to variations in 
the separation capability and permeance. However, since the given 
transmembrane pressure still exceeds the osmotic pressure in the cases 
of these two mixture concentrations, no significant difference in sepa
ration is predicted. However, when the concentration becomes 80/20 
mol%, the osmotic pressure with the assumption of perfect separation 
reaches around 51.6 bar (Table S4), exceeding the transmembrane 
pressure. Consequently, a less effective activity gradient can be estab
lished, leading to a sharp decline in separation efficiency. The permeate 
concentration, which generates an osmotic pressure equal to the applied 
transmembrane pressure, was calculated, and the corresponding sepa
ration factor was determined to be 24.8. It is evident that this high os
motic pressure acts as a thermodynamic resistance to separation.

In the toluene/iso-octane mixture separation cases (Fig. 4c), when 
the feed concentration is 90/10 mol%, the osmotic pressure with the 
assumption of perfect separation is 24.3 bar, which is noticeably lower 
than the applied transmembrane pressure. As a result, the separation 
resistance due to osmotic pressure is relatively low, resulting in high 
separation selectivity, as illustrated in the figure. However, as the con
centration of the solvent (toluene in this case) decreased to 80 mol%, 70 
mol% and 60 mol %, the osmotic pressure of perfect separation scenario 
rises to 51.6 bar, 82.5 bar, and 118.2 bar, respectively (Table S4), 
exceeding the applied transmembrane pressure. In such cases, the os
motic pressure formed across the membrane is likely to act as a signif
icant resistance to selective separation. Accordingly, as shown in Fig. 4c, 
a dramatic decrease in the predicted separation factors was observed as 
the concentration of the toluene solvent in the feed decreased. In these, 
permeation concentrations to generate osmotic pressures equal to the 
applied transmembrane pressure were calculated; thereby, the separa
tion factors predicted for the polymer membranes do not exceed the 
theoretical limits of 24.8, 2.8, and 1.95 with the feed concentration of 
80/20 mol%, 70/30 mol%, and 60/40 mol%, respectively.

In the case of n-octane/iso-octane mixture separations (Fig. 4d), the 
applied transmembrane pressure exceeds the perfect separation-based 
osmotic pressures of 15.9 bar and 33.7 bar with solvent (n-octane in 
this case) concentrations of 90 mol% and 80 mol% (Table S4). Due to the 
effective transmembrane pressures and induced activity gradients in 
these cases, high separation efficiency is still anticipated. As the con
centration of the mixture reaches 70/30 mol% and 60/40 mol%, the 
osmotic pressure formed in complete separation assumption begins to 
surpass the transmembrane pressure; therefore, the limit separation 
factors of 13.8 and 3.25 are calculated, and the separation factors ach
ieved by the polymers do not exceed the theoretical limit. In the cases of 
toluene/iso-octane and n-octane/iso-octane separations, at high solute 
concentration (e.g., 60/40 mol%), high separation factors cannot be 
achieved due to inherent thermodynamic limitations imposed by os
motic pressure. When the mechanical strength of membranes and 
modules constrains the maximum applied pressure, such that it cannot 
be increased indefinitely, the system must operate under reduced 
effective driving force at high osmotic pressure. Under such conditions, 
it may be more rational to select polymer membranes exhibiting 
intrinsically high permeability rather than those demonstrating high 
selectivity at low solute concentrations, as the achievable separation 
factor is fundamentally limited by the osmotic pressure.

4. Conclusion

In this study, the landscapes of polymer-membrane-based organic 
solvent reverse osmosis separation processes for three representative 
hydrocarbon mixtures were investigated. Diffusivities and solubilities of 
pure organic liquid molecules predicted via machine algorithms were 
parameterized into Maxwell-Stefan permeation equations coupled with 
the Flory-Huggins sorption models. To develop a practical polymer 
membrane-based OSRO landscape, variables that account for the plas
ticization resistance of polymer membranes to the hydrocarbon mixtures 

(plasticization resistance constant), permeation resistance in the porous 
support layer (via the permeation resistance model), and separation 
efficiency constrained by osmotic pressure relative to feed mixture 
concentration were integrated into the landscape.

While this study focused on three representative binary hydrocarbon 
mixtures, the modeling framework used in this work can readily be 
applied to a wide variety of binary and more complex organic solvent 
mixtures that require energy-efficient separation. Although approxi
mately 800 polymer membranes were explored in this work, this set 
does not comprehensively represent the full diversity of polymeric ma
terials, and expanding this investigation to a broader range of polymers 
would be an interesting and important direction for future research. 
Moreover, as the separation performance landscapes presented in this 
study are based on predictive models, experimental validation – at least 
for a subset of the predictions that are not experimentally validated in 
this work – will be essential to confirm the reliability and applicability of 
the proposed approach.
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