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3D atomic structures that respect the conformational diversity of polymers. Fiow Matcting

i i
Generative algorithms for 3D structures of inorganic crystals, biopolymers, and i‘ j\ E
small molecules exist, but have not addressed synthetic polymers because of 777777 ’
challenges in representation and data set constraints. In this work, we introduce polyGen, a generative model designed specifically for
3D polymer structures that operates from minimal inputs such as the repeat unit chemistry alone. polyGen combines graph-based
encodings with a latent diffusion transformer using positional biased attention for realistic conformation generation. Given the
limited data set of 3,855 DFT-optimized polymer structures, we incorporate joint training with small molecule data to enhance
generation quality. We also establish structure matching criteria to benchmark our approach on this novel problem. polyGen
overcomes the limitations of traditional crystal structure prediction methods for polymers, successfully generating realistic and
diverse linear and branched conformations, with promising performance even on challenging large repeat units. As an atomic-level
proof-of-concept capturing intrinsic polymer flexibility, it marks a transformative capability in material structure generation.
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Bl INTRODUCTION

Polymeric materials play a central role in modern science and
engineering, enabling technologies across sectors such as
packaging, electronics, medicine, and energy.”” Their
versatility arises from the vast structural diversity of organic
building blocks,” the ingenuity of synthetic chemistry, and the
breadth of accessible processing techniques. By tuning
parameters such as monomer composition, chain architecture,
additives, and processing conditions, polymers can be
engineered to span a wide range of mechanical, electrical,
and transport properties—from rigid plastics, elastomers,
dielectrics," and membranes.”~” Despite the impact of
polymers, the discovery and deployment of new materials
remains a slow and resource-intensive process. This is due to
the vastness of chemical and processing design spaces” and the
need to balance performance, cost, safety, and manufactur-
ability. As a result, polymer innovation still relies heavily on
experience, trial-and-error, chemical intuition, and serendipity.
Novel methods of generating polymer designs guided by
informatics approaches have emerged, such as virtual forward
synthesis, evolutionary algorithms, and syntax-directed autoen-
coders that can produce a theoretically innumerable amount of
polymer candidates.””~"" Physics-based computer simulations
may accelerate the pace of polymer discovery but these
methods also face barriers that have thus far prevented the
widespread utilization of such approaches as detailed below.
A key challenge faced by the polymer simulation community
is the creation of suitable initial atomic-level structures,
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especially for novel chemistries. Unlike crystalline and
inorganic materials, polymers exhibit a complex combination
of amorphous, semicrystalline, and crystalline domains, with
conformational flexibility and structural disorder playing
essential roles in their function.'” The present work serves as
a concrete proof-of-concept demonstrating that ground state
single-chain polymer conformations may be reliably and
consistently generated in a time-efficient manner. Expensive
Density Functional Theory (DFT) calculations were used to
produce training data for a diverse set of single-chain
chemistries.'”'® Going beyond ground state single chains
using DFT is an expensive task. There is a growing need for
predictive tools that can generate realistic 3D atomic structures
of polymers from minimal inputs, such as chemical
composition or connectivity (e.g, SMILES), as shown in
Figure 1. Such tools would serve as a rapid and diverse
structure generation start for downstream DFT and molecular
simulation tasks, enabling property prediction and rational
design faster in the discovery pipeline.
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Figure 1. Theoretical overview of polyGen from the perspective of chemistry-conditioned energy minimization of the potential energy surface
represented in the latent space. With this capability, an initial connectivity for a polymer repeat unit can be used to generate structures with a high

probability of being at a potential energy minimum.
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Figure 2. Training and generation process for polyGen. (a) First, an autoencoder with conditional encoder &, encoder &, and decoder D is
trained to learn an atom-wise latent space by reconstructing the system as a bounding box iﬂz, fractional coordinates f;, and Cartesian coordinates p;.
In this process, an atom-wise conditioning C; is learned. (b) The diffusion model M is trained within this latent space, iteratively denoising a
Gaussian random latent 2! into a new distribution 2 that is likely a valid polymer conformation. (c) During postgeneration filtering, a structure is
calculated from the predicted positions, and can be used if connectivity and bonding are preserved. The structure is characterized to obtain a

predicted bond, angle, and dihedral distributions.

Generative Materials Structure Prediction. Materials
generation via diffusion models'* or flow matching'® offers
promise. Typically, these models use data sets containin
structures optimized by DET'® or Classical MD simulations.’
‘With materials research, these methods have been used thus far
for inorganic crystalline materials with a finite number of atoms
within a unit cell parametrized by the lattice angles and
lengths."**" Significant progress has also emerged in structure
prediction for large biological polymers, particularly proteins,
where models like AlphaFold'””' and Boltz-1* can now
generate accurate three-dimensional conformations from
amino acid sequences. Similarly, the generation of small
molecule conformers > has also been an open problem,
especially in the context of protein docking.*’

The synthetic polymers generation problem is a mix of all of
these applications. Similar to crystals, synthetic polymers can

be defined by a periodic unit. 3D structures of these repeat
units are also defined within unit cells/bounding boxes.'”
Traditional crystal structure prediction methods, while power-
ful for smaller systems, have not displayed abilities to capture
the rich conformational landscape of polymers. The local
features of synthetic polymers are more akin to molecules
where the local (short-range) connectivity of their structures is
well-defined. However, polymers occur as long chains
composed of sequences of 10s-10,000s of monomeric repeat
units, which necessitates an understanding of longer-range
interactions for stochastic structure generation. This is similar
to protein modeling approaches like AlphaFold3, which
employs transformers to predict an ensemble of structures.”!
However, unlike proteins, which have a consistent backbone (a
sequence of repeating N — C, — C, where C, is the centrally
located carbon in the amino acid residue) and a finite set of
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amino acids, synthetic polymers boast a limitless design space
to draw their repeat units and backbones from."” Additionally,
proteins and molecules are aperiodic and nonperiodic,
respectively. In combination with the aforementioned
challenges, polymer structure data sets from MD or DFT
have only recently been standardized and have not seen the
scale required for generative modeling.'> Moreover, past
work” in general may overlook the need of representlng
chain level,"* amorphous,”*® and network systems,” in
simulations using periodic boundary conditions. Strategies
like the tokenization of polymer repeat units may work in
contexts of linear chains, but inconsistent polymers such as
thermosets and ladder polymers cannot always be discretized
in this way. To have future capabilities in this direction, we
need an all-atom framework that can be extended to irregular
and complex structures.

The complexity of polymer design and representation,
combined with limited available data, explains why generative
models for polymers have remained largely unexplored until
now. We introduce polyGen (Figure 2), the first latent
diffusion model specifically designed to generate periodic and
stochastic polymeric structures with an all-atom approach. We
build upon latent diffusion frameworks for materials generation
such as All-Atom DiT.*° Our problem and approach are
modified to predict an ensemble of low-energy polymer
conformations conditioned on a specified repeat unit with
prescribed atomic connectivities rather than performing
unconstrained de novo structure generation. Our method
leverages a molecular encoding that captures atomic
connectivity, which is used as a conditioning signal throughout
the model architecture. We adopt a latent diffusion strategy
over joint diffusion methods such as DiffCSP'® or molecular
generation methods in Cartesian space” due to the strong
coupling between atomic positions and box dimensions
imposed by polymer connectivity constraints. We augment
our data set with smaller structures from DFT-optimized
molecules, demonstrating improved polymer structure pre-
diction capabilities owing to the shared weights of a data set
invariant encoder and decoder, and a shared latent space. This
work culminates in a learning framework that can generate
ensembles of realistic polymer chain conformations. To
benchmark the quality of these conformations, we introduce
rigorous evaluation criteria on bonds, angles, and dihedrals—
standards that, to our knowledge, have not yet been applied in
the context of materials generation. This application represents
a proof-of-concept to predict atomic-level synthetic polymer
conformations while accounting for their intrinsic flexibility
and the distribution of plausible structures.

B METHODS

polyGen consists of three phases, a 0D conditioning on the molecular
graph of the desired polymer repeat unit chemical structure, a
variational autoencoder for structure (Figure 2a), and a latent
diffusion module (Figure 2b). Overall, we choose an architecture that
does not include any equivariance, following the sentiment of recent
works”*® where data scale and augmentation can be a path to
learning rotational equivariance efficiently. Instead, we focus on an
architecture that biases our predictions toward polymer structure, as
this is the more challenging aspect of the learning problem.
Polymer Structure Specification. Several previous works have
learned structural and chemical representations of periodic materials,
which include fractional coordinates, unit cell lengths, and lattice
angles. For single polymer chain structures, we take a modified
approach. Because of their complexity, training set structures are

optimized using DFT with a periodic orthogonal box where the chain
is continuous through the z axis. The width of the box is needed to
encapsulate side chains/branched structures and are made large
enough to isolate the single chain during optimization.

We note that the x and y axis are not entirely polymer structure
dependent. Including these as prediction variables is an over-
parameterization, and does not contribute much information.
Therefore, we fix the x and y of the box to 55 A X 55 A, and
define the system by the z height of the box, b.. In theory, this
quantity is a proxy for the density of the chain conformation and
could provide insights into the contour length projection and free
volume of the polymer chain. For example, a rigid chain with the same
number of atoms in the unit cell will likely have a longer b, due to lack
of flexibility, whereas flexible chains can compress into denser
arrangements with reduced z height. Atomic positions are provided as
fractional coordinates within this orthogonal bounding box.

Graph Conditioning. The generation of polymer structures
begins with a minimal representation of atomic connectivity, typically
provided in the form of a SMILES string. This string is converted into
a molecular graph: periodic for polymers and nonperiodic for small
molecules. To extract a universal atom-wise representation, denoted
as C, we apply a graph conditioning module that encodes the
molecular connectivity. As illustrated in Figure 2ab, C; serves as
contextual input to the encoder, decoder, and diffusion transformer
modules. The graph conditioning module is implemented using a
graph interaction network, similar to,”" which captures local chemical
environments by modeling interactions between different atom and
bond types. Importantly, the same network weights are used across all
data sets and connectivity types, facilitating effective transfer learning
and generalization across chemical spaces.

Given a graph G = (V, &), each node i € V is associated with an
atom type and positional encodings, and each edge (i, j) € & is
associated with a bond type. The initial node and edge embeddings
are computed as

0) _ 0) _
h" = Embed(atom_typei), e = Embed(bond_typei},),

h® = MLP([h®; £, rP)) 1)

i

For each layer [ = 1, ..., L, we update the edges and the nodes as

(] (l l)w +fl)(LN([e(l 1) h(l 1) h(l 1]))

m0= 3 o, 0

JENG)

b PW, + £O(LN([m{"; b))
()

We aggregate node features to add global context for the whole
molecule/polymer:

g= > h", ¢ =f"(lg n")
eV (3)

where fm <1) }l) are MLPs, LN is layer normalization, ™Wis a
random walk posmonal encoding® of size 16 and r'* is a Laplacian
positional encoding®** of size 2. We use L = 4 to capture local
interactions of an atom 1 “hop” away from its furthest dihedral. The
global pooling prior to embedding into token dimension is done so
that atomic-level information is taken with global system information.

The encoder, decoder, and diffusion modules are all transformers,
which typically require a positional encoding to identify token
ordering and condition the self-attention weights. Similar to
contemporary graph transformer methods, C; communicates this by
providing embeddings calculated from rX" and r*.>

Structural Variational AutoEncoder. The next step is to learn a
way to combine all aspects of a polymer system, such as monomer
chemistry, fractional coordinates, and the bounding box, into a joint
space. This space should also allow the fusion of information from
small molecules or other systems to enhance learning. We employ a
VAE to create unified atom-wise latent representation that contains

structural details for small molecules and polymers, Z € R? where d
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is a latent dimension. The VAE is based on traditional graph VAEs,
including an encoder & and a decoder D operating atom-wise.

The structure of the molecule/polymer is given through a
concatenated vector of fractional coordinates f; and Cartesian
positions p;. For a polymer structure, both the f; and scaled p;
according to the bounding box are provided. This forces the VAE
to learn and reconstruct the relationship between the Cartesian
positions, fractional coordinates, and the bounding box. For
nonperiodic molecules, p; is provided and f; = @, which allows
periodic and nonperiodic materials to share the same latent space,
similar to.”® For example, we set f; = & for samples from the QM9
data set. The atom-wise latent space is then calculated along with the
C.

a=&(f, g C) 4
Z, ~ N, o) (5)

The decoder then produces a structure from Z

ji’[’i’ lA’zZD(ZJ G) (6)

where}i is the predicted fractional coordinates, p, is the predicted
Cartesian coordinates, and b, is the z direction height of the bounding
box. The loss on the decoder is used to optimize the model

L total —

<wbbox Lbbox) + <wfrac coords ‘['fmc coords) + < pos pos)
+ <wkl ‘£k1> + <wbond Lbond) + < ngle angle>

+ (Wiihedrat" Lainedral) (7)

Where the reconstruction terms are defined as

‘Ebbox - MSE( £2] z/(IO\/—))) Lfrac _coords — 2 MSE(f, )f,)

L PP
Ly =~ LMSEG — ()7 = (), Lu

 KL(g, (el (=)

where L, =0, L

nonperiodic structures. The scaling factor b,/ (10¥N) aligns with
previous work,"® and forces polyGen to be invariant to the number of
atoms in the system and use the conditioning atomic connectivity to
estimate b,. The structural loss terms are
ij? d:j)l:angle =
= (Apenochc( ijkly qkl))
where d;;, d;; d, = bond length between atoms i and j with true/predicted
coordmates, ik Z,-]-k = interior angle between bonded atoms i—j—k
with true/predicted coordinates; 7,3, 7,3, = dihedral angle of atoms i-j-
k-1 with true/predicted coordinates; A,oqc = periodic difference
within 0—27 radians, and N = number of atoms.

The inclusion of the structural loss is to help the VAE optimize to
decode structures that are structurally similar to the target, even if the
positions may be slightly different than the target. Similar approaches
for enforcing local atomic relations are utilized in works concerning
biological polymer structures.””*® Final model hyperparameters are
provided in Supporting Information C.

Diffusion Transformer. Now that a joint latent space is learned,
we require a way to find suitable structures for unseen polymer
chemistries. We use a DiT architecture for our generative model M,
operating within the latent space Z learned by the VAE. We use a
similar DiT architecture as ADiT,** however the previous work uses
sinusoidal positional encodings for atomic tokens, which make it
difficult for unordered atomic representations. In our case, we want to
preserve the permutation invariant qualities of a GNN, so we use the
positional encoded features and interactions in C; to provide
positional information relative to other atoms in the system. We

pos=o for periodic structures and L. cooras=0 for

'Ebond - MSE(d MSE(Lijkl 2ijk)'Edihedral

also modify the attention mechanism to add a bias toward bonds,
elaborated in the.

Our denoiser is implemented through a Gaussian flow matching
approach, which is equivalent to denoising diffusion as one can be
derived from the other.’**” We start by encoding a DFT optimized
structure into the latent space, using eq 5, to get Z;. Similar to other
latent diffusion/flow matching works we denoise from zero-centered
random noise Zy ~ N(0, 1) at t = 0 to Z, at t = 1.°° To train the
transformer, we provide it with an interpolated sample Z, at a
random time step t ~ U(0, 1),

Z, = (1- t)Zo +tZ, (8)

We can pose the learning problem as the linear ordinary differential
equation (ODE),

; Zl — Zt
u=2Z(Z) = 1 _¢ (9)
The final prediction task is defined as,
Z-z
M(Zg; Zsc) t C;; S); up = ﬁ (10)

where S is learned embedding that represents the data set used
during generation by projecting a one-hot encoding of the data set
index into the model dimension. This is used exclusively during joint
training. Only the embedding for the polyChainStructures data set is
used during inference. Z . denotes a self-conditioning input, which

corresponds to a previous prediction of Z,.
) . . 30,38
improves autoregressive molecular generation.>”

Self-conditioning
Our training uses
a two-pass approach: first predicting 2'1 with Z. = 2, then feeding
this prediction back as .ZSC for refinement. To avoid overreliance, we
randomly drop self-conditioning (Z,. = @) with probability 0.5
during training. Within M, the latent features and conditioning
signals are incorporated as

¥=E;([Z; ZJ)) + C,c=d+ E(t)

where % is input and ¢ is the modulation conditioning for attention
blocks from.* EZ and E, are embedding blocks.

The training objective is defined as the atom-wise mean squared

error between ﬂ(i) and u{? for N atoms in a system:

LS00 -G
6=y g [uf? = 20

N

ﬁZ

|2

) . NG N
V-zp Z-ZP

l—t o1

2 Izo - 27

f) N/ (11)

To prevent numerical instability in the loss function calculation, we
clip the value of ¢ to 0.9, in accordance with previous work.*
During inference, we sample an initial latent Z, ~ N(0, I) and

iteratively denoise it using T steps of Euler integration:

Zivar = Ly + Aty

where At = 1.0/T. This process generates a final conformation Z;,
which is decoded into a 3D atomic system using 9. We compare
generation hyperparameters and their efficiency in Supporting
Information B, and show final model hyperparameters in Supporting
Information C.

Relative Positional Encoding Attention Modification. With a
traditional attention mechanism, DiT is forced to learn bonding
relationships from the atom-wise conditional embeddings. For smaller
systems, this can provide enough information for proper structure
prediction, but this may be a problem for larger systems. Alphafold3,
which operates on larger atomic systems than traditional material

https://doi.org/10.1021/acs.chemmater.5c01644
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Figure 3. Visual samples from 100 generations per polymer type. Each row (a—d) displays examples from a single polymer. The ground truth, a
successfully generated sample, and an unsuccessful sample are provided. The unsuccessful samples highlight the errors that caused the incorrect
connectivity. Note that the structures for (b) and (c) are replicated along the z-axis for visual clarity of the structure. The visualizations are
accompanied by corresponding ground truth distributions (top) and model-predicted distributions (bottom) of molecular bonds, angles, and

dihedrals for that polymer..

structure generation models, utilizes a pairformer”’ with a relative
position encoding to allow tokens to attend to nearby neighbors by
conditioning the attention weights of the diffusion module.

We employ a lightweight relative positional encoding with
attention biasing mechanism in the polyGen DiT module to
differentiate local atomic interactions from global. First, we encode

pairwise relationships with a one-hot graph-distance tensor
De {0] 1}N><N><5

where each of the five channels indicates whether atoms i and j are
(1) identical, (2) bonded, (3) separated by an angle, (4) separated by
a dihedral, and (S) beyond four bonds apart. An MLP f, then maps
each one-hot vector D;; to a scalar bias, which is added directly into
the scaled dot-product attention:

bias;; = f, (D, ;) (12)

i'Kj
+ bias

Jnum_heads (13)

Intuitively, nearby atoms (bonds, angles, dihedrals) should have a
higher bias and other atoms should have a lower bias. With a per-DiT-
block learnable bias, the DiT has the ability to allocate more attention
weight while still retaining the ability to attend globally in some layers.

Post-Generation Filtering. Often, sampling from a flow
matching or diffusion model can lead to unphysical generations. In
Figure 2c, we show postgeneration filtering as a sanity check of
generation. First, we take the final predicted system (atom_type, b,
f.) and use the Cartesian distances between atoms to calculate the

=(V, 8) If the ground truth graph G and the

attention, ; = = Softmax]

predicted structure, G

https://doi.org/10.1021/acs.chemmater.5c01644
Chem. Mater. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.chemmater.5c01644?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.5c01644?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.5c01644?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.5c01644?fig=fig3&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.5c01644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Chemistry of Materials

pubs.acs.org/cm

predicted graph Q are isomorphic, i.e., whether G = Q, then it passes
the filter. If any bond length is <0.8 A then the sample is filtered out.
Samples that pass this filtering criteria will be “successful” and those
that do not are “unsuccessful.” However, a successful prediction of
connectivity does not guarantee an accurate 3D structure, and the
successful samples are evaluated against the optimized 3D structures
in the Results and Discussion section.

Machine Learning Techniques. Our main polymer DFT data
set, polyChainStructures (elaborated in the Data set and Evaluation
Metrics section), and the QM9 data set are imbalanced, with the latter
training set being ~ 33x larger. To handle this we upsample the
polyChainStructures data by 30X per epoch. During training for the
polychain data set only, this upsampling ratio is held the same for
comparison, so that both models see the same amount of
polyChainStructures data per epoch. To learn equivariance, we
randomly rotate and translate the systems at every training step for
both the VAE and the DiT.

The autoencoder models were trained for 300 epochs. The highest-
performing validation checkpoint was taken. The diffusion models
were trained for a maximum of 500 epochs. Training time took
approximately 140 h on 2 L40S GPUs, with each epoch taking 17
min, and each parallel batch taking on average 0.112 s.

B RESULTS AND DISCUSSION

Data set and Evaluation Metrics. The main data set,
polyChainStructures, consists of 3855 DFT-optimized infinite
polymer chain structures, with a maximum of 208 atoms,
including hydrogens. This structures data set was used to
calculate the electronic bandgap (E,) of the polymers."
Further details of this already open- sourced data set, as well as
DFT methods can be found in.'> We use a 3084/386/385
(train/validation/test) split for the polyChainStructures data
set. The QM9 data set, which contains DFT-optimized small-
molecule conformations, is used to augment the training,
allowing the models to learn local patterns from molecular
structures. We use the train set from QM9>° which is a size of
100 K molecules. We acknowledge the presence of larger
molecular data sets (i.e., GEOM) that could be used to further
augment our model’s learning.40 However, from a structural
perspective, the conformational behavior of nonzero temper-
ature molecules found in GEOM differs significantly from the
idealized infinite chains at OK modeled in this work.

We benchmark polymer structure prediction on our
polyChainStructures test set with our method. Unlike crystals,
polymers are amorphous and can adopt many valid low—energy
conformations, making conventional structure matchmg
unsuitable. Molecule generation is evaluated with root mean
squared distance (RMSD) after rotational alignment,m’42 but
this does not account for conformational variability experi-
enced by infinite chains, where chains can have a high point-
by-point RMSD but have a structural match. In our case, we
find that the distribution RMSDs of successfully generated
samples from the ground truth can be a measure of the
conformational diversity. We align the chains before calculating
the periodic RMSD.

To this end, we compare the predicted conformations
against the DFT-optimized structures by examining distribu-
tions over bond lengths, bond angles, and dihedrals. We
quantify similarity using the forward Kullback—Leibler (KL)
divergence from the predicted distribution to the ground truth.
The task is to generate a distribution of plausible polymer
conformations and assess the likelihood that the DFT-
optimized structure could have been drawn from this predicted
distribution. For a set of predicted quantities Qy.q we match it
to the set of DFT predicted quantities Qppr with

Qpr(2)
ped( )
(14)

In practice, we do this over a discrete set of buckets where
dz is 0.001 of the predefined ranges of the quantities, which
could be bond lengths (0.9 to 2.0), angles (0 to 180), or
dihedrals (0 to 360).

In order to evaluate the veracity of the generated structures,
given that that they were conditioned on Density Functional
Theory (DFT) based training structural data, we have adopted
the following procedure. To estimate the energies of the
generated structures, we performed first-principles DFT
calculations using the Vienna Ab initio Simulation Package
(VASP).**** Projector-augmented wave (PAW)*>*® pseudo-
potentials were used to include electron—ion interactions
within the generalized gradient approximation (GGA). Weak
van der Waals 1nteract10ns are incorporated by applying the
DFT-D3 method,"” along with energy convergence criteria for
the self-consistent electronic loop, set to 107° eV. A Gaussian
smearing has been used with a smearing width of 0.01 eV. The
kinetic energy cutoff was set to 520 eV, 30% higher than the
default maximum value given in the pseudopotential to ensure
better convergence and accuracy. The Brillouin zone is
sampled using 1 X 1 X 1, I'-centered k-grid.

Structure Matching Results. We find that our model is
capable of predicting polymer structures that closely match the
linear chain structure calculated by DFT. To provide context
to our rationale, Figure 3 shows examples of predicted
polymers compared to the ground truth of the data set. In
Figure 3a—d we see the capabilities of generating systems with
qualitatively similar structures after filtering. We also provide
examples of errors that are caught by our filtering. In Figure
3a,c, we see examples of carbon atoms incorrectly predicted
within a supposedly aromatic ring in the backbone, which lead
to incorrect connectivity. Many failed structures, especially the
one in Figure 3b, can easily be fixed with an energy
minimization or a heuristic-based increasing of the C—H
bond, demonstrating the efficacy of the remaining generation
and the stringent nature of the generation filter. Also, the
complexity of these structures should be noted, given chain
size, branching, and the number of rings present.

To quantify structural similarity, we compare bond length,
triplet angle, and dihedral angle distributions for some atomic
species. Predicted structures should exhibit peaks comparable
to optimized structures. The forward KL divergences establish
benchmarks for acceptable “matches” in bond lengths, angles,
and dihedrals.

We find that our approach can find relative trends in the
majority of bond lengths, but lacks precision. For example, the
predicted C—O bonds in Figure 3a shows 2 peaks for single
and double bonds, with noisy predictions scattered by at least
0.1 A around these peaks. In Figure 3b,c, both predicted C—N
and C—S bond distributions show peaks corresponding with
the true bond length, but with wide distributions. Generation is
precise to the order of A, but not on the scale of picometers.
Precision on the level of picometers will be necessary to
properly distinguish between bond types before our approach
is scaled to larger system sizes.

We find that the distribution peaks of angles and dihedrals
match the ground truth peaks, especially the O—C—0O and O—
S—O bonds in Figure 3a,c, respectively. The dihedral
distributions can be used to validate the prediction of correct

L0 = Dt Q]| Q) = [ Qopr(@log 2 =2de
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local structures in the polymer. For example, the C—N—C-C
dihedrals in Figure 3b validate the feasible prediction of the
nitrogen containing S-membered ring in the backbone. In
Figure 3¢, the C—C—C-O dihedral, located on a branch, shares
a peak with the ground truth at 160° but has a few predictions
around 80° and 320°. This reflects the difficulties in generating
branched structures, which may have conformational varia-
bility.

Figure 3d shows predictions for the largest system in the test
data set, containing 208 atoms. Only 3 out of 100 generated
structures pass the filtering when using position-biased
attention, while the DiT model with vanilla attention fails to
produce any valid structure. The broad distribution of
predicted C—=N—C—O dihedral angles and their high deviation
from the ground truth further highlight the lack of conforma-
tional viability. These results underscore a clear limitation in
handling larger systems, likely due to constraints in the training
data set, and illustrate the challenges of generating feasible
structures for complex polymer repeat units.

Prediction of Diverse Samples. As highlighted earlier,
polymer structures do not reside in one fixed conformation but
occur as an ensemble of minimized conformations, even close
to 0 K. Our training data set contains only 1 conformational
example out of the potential ones, because the generation of
these ensembles is costly. A useful generation model would
produce a diverse ensemble of low-energy state conformations.
In Figure 4a, despite the lack of per-polymer distribution in our
data set, polyGen can generate an ensemble of diverse
structures with variable repeat unit lengths. Because of the
Gaussian flow matching approach, the initial Gaussian sample
results in the sampling of different trajectories by the DiT, and
therefore different points are generated in the latent space.
Figure 4b shows a clear Gaussian-like distribution of generated
conformations for the polymer in Figure 4a, as a measure of
RMSD from the ground truth. Across the full test set, the
standard deviation of this distribution for polyGen indicates a
wider variety of conformations per generation compared to
PSP. In contrast, PSP has a maximum standard deviation of 1.
Because it is a physics- and heuristic-based framework, it
prioritizes correct connectivity and local energy minimization,
making it less suited for diverse generation.

Overall Structural Results. We see that joint training on
multiple DFT data sets can improve model performance, in
accordance with previous studies."®*" In this section, we show
the specific areas in which the inclusion of the QM9 data set
can benefit the generation of polymer structures by comparing
the joint data set approach with a model fully trained on just
the polyChainStructures data set. Figure 5 shows the overall
KL divergences for bond lengths, angle lengths, and dihedrals,
and comparison of predicted z-height. The inclusion of the
QM9 data set improves predictions on the local levels of
polymer chains, as the KL divergences of bonds and angles
decrease by 41.0 and 29.0%, respectively, upon the addition of
the QMO data set. Larger features, such as dihedral angles and
the z-height show limited improvement, with dihedrals
improving by 16.1%. This is likely because small molecules
do not provide any insight into the macrostructural properties
of polymers. Overall, we find that 36.1% of the generated
structures by the jointly trained model pass our filtering,
whereas 27.4% samples are generated correctly when using
only the polyChainStructures data set for training.

Another major improvement is seen when including position
attention biasing in the DiT module. Because local interactions

are explicitly specified, we find that the positional encoding
improves generation success from 36.9 to 64.8% when looking
at isomorphism of the predicted structure compared to the
original graph. Figure 5 showcases the improvement of
polyGen with a relative encoding bias on all metrics, notably
the decrease of angle and dihedral KL Divergences by 33.5 and
21.2%, respectively.

As highlighted in Figures 4 and Se, we expect some
variability in the prediction of the z-height of the polymer
chain. Despite this, we can achieve an r* score of 0.854
between the predicted and DFT heights, meaning that the
model can differentiate between dense vs sparsely packed
structures. Additionally, we see a larger standard deviation and
error in predictions for larger repeat units (>10 A), because
these repeat units may show more flexibility. Figure 5d also
highlights the difficulty of generation as system size increases.
Most generated systems with <25 atoms show success rates
>0.5. For system sizes greater than 150 atoms, the model with
vanilla attention cannot generate any systems with proper
connectivity, but the relative position bias substantially
improves this.

Intuitively, it would also seem that complex polymeric
structures would be more difficult to generate. To this end, we
also compare these metrics with the Synthetic Accessibility
(SA) in Supporting Information A. We see loose correlations
with KL divergences of bond length, angles, and dihedrals with
the SA score, but the ratio of successful generations of a
polymer do not have a strong correlation with the SA score.
Therefore, generation success could be independent from SA
score and more reliant on the system size.

The speed of polyGen of the successful structural
generations is compared with PSP. polyGen generated samples
in batches of 200, at an overall average of about 0.308 s per
successful sample, taking advantage of the parallelizability of
batched evaluations with transformers. PSP generated the
samples at a rate of about 30.2 s per successful sample.

Energetic Results. Figure 6 shows the difference in total
potential energies of the polyGen and PSP samples when
compared with DFT. Both methods show low energy
differences, ie., both produce structures close to the DFT
ground state. PSP, being a physics-based optimizer, produces
structures with total potential energy less than what is
generated by polyGen. 53.8% of polyGen samples and 74.7%
of PSP samples are within 0.1 eV/Atom of DFT. We note that
polyGen has one sample (0.26%) and PSP has 6 (1.6%)
generated samples that are >1.0 eV/Atom from DFT. PSP
tends to generate geometries close to the DFT ground state
but does produce some large outliers, whereas polyGen
produces slightly higher energies but with greater consistency,
as demonstrated by a tighter distribution of energy differences
with respect to DFT.

B CONCLUSIONS

In this study, we introduce a solution to the problem of
atomic-level polymer structure generation—given only the
atomic connectivity of a repeat unit (i.e,, SMILES), polyGen
can generate an ensemble of realistic 3D structures of synthetic
polymers. Results demonstrate that polyGen effectively
generates structures with bond lengths, angles, and dihedral
distributions that align well with ground truth structures, and
the quality of structures improves with the inclusion of
positional biasing to the attention mechanism of the diffusion
transformer. The model also successfully generates valid
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conformations for complex features like aromatic backbones
and branches while correlating repeat unit chemistry with
structural properties, such as repeat unit length. These initial
results are particularly promising considering our polymer
structure data set optimized with Density Functional Theory
contains only 3855 systems. We also investigate the limitations
and demonstrate the need for stringent benchmarking of future
polymer structure generation techniques. While capturing
relative trends in structure, the model lacks precision at the
picometer scale needed to distinguish between bond types.
When compared to a physics-based predictor, Polymer
Structure Predictor, polyGen generates samples with slightly
higher total potential energy compared to DFT, but with fewer
outliers, greater speed, more conformational diversity, and
more consistency. The current data set is a limiting factor for
polyGen’s capabilities. Performance degrades significantly for
larger polymeric systems, due to the lack of these in the data
set. The data set also needs to include nonlinear network,
ladder, larger branched structures, and conformations at
nonzero temperatures. These will be the subject of future
enquiry.

Given the successes of this proof-of-concept, future work
will focus on expanding the training data set to include larger
polymer systems, incorporating additional physics-informed
constraints, and exploring hybrid approaches that combine
latent diffusion with molecular dynamics simulations. polyGen
represents an initial technique in the sparsely explored space of
polymer structure generation, and addressing these challenges
could transform it into an invaluable tool for computational
materials science, accelerating the discovery of novel polymeric
materials across numerous applications.
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