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Polymer design for solvent separations by
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This study guides the discovery of sustainable high-performance polymer membranes for organic
binary solvent separations. We focus on solvent diffusivity in polymers, a key factor in quantifying
solvent transport. Traditional experimental and computational methods for determining diffusivity are
time- and resource-intensive, while currentmachine learning (ML)models often lack accuracy outside
their training domains. To overcome this, we fuse experimental and simulated diffusivity data to train
physics-enforced multi-task ML models, achieving more robust predictions in unseen chemical
spaces and outperforming single-task models in data-limited scenarios. Next, we address the
challenge of identifying optimal membranes for a model toluene-heptane separation, identifying
polyvinyl chloride (PVC) as the optimal membrane among 13,000 polymers, consistent with literature
findings, thereby validating our methodology. Expanding our search, we screen 1 million publicly
available and 7million chemically recyclable polymers, identifying greener halogen-free alternatives to
PVC. This capability is expected to advance membrane design for solvent separations.

Separating organic solvents is essential in the chemical industry for pro-
ducing fuels, chemicals, and other derived products. A notable example is
the separation of aromatic compounds, such as toluene, from aliphatic
compounds like n-heptane, which is vital for producing cleanermotor fuels
with reduced aromatic content1,2. However, traditional separation methods
such as extractive distillation or liquid-liquid extraction face significant
challenges in separating such mixtures due to the close boiling points and
similar physio-chemical properties of the solvent components3. Perva-
poration (PV)presents a promising alternative by utilizing differences in the
permeation rates of organic solvent molecules across the membrane for
separation rather than relative volatility alone4. PV-based approaches also
offer advantages such as enhanced safety, cost-efficiency, and reduced
energy consumption compared to distillation-based methods5–10. In such
separations, a liquid phase solvent mixture is introduced to one side of a
polymer membrane, while the permeate exits from the opposite side in a
vapor phase. Although polymeric membranes are widely used for such
separations due to their low cost of fabrication and ease of scaling up11–13,
finding a suitable polymer that will achieve these separations effectively
remains a challenge.

For successful solvent separations, one of the keymembrane properties
is solvent permeability, defined as the flux normalized by the membrane
thickness and the driving force. The mass transport in the PV process

follows the solution-diffusion mechanism, which states that the perme-
ability P (Barrer) through a dense membrane is the product of diffusivityD
(cm2/s) and solubility coefficient S (cc(STP).cc polymer−1 cmHg−1)14.

P ¼ D � S ð1Þ

Knowledge of pure component diffusivity and sorption isotherms is
essential for predicting membrane separation performance for complex
mixtures15. Focusing on solvent diffusivity, we find that experimental data,
typically obtained through gravimetric sorption or time-lag measurements,
is limited and resource-intensive to expand16,17. Classical molecular
dynamics (MD) simulations, while effective for calculating diffusivity, are
constrained by high computational costs and the need for accurate force-
field parameters18–21. In contrast, machine learning (ML)-driven methods
offer a promising route allowing for rapid and accurate diffusivity predic-
tions while effectively addressing the resource and scalability limitations of
conventional experimental and computational techniques. Such data-driven
methods have achieved remarkable strides in recent years, fundamentally
reshaping the landscape of materials property predictions and the tailored
design of materials with specific target characteristics22–28. While many ML
models exist for predicting gas29–32 and ionic diffusivity through
polymers33,34, as well as properties like polymer-solvent interaction
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parameters35,36, miscibility36, swelling37, and fractional free volume38, models
specifically for organic solvent diffusivity through polymers are still limited.
In our recent work, we developed anMLmodel to predict solvent diffusion
inpolymers,whichwas used in conjunctionwithmass transport simulations
topredict complexmulti-component crudeoil solvent permeation15.Despite
these advances, current ML models for diffusivity encounter significant
difficulties in extrapolating beyond the polymer-property space encom-
passed by their training data. This underscores a well-known limitation of
ML models: their inability to “generalize" or reliably predict outcomes out-
side the training set. Therefore, the development of more robust and gen-
eralizable ML models is essential to ensure accurate, physically meaningful
predictions as we explore new chemical spaces for membrane design.

In this work, we propose a two-fold methodology for enhancing the
generalizability of current diffusivity MLmodels: multi-task (MT) learning
and physics-enforced learning. In this context, MT learning involves
training a model on multiple tasks, such as simultaneously learning from
experimental and simulated data sources. While experiments provide the
accurate ground truth, these datasets are limited and grow slowly. At the
same time, lower-accuracy computational data can be generated at scale,
exploring new chemical spaces beyond the reach of experimental datasets.
Multi-task learning leverages the correlations between scarcely available but
high-fidelity experimental data and the diverse but lower-fidelity compu-
tational data, thereby improving model generalizability, as recently
demonstrated29,39,40. Thus, recognizing the power of multi-task learning, we
augmented experimental diffusivity data with our in-house generated
computational data and trained multi-task diffusivity models to improve
prediction accuracy and generalizability.

To further enhance predictive performance, we leverage physics-
enforced neural networks (PENN). While data-driven models can effec-
tively fit observed data, their predictions may sometimes be physically
inconsistent, especiallywhenextrapolatingbeyond the trainingdata, leading
to poor generalization. To address this, it is crucial to incorporate funda-
mental physical laws and domain expertise into ML models. The wealth of
physical and empirical observations, formulas, and axioms in literature can
be exploited to provide informative priors to enhance the predictions of
currentMLmodels. Physics-informedmachine learning leverages this prior
knowledge, enabling more accurate predictions while increasing model
interpretability41–43, for applications such as material property prediction
anddesign44–47. For example, Bradford et al. enhanced the accuracyof anML
model for predicting temperature-dependent ionic conductivity by incor-
porating the Arrhenius law, thereby improving the model’s performance
compared to those without such physics-based integration46. Building on
these successes,wepresent a “physics-enforced”machine learning approach
designed to improve generalizability, especially in data-limited scenarios.
First, we use an empirical power law, developed in our prior work15, to
encode known correlations between solvent molar volume and diffusivity,
capturing the slower diffusion of bulkier molecules and enabling accurate
predictions for large solvents not included in the training set48,49. Second, we
apply an Arrhenius-based relationship to model solvent diffusivity as a
function of temperature, enabling extrapolation to higher temperatures
common in industrial separations. We systematically compared and
demonstrated the superiority of these physics-based multi-task models
against single-task models that rely solely on limited experimental data.

Further, harnessing our generalizable ML diffusivity model, we
addressed a key challenge in membrane discovery: identifying suitable
membranes for specific solvent separations. Effective separations require
not only high solvent permeability but also high permselectivity, which
ensures the selective transport of the target species through the membrane.
Ideal permselectivty is defined as:

αAB ¼ PA

PB
¼ DA

DB
� SA
SB

ð2Þ

Here,PA andPB are permeabilities,DA andDB are diffusivities and SA and SB
are solubility coefficients for pure solvents A and B. However, identifying

membranes that possess both high solvent permeability and permselectivity
remains challenging due to the inherent trade-off between these properties.
In the gas separation community, researchers guidemembrane discovery by
maximizing permeability and permselectivity, typically illustrated through
trade-off or Robeson plots, and continually seek new polymers that exceed
established upper bounds for these properties50–52. This study addresses the
gap in identifying optimal membranes for binary organic solvent
separations by generatingML-predicted trade-off plots for 13,000polymers,
with a focus on toluene-heptane separations crucial for producing cleaner,
aromatic-lean fuels. Using the solution-diffusion model (Equation: (1)), we
estimated permeability and ideal permselectivity from ML-predicted
diffusivity and solubility coefficients15. Notably, ourML predictions identify
polyvinyl chloride (PVC) as an optimal choice polymer for this separation,
aligning with its recognition as a membrane of choice in literature53–56.
Despite PVC’s notable separation performance, it is widely regarded as one
of themost environmentally harmful plastics due to both its environmental
impact and the fact that its monomer, vinyl chloride, is a potent carcinogen.
Hence, we next aimed to find more sustainable non-halogenated
alternatives to PVC. The initial screening of the 13,000 known polymers
failed to identify any suitable PVC alternatives. To expand our search for
sustainable and high-performance polymer alternatives, we screened across
a space of virtually generated candidates. First, we leveraged an open-source
dataset of 1 million candidates, “PI1M,” produced by Luo et al. using a
generative ML model trained on SMILES strings of existing polymers in
PolyInfo database57. Additionally, we utilized a database of 7 million
chemically recyclable ring-opening polymerization (ROP) polymers,
previously createdbyKern et al. byutilizingknownmonomers58. Leveraging
these datasets of synthetically accessible and chemically recyclable polymers
alongwith 13,000 known polymers, we propose halogen-free alternatives to
PVC for toluene-heptane separation.

Results
Generation and validation of a computational dataset for solvent
diffusivity
We established a high-throughput simulation protocol for calculating sol-
vent diffusivity through polymers, employing classical molecular dynamics
(MD) with the open-source LAMMPS package, as detailed in Fig. 1. First,
polymer and solvent structures were generated using the open-source
Polymer Structure Predictor (PSP)59. The polymer chains consist of
approximately 150 atoms per chain, with the entire system totaling
4000–5000 atoms, a majority of them operating within a dilute solvent
concentration regime, as can be seen in the Supplementary Fig. 1. GAFF2
was employed as the chosen forcefield.Next, a 21-step equilibration process
was employed to ensure that polymers were equilibrated60. Afterward, all
systems were subjected to an additional 10 ns equilibration in the NPT
ensemble, followed by a 200 ns production run in theNVT ensemble29. The
Nosé-Hoover thermostat and barostat, with a damping parameter of 100-
time steps each, were employed, and a time step of 1 fs was used in all MD
simulations. Post-simulation, the diffusivity of the solvent in the Fickian
regime was estimated based on mean square displacement analysis for all
atoms and averaged for that molecule. Thus the solvent diffusivity (D) is
then calculated as:

D ¼ 1
6N

lim
t!1

d
dt

XNgas

i¼1

hðriðtÞ � rið0ÞÞ2i ð3Þ

where N is the number of solvent molecules, t is the simulation time, ri(t) is
the position vector of the solvent at time t, and ri(0) is the position vector at
the initial time 0.

Since the diffusion coefficientD is ideally determined in the limit as t
approaches infinity, simulations were run for sufficiently long periods to
ensure that thediffusionproperties donot vary significantly over time.We
ensured that diffusivities are estimated in the Fickian regime by verifying
that the slope of the log displacement-log time plot remains close to one. If
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the slope value is outside the range of 0.95-1.05, the diffusivity runs are
excluded from subsequent calculations. Additionally, the standard block
average method was used to estimate the simulated uncertainty from 10
blocks61. The diffusivity simulations were conducted as a function of
solvent concentration and temperature. Using the simulation pipeline
outlined above, diffusivity calculations were first conducted for polymer-
solvent pairs with available experimental diffusivity data, as shown in
Fig. 1. For 376 experimental systems across 18 polymers and 45 solvents, a
coefficient of determination (R2) of 0.63 was observed, indicating an
acceptable correlation between experimental and simulated data62–75.
Although the simulated results do not fully align with the experimental
data due to inherent limitations in the force field and simulation protocol,
the observed qualitative correlation is expected and sufficient for our
objective of downstream multi-task machine learning models. After
validating the correlation between experimental and simulated values for
the 376 systems, the computational diffusivity dataset was expanded
beyond the limited experimental space, resulting in a total of 623 systems,
comprising 91 polymers and 69 solvents. This expansion of the simulated
space is aimed to enhance the generalizability of the downstream multi-
task ML model by broadening chemical space coverage, enabling it to
learn from a more diverse dataset and make more accurate predictions
beyond the constraints of the limited experimental data29,39,40. Additional
details on the simulation protocol can be found in the Supplementary
Information (sections 2 and 3).

Data augmentation
Building larger and more diverse datasets is essential for developing more
effective models76. Hence, data augmentation is crucial for creating robust
models inmaterials informatics, where data scarcity is a common challenge.
The experimental diffusivity dataset was expanded in two key ways:

• Activity-to-Concentration Conversion: Previously, the literature-
sourced experimental diffusivity data was recorded as a function of
solvent activity15. In this work, additional data was collected, where
diffusivity was recorded as a function of solvent concentration in the
membrane62–75, as visualized in Fig. 2. For the purpose of expanding the
concentration-dependent datasets, we converted experimental
activity-dependent data to concentration-dependent data using the
Sorption Uptake ML model, as described in Section Sorption Uptake
ML model. This step is essential for achieving consistency in datasets
and units, especiallywhen integratingwith simulated data (recorded as
a function of solvent concentration), as discussed in the following
section.

• Augmentation of SimulationData: The simulated diffusivity dataset,
recorded as a function of solvent concentration in the membrane, was
fused with the converted experimental concentration-dependent
dataset using one-hot encoding, thereby enhancing the diversity of
the data.

Together, these augmented datasets created a comprehensive, con-
centration- and temperature-dependent diffusivity dataset, as illustrated in
Fig. 2, which was used to train the diffusivity ML model. Additional data
analysis is provided in Supplementary Fig. 1.

MLmodel benchmarks for improved generalizability
To assess the impact of data fusion and physics-guided learning, we trained
and compared both single-task and multi-task diffusivity models across
various algorithms. The feature space incorporated Polymer Genome-
derived polymer-solvent fingerprints27,77 (described in Section Polymer and
solvent fingerprinting), along with key descriptors such as solvent con-
centration (expressed as the weight fraction on a logarithmic scale) and
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temperature. Additionally, one-hot encoded selector vectors were used to
distinguish between experimental and simulated data when both were
present. Single-task models, trained solely on experimental data, were
categorized as ST1 and ST2-based on the amount of data available, as shown
in Fig. 3. In contrast, multi-task models combined experimental and
simulated data throughdata fusion. By trainingonmultiple correlated tasks,
multi-task learning enables the models to recognize correlations between
accurate experimental data and diverse simulated data, expanding predic-
tion capabilities across a broader chemical space. We implemented these
models using algorithms such as Gaussian Process Regression (GPR),
Neural Networks (NN), and Physics-Enforced Neural Networks (PENN).
While GPR and NNmodes do not incorporate physical laws into training,
the Physics-Enforced Neural Networks (PENN) models incorporate fun-
damental physical laws into the training process, ensuring that the model

reproduces known physical behaviors. Two PENNmodels were developed.
The PENN-1model is based on an empirically observed relationship where
the diffusivity of a solvent decreases with increasingmolar volume due to its
bulky nature48,49. This empirical law was initially designed in our previous
work to make more accurate predictions for the large solvents (molar
volume greater than 1000 cm3/mol) found in real-world crude oil applica-
tions, which were absent from the more limited literature-based training
dataset that was predominantly distributed around 250 cm3/mol15. On the
other hand, the Arrhenius equation is used to describe the temperature
dependence of diffusivity in the PENN-2 model. By embedding the
Arrhenius relationship78,79 within the neural network, we propose improv-
ing its predictive accuracy, especially at temperatures outside the range of
the training data.

More details about the model architecture are listed in Section Solvent
diffusivity ML models.

The model’s performance is evaluated using the Order of Magnitude
Error (OME), which is essentially the Mean Absolute Error (MAE) com-
puted on a logarithmic scale15,29,44. OME is expressed as :

OME ¼ 1
n

Xn
i¼1

∣log10ðyiÞ � log10ðŷiÞ∣

where yi and ŷi represent the actual and predicted values, respectively, and n
is the number of data points. The test OME is calculated across various
training set sizes using polymer-group splits. These polymer-based “group"
splits ensure that test polymers are entirely excluded from training. To
ensure statistical reliability, data was split into test-train sets using five
different random seeds, with performance statistics reported in Fig. 4,
comparing single-taskmodels (ST1 andST2) andmulti-taskmodels trained
using GPR, NN, PENN architectures. As expected, test errors decreased as
training size increased, eventuallyplateauing as themodels approached their
optimal performance.

First, we evaluate the performance of the models as a function of the
training data by comparing the performance of single-task (ST1, ST2) and
multi-task (MT) models. The ST1 model, trained on the smallest experi-
mental dataset of 2045 polymer-solvent systems, showed the highest test
error as a function of training set size (depicted in red in Fig. 4). The ST1
model serves as a baseline to assess the performance of more advanced
models. The ST2 model, trained on 2421 experimental systems, was
expected to show only modest performance improvements. As shown in
green, ST2 models performed similarly to ST1, with slight gains in data-
scarce scenarios (10% and 30% trainset sizes). More significant improve-
mentswere seen at trainset sizesof 50%and70%, though the error plateaued
at 70%, suggesting that the model was nearing optimal performance, with
diminishing returns from additional data. In contrast, the multi-task dif-
fusivitymodels (shown inblue), trainedona comprehensivedataset of 3,044
systems (combining both experimental and simulated data), significantly
outperformed the single-task models. This was especially evident in data-
scarce scenarios with as little as 10% trainset data. The multi-task model’s
enhanced generalization capabilities stem from leveraging diverse data and
learning relationships between experimental and simulated data, under-
scoring the effectiveness of multi-task learning in improving predictive
accuracy in data-limited environments.

Next, we analyzed the effect of different machine-learning algorithms
onmodel performance. In themulti-task (MT) framework, within the data-
scarce regime of 10% trainset size, Gaussian Process Regression (GPR)
achieved the lowest averaged OME error (0.68), followed by PENN-2
(0.815), with PENN-1 (1.15) and the neural network (NN) model (1.12)
showing comparable performance. This indicates that GPR models excel
when training data is limited. Furthermore, we note that the limited per-
formance of the PENN2models in the low-data regimemay be attributed to
the insufficient coverage of the temperature range in the dataset, which
constrains the model’s ability to generalize effectively. Additionally, the
complexity of the neural network architecture may contribute to this issue,
as more sophisticated models typically require larger datasets to achieve
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Fig. 3 | Models for the benchmarking. Single-task models (ST1 and ST2) were
distinguished by the experimental diffusivity data they used for training- ST1 model
is trained on x%Dexp

act , whereas the ST2model is trained on x%Dexp
act þ Dexp

conc . Here, x
represents the percentage of the training set derived from Dexp

act . To ensure fair
evaluation, any polymer in the test set is completely excluded from the training set.
In contrast, multi-task models (MT) incorporated both experimental and simulated
diffusivity data in their training process, consisting of x%Dexp

act þ Dexp
conc þ Dsim

conc .
These models are trained using algorithms such as Gaussian Process Regression
(GPR), Neural Networks (NN), and Physics enforced Neural Networks (PENN)
models. The performance of these trained models is evaluated on the holdout
(100-x)%Dexp

act data, with the best-performing models selected as the final diffusivity
models for production.
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Fig. 2 | Expansion of the diffusivity dataset. The pink segment represents the
experimental activity-dependent data, labeled as Dexp

act , which is converted to a
concentration-dependent format using the Sorption Uptake ML model15. The blue
circle denotes the experimental concentration-dependent data, Dexp

conc
62–75, while the

green segment, Dsim
conc , includes concentration-dependent simulated data. These

datasets collectively form a comprehensive concentration-dependent diffusivity
dataset, comprising 3044 systems, 154 polymers, and 176 solvents, which serves as
the foundation for developing the production diffusivity model.
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robust generalization. This observation is consistent with previous studies,
which have frequently linked performance limitations in such settings to
overfitting80–82. However, asmore data became available, particularly at 90%
trainset size, neural networks significantly outperformed GPR, with errors
of 0.179 for NN, 0.173 for PENN-1, 0.164 for PENN-2, and 0.27 for GPR.
Notably, as trainset size increased, PENN-2 consistently outperformed
othermodels, especially evident at 50% trainset size.While NN and PENN-
1 performed competitively, PENN-2 demonstrated superior predictive
power. As discussed in Section Solvent diffusivityMLmodels, the empirical
solvent volume law (equation (4)) incorporated in PENN-1 is particularly
effective for large molar volume solvents. However, due to the absence of
these larger solventmolecules in the current test dataset (as direct diffusivity
measurements were unavailable), the impact of this empirical law was
diminished. Consequently, even with the inclusion of physics-based laws,
PENN-1 did not reach the performance level of PENN-2. In summary, in
data-scarce conditions, the model performance rankings were GPR >
PENN-2 > PENN-1 ~ NN. As the training set size increased, this ranking
shifted to PENN-2 > PENN-1 ~NN>GPR. The trends observed in theMT
model were similarly reflected in both the ST1 and ST2 models, exhibiting
only minor deviations attributable to variability in the train-test splits.

Ultimately, this analysis illustrated that integrating multi-task models
with physics-based approaches results in more accurate, robust, and gen-
eralizable models, even in scenarios with limited data. Consequently, our
production-level diffusivity model was designed as a multi-task model built
on a physics-enforced neural network architecture with Arrhenius
temperature-dependence encoded (MT-PENN-2).

Comparative production level benchmark
In our previous work15, we developed a physics-enforced single-task ML
model (ST1-PENN-1), using the experimental dataset Dexp

act , which covers
2045 polymer-solvent systems. This model predicts polymer-solvent dif-
fusivity based on polymer-solvent fingerprints and solvent activity. In our
current work, we expanded this dataset by incorporating additional
experimental and simulated data, resulting in a larger dataset of 3044 sys-
tems and trained multi-task models using physics-enforcedmethods (MT-
PENN-2). The goal of this updated diffusivity model was to improve gen-
eralizability and robustness, enabling accuratepredictions inpolymer spaces
previously unexplored by experiments. In this analysis, we compare the
original model (ST1-PENN-1) with the updated model (MT-PENN-2).

Enhanced accuracy frommulti-task and physics-enforced learning
approaches. As shown in Fig. 4, MT-PENN-2 outperformed ST1-
PENN-1, demonstrating superior prediction accuracy across a broader
range of polymer chemistries. This success can be attributed to the
expanded chemical space from a more diverse dataset (discussed in the

following section) and the improved model architecture. It is important
to note that ST1-PENN-1 was specifically designed using the PENN-1
architecture to predict diffusivity in large crude oil solvents. While
PENN-1 is optimal for such predictions, the PENN-2 architecture excels
in predicting solvent diffusivity for smaller organic solvents and new
polymer chemistries. However, we note that since the original model of
ST-PENN1 used the dataset Dexp

act , and this work converted it to a
concentration-dependent format Dexp

conc, this is not a perfect comparison.
This conversion was necessary to ensure consistent units for comparison
with othermodels developed in this study. Adirect comparison ofmodels
based on activity- or concentration-dependent data could only be made
using a test set that overlapped these datasets, which wasminimal (only 7
polymers and 84 data points), and this small representation of simple
polymers (such as polyethylene) does not accurately reflect the general-
izability of the models in the broader chemical space. As a result, we
conducted an indirect comparison, and the findings clearly showed that
the updated MT-PENN-2 models outperform the original model in
prediction accuracy.

Enhanced generalizability due to expanded polymer chemical
space. The principal component analysis (PCA) plot using Polymer
Genome fingerprints in Fig. 5 demonstrates the broader polymer che-
mical space covered by the updated diffusivity model (MT-PENN-2)
compared to the original model (ST1-PENN-1). The polymer chemical
fingerprints are reduced to two dimensions using PCA, capturing the
maximumvariance and enabling a structured visual representation of the
chemical space, wherein each marker represents a unique polymer. The
gray markers represent the PCA projection of the fingerprints of a 13k
known polymer space. The yellow markers represent the polymer
representation for the “original”diffusivitymodel (ST1-PENN-1) built in
our previous work, which was trained solely on experimental dataDexp

act
15.

In contrast, the red markers denoting the “updated” diffusivity model
(MT-PENN-2) refers to the polymers in themore comprehensive dataset,
incorporating Dexp

act þ Dexp
conc þ Dsim

conc , thus explaining the overlap and
expansion in the chemical space.

Overcoming limitations in temperature-dependent-diffusivity pre-
dictions. The updated diffusivity model (MT-PENN-2) overcomes a key
limitation of the original model by capturing temperature dependence.
While the original model was limited to predicting diffusivity near room
temperature, the updated model incorporates an Arrhenius-based tem-
perature law, enabling it to extrapolate diffusivity behavior even when
temperature-dependent diffusivity data is sparse. This is especially
important sincemost available experimental data is concentrated around
room temperature, while many separation applications occur at elevated
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temperatures. Further details on this improvement have been visualized
in Supplementary Fig. 6.

Design guidance for high-performance sustainable membranes
We now aim to identify the ideal pervaporation polymer membrane for
separating toluene and heptane by maximizing permeability and ideal
permselectivity. This separation is crucial for producing clean motor fuels.
The selection of this solvent separation was additionally driven by the
availability of extensive training data for this combination to ensure robust
and reliable predictions. Toluene-heptane separation is particularly challen-
ging because their physical differences, such as kinetic radius (toluene: 5.9Å;
heptane: 4.42Å) and boiling point (toluene: 110.6 °C; heptane: 98.4 °C)—are
relatively small83,84. As a result, membrane separations typically depend on
exploiting differences in chemical structure and interactions, notably the
aromatic nature of toluene versus the aliphatic character of heptane. To
address this challenge and guide membrane design, we calculated single-
component permeability as the product of ML-predicted diffusivity and
solubility coefficients, alongwith ideal permselectivity as explained in Section
Construction of ML based solvent-trade-off plots. This work presents the
largest solvent trade-off plots to date, encompassing 13,000 knownpolymers,
along with virtually generated 1 million publicly available polymers in the
P1IM database57 and 7 million chemically recyclable ring-opening poly-
merization (ROP) based candidates58. Details for this virtual polymer search
space can be found in Section Membrane Design Search Space.

Rediscovery of known high-performance candidates. Focusing first
on the known polymer space as shown in Fig. 6a (red data points), we
present permeability-based trade-off plots, where halogenated polymers
(like polyvinyl chloride PVC, denoted by A) emerged as top candidates,
exhibiting both high predicted permeability and ideal permselectivity.
The diffusivity-based trade-off plot in Fig. 6b, showed similar trends.
Figure 6c focuses on solubility, where nitrogen-containing bulky aro-
matic compounds displayed high solubility and selectivity, likely due to
their strong affinity for toluene.

Validating ML-generated trade-off plots is challenging due to limited
benchmarking methods. PVC membranes and their composites are
recognized for toluene-heptane separations via pervaporation53–56. In
agreement with literature, our ML predictions independently identified
PVC as a top-performing polymer, with a predicted toluene permeability of
103.56 Barrer and ideal permselectivity of 107.7. The low prediction uncer-
tainties in ML-predicted diffusivity (10−9 ± 0.41 cm2/s) and sorption uptake
(100.74 ± 0.07 mmol solvent/g polymer) further reinforce the model’s con-
fidence in its predictions, effectively ruling out potential statistical outliers.
While the identification of PVC for toluene-heptane separation is not a
novel discovery as PVC is well-established in the literature for this separa-
tion process, its re-discovery through our ML approach reinforces the
validity of our methodology. Further validity is provided by Aouinti et al.
who reports PVC’s solubility parameter as 19.2MPa1/2, closely matching
toluene’s 18.2MPa1/2 and significantly differing from heptane’s 15.1MPa1/2,
implying PVC’s higher affinity for aromatic toluene54.

Searching the space of 13k known polymers for non-halogenated
alternatives. Despite PVC’s effective separation performance, it is con-
sideredoneof themost environmentally harmful plastics; thus, identifying
sustainable, non-halogenated alternatives is imperative85,86. To address
this, we conducted a systematic screening of 13,000 known polymers to
identify non-halogenated candidates with separation performance com-
parable to PVC. The initial screening was based on amoderately stringent
criteria: ideal perm selectivity >105.5 and permeability >104 Barrer. To
identify non-halogenated alternatives to PVC, we lowered the ideal
permselectivity threshold and slightly increased the permeability thresh-
old, as most non-halogenated candidates seemed to show lower ideal
permselectivity. However, even the use of this moderately stringent cri-
teria yielded no viable candidates from a dataset of 13k known polymers,
underscoring the complexity of the problem-akin to finding a needle in a
haystack. In response, we defined a relaxed criteria, such that ideal
permselectivity >104 while maintaining the permeability threshold. This
shift uncovered 46 candidates, out of which 31 are non-halogenated
promising polymers that can be used for toluene-heptane separation.
From this pool of polymers, we highlight Polymer B, which emerged as a
sustainable candidate, being a known non-halogenated ring-opening
polymerwith a strong tendency for depolymerization. The rest of thenon-
halogenated alternative polymers (Supplementary Fig. 7) contain highly
polar ester, carbonyl, ketone groups, aromatic or electronegative groups.
These trends align with literature findings53,54,83, as emphasized by Liu
et al.84, who reviewed 100membranes for toluene-heptane separation and
highlighted that those featuring electronegative groups and aromatic
backbones-enabling π-π interactions-exhibit enhanced toluene affinity
and separation performance.

Searching the space of chemically recyclable hypothetical poly-
mers. In addition to exploring the known polymer search space to dis-
cover sustainable and efficient membranes, we extended our
investigation to virtually generated datasets. To ensure reliable predic-
tions, we excluded virtual polymers containing inorganic elements, such
as Na, P, and Si, that were absent in the training data.

First, we analyzed the PI1Mdataset, comprising 1million hypothetical
polymers, to identify PVC alternatives by applying themoderately stringent
screening criteria (ideal permselectivity > 105.5, permeability > 104 Barrer).
This screening yielded 152 viable polymers, including 74 non-halogenated
candidates. As expected, we observe a significant increase in the number of
viable candidates with the expansion of chemical space, outlining the
importance of such generative design approaches for polymer design.
Notably, Polymer C exhibited excellent separation performance, compar-
able to PVC, with slightly higher permeability, as shown in Fig. 6a. Fur-
thermore, PolymerD emerged as a promising sustainable, non-halogenated
alternative. Additionally, applying the relaxed criteria yielded 1243 candi-
dates, ofwhich920werenon-halogenated.Althougha largenumberof non-
halogenated polymers were identified, the chemical space of these polymers

Original diffusivity model (ST1-PENN-1) 
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Fig. 5 | Expansion of the chemical space.The Principal Component Analysis (PCA)
plot shows the expanded polymer chemical space covered by the updated diffusivity
model (MT-PENN-2) compared to the original (ST1-PENN-1)15. Grey points
represent the 13k known polymers in our database, yellow stars mark the polymers
covered by the original model, and red points indicate the broader space covered by
the updated model.
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closely resembles that of the polymers in PolyInfo87, and such polymersmay
not necessarily be optimized for recycling or represent more sustainable
options.

Therefore, recognizing the need for more sustainable membranes, we
further explored a dataset of 7 million synthetically accessible ring-opening
polymerization (ROP) based polymers with an affinity for chemical recy-
cling.Using the samemoderately stringent criteria,we identified9 candidate

polymers, one of which was non-halogenated, denoted as polymer F. We
also highlight Polymer E, which is predicted to exhibit slightly better
separation performance than PVC. Although Polymer E is halogenated, it
demonstrates a strong potential for depolymerization through ROP. Next,
while screening for sustainable non-halogenated candidates within this
virtual space, we noted that 2.1 million of the polymers were halogenated,
significantly narrowing the search space for sustainable alternatives. By

Fig. 6 | ML predicted trade-off plots. a Permeability, (b) diffusivity, and (c) solu-
bility coefficients, along with their corresponding ideal selectivities for toluene/
heptane separations across 13,000 known polymers (red), 1 million virtual PI1M
(purple)57, and 7 million virtual ROP polymers (green)58. The blue region in the top
right highlights the target area of high transport properties and ideal selectivity.
Focusing on high predicted toluene permeability and ideal permselectivity, among
known polymers, Polymer A (polyvinyl chloride, PVC) emerges as the top machine
learning-predicted candidate, aligning with its experimentally validated use in this

application. Polymer B (a known polymer), a suggested sustainable alternative,
demonstrates slightly lower performance. Within the virtual space, Polymer C
(PI1M database) and E (ROP database) are identified as promising candidates with
predicted performance exceeding that of PVC. Additionally, Polymers D (PI1M
database) and F (ROP database) are virtual non-halogenated alternatives that offer
comparable separation performance while representing more sustainable options
compared to toxic halogenated membranes.
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using the relaxed screening criteria, we uncovered an additional 114 can-
didate polymers, ofwhich 48were non-halogenated (Supplementary Fig. 7).
We note that the lower number of candidates passing the screening criteria
in the ROP dataset, compared to the PI1M dataset-despite the ROP dataset
being nearly seven times larger-may be attributed to its more limited che-
mical diversity. In contrast, the PI1M dataset benefits from a broader range
of chemistries, providing a more diverse pool of potential candidates. We
note thatwhile leveraging a virtual space of 8million polymers-compared to
the known space of 13,000-led to the identification of more polymers
meeting the specified criteria, the total number of successful candidates
remained relatively small, underscoring the inherent complexity and chal-
lenges of polymer design. These results point to the fundamental limitations
in achieving anoptimal permeability-selectivity trade-off, which is primarily
influenced by polymer packing and structural factors88.

Further, we highlight a discrepancy arising from the ML-based over-
estimation of ideal diffusivity selectivity and perm-selectivity for the
toluene-heptane system. Experimentally, the pervaporation perm-
selectivity for a 50/50 multi-component mixture of toluene-heptane at
56 °C is approximately 10.1, significantly lower than the ML-predicted
values (Please refer to the Supplementary Information, section 8 for detailed
derivations of the formulas and explanations)55. This discrepancy under-
scores a fundamental limitation of ML predictions that rely on single-
component transport behavior, and they fail to account for solvent-solvent
interactions present inmulti-component systems. Previously, we noted that
single-component transport behavior is insufficient for describing multi-
component systems15, likely leading to this discrepancy. Furthermore, to
assess the validity of the ML predictions, we compared PVC predictions
using the published and validated PENN-1 model15 alongside our PENN-2
models, finding that the predictions closely align, with values for toluene at
10−8.33 cm2/s and 10−8.23 cm2/s, and for extremely low values for heptane at
10−14.01cm2/s and 10−14.68cm2/s. Thus after eliminating the possibility of
invalidMLpredictions as the cause of the observeddiscrepancy, we conduct
a more thorough investigation. Aouinti et al. similarly observed the extre-
mely sluggish transport of pure heptane in a modified PVC membrane in
their experimental studies, to the extent that flux values could not be
measured89. Additionally, they reported a significant swelling degree of 49%
for PVC in toluene. Based on this, we hypothesize that toluene, due to its
strong affinity for PVC, may alter the polymer’s structure by inducing
swelling and plasticization, thus creating a more conducive pathway for
heptane diffusion. This hypothesis is supported by prior studies; for
example, Mathias et al. attributed the loss in diffusivity selectivity to
membraneplasticizationand introduced the concept of “cohort diffusion”90.
Here, friction-induced diffusion coupling effects cause faster molecules to
slow down and slower molecules to speed up, leading to a reduction in
diffusion selectivity. Additionally, Lee et al. observed a loss in diffusivity
selectivity when the solubility difference between the polymer and solvents
drops below a critical threshold (e.g., δ = 8MPa1/2), also attributed to
polymer plasticization and swelling91. These works provide plausible
explanations for why the observed selectivities are often much lower than
ideal selectivities92. In summary, the discrepancy in theMLover-predictions
of diffusivity selectivities can be attributed to the absence of solvent-solvent
interactions and the effects of polymer swelling. Taking these over-
predictions for ideal selectivity into account, we caution against drawing
quantitative conclusions from ML predictions for multi-component sys-
tems; instead, these models should be used for qualitative insights, such as
identifying PVC and other halogenated polymers as strong candidates for
this separation.

In addition, we analyzed outlier ML predictions and corresponding
prediction uncertainties; incorporating such uncertainty analysis enhances
the credibility of ML predictions. By evaluating the standard deviation of
predictions across 10 cross-validation (CV) models, we observed higher
uncertainty in regions with low permeability and ideal perm-selectivity
(Supplementary Fig. 8), indicating that these predictions should be inter-
preted with caution. Conversely, regions with high permeability and
selectivity, which are the primary areas of interest for membrane design,

exhibited much lower uncertainties, thus providing greater confidence for
exploring new chemical spaces in this regime. In the future, exploring new
polymer chemistries and validating the separation performance of these
newly discovered polymers through multi-component transport simula-
tions will lay the foundation for developing high-performance, sustainable
polymers for solvent separation.

Discussion
In conclusion, we proposed a methodology to guide the discovery of sus-
tainable polymer membranes for a given organic binary solvent separation.
Focusing on solvent diffusivity as a key parameter to understand solvent
transport, we fused experimental and in-house generated simulated data to
build robust multi-task and physics-enforced machine learning models.
These models demonstrated enhanced prediction generalizability and accu-
racy indata-scarce regimesas compared to traditional single-taskMLmodels.
Next, we leverage these models to address the issue of identifying optimal
membranes for a given binary solvent separation problem. For a case study of
toluene-heptane separation,ML results indicate PVC as the optimal polymer
for this separation, a finding consistent with the literature, thus affirming the
validity of this methodology. We further proposed halogen-free alternatives
toPVCbyscreeningacross amuch larger chemical spaceof8millionvirtually
produced candidates. This data-driven approach is scalable to other solvent
systems and is thus expected to advance solvent separation technologies
significantly. We acknowledge inherent assumptions and limitations,
including the lack of consideration of solvent-solvent interactions and the
need for further investigation into long-termmembrane performance factors
such as swelling, plasticization, and aging. Notably, despite these approx-
imations, the ML-predicted trade-off plots represent a novel contribution,
being the most significant of their kind to date, and will function as robust
benchmarks that guide and expedite the discovery of membranes for solvent
separations. We foresee that expanding the search space using virtual design
algorithms, particularly those focused on promising candidates such as
polymers with high intrinsic microporosity, will uncover new sustainable,
high-performance membranes that are awaiting discovery.

Methods
Polymer and solvent fingerprinting
To numerically represent polymers and solvents, we used the hierarchical
fingerprinting procedure that was developed in the past decade and referred
to as the Polymer Genome fingerprinting27,77. The polymer and solvent
SMILES were converted into numerical vectors to represent the chemical
structure of the polymers and solvents. This fingerprinting scheme derives
features from various hierarchical levels, including atomic-level, block-level,
and morphological descriptors. Atomic-level fingerprints consider atomic
triples (fragments of three contiguous atoms), while block-levelfingerprints
examine larger-scale blocks, such as benzene rings. Additionally, morpho-
logical descriptors encompass features like the shortest topological distance
between rings, the fraction of atoms in side chains, and the length of the
largest side chain. They also include quantitative structure-property rela-
tionship (QSPR) descriptors such as Van der Waals volume, surface area,
and topological polar surface area (TPSA).

Sorption Uptake ML model
Sorption uptake refers to the amount of solvent absorbed permass (or per
volume) of the polymermatrix. However, experimental measurements of
solvent sorption uptake, often performed using setups similar to those for
diffusivity measurements, are notably time-intensive. To address this, we
previously developed an ML model that accurately predicts the sorption
uptake (or the specific uptake) of solvents in polymers15. We trained the
“Sorption Uptake ML model” on a comprehensive dataset of experi-
mental sorption values (expressed asmmol of solvent present per gram of
polymer), covering 2275 systems of 46 polymers and 91 solvents. The
neural networkmodel comprises of an input layer, two hidden layers, and
an output layer. This model utilized Polymer Genome-based27,77

finger-
prints to describe polymers and solvents (described in detail in Section
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Polymer and solvent fingerprinting) alongwith solventmolar volumes, to
predict specific uptake across a range of activities, as illustrated in Fig. 7,
achieving a satisfactory predictive accuracy with a order of magnitude
error or mean absolute error (MAE) in log scale of 0.13 mmol/g and an
average R2 of 0.93 across 10 runs on a 10% test split. Together with our
diffusivity model, this sorption model provides a full description of sol-
vent permeability through polymers. Previously, we used these models to
predict complex mixture permeation by incorporating sorption and
diffusivity data into aMaxwell-Stefanmass transportmodel. In thiswork,
we leveraged the model in two ways: first, to expand the dataset, as dis-
cussed in Section Data augmentation, and second, to predict solubility
coefficient values, as outlined in Section Solvent diffusivity ML models.
More details about the model architecture are accessible in the Supple-
mentary Section of our previous publication15.

Solvent diffusivity ML models

• Gaussian Process Regression (GPR): Gaussian process regression
uses a Bayesian framework, wherein a Gaussian process is used tomap
inputs to the desired output property, diffusivity. GPR is widely used
for smaller datasets, valued for its ability to deliver accurate predictions
while quantifying uncertainty effectively. GPRmodels were built using
Radial Basis Function (RBF) kernels and 5-fold cross-validation using
scikit-learn libraries93.

• Neural Networks (NN): A fully connected neural network model was
developed to predict the target property, consisting of an input layer,
two hidden layers, and an output layer to predict the target property.
The features polymer-solvent fingerprints, solvent concentration,
temperature, anda selector vector for thedata source aremapped to the
target property. Each hidden layer consisted of a set of neurons that
apply learned weights to the inputs, followed by a non-linear sigmoid
activation function. This architecture, established in our previous
work15 and visualized in Supplementary Fig. 4a, was trained using
backpropagation to minimize prediction errors. Given the small
dataset size, 10models were trained using 10-fold cross-validation, and
an ensemble of these models was used for the final average prediction
and to obtain the standard deviation of predicted values. Additionally,
the dropout technique was implemented to prevent overfitting. All
models were implemented using TensorFlow94.

• Physics enforced Neural Networks (PENN): The PENN model
architecture is the same as that of neural networks, as described above,
with an additional output layer to enforce physics (Supplementary Fig.
4b and 4c). For the PENN-1 model, polymer-solvent fingerprints,
solvent concentration, temperature, and a selector vector for the data
source are used as inputs. The molar volume of the solvent (V̂) is
incorporated into the output layer, where parameters A and B are
determined through equation fitting to map the input features to the
output. The empirical relationship was encoded using the equation:

log10D ¼ A � log10V̂ þ B ð4Þ

where V̂ (m3/mol) represents the solventmolar volume, andA and B
were the learned parameters.

In the PENN-2 model, the Arrhenius equation78,79 is embedded within
theneuralnetwork topredict solventdiffusivity.ThePENN-2model follows a
similar architecture,withpolymer-solventfingerprints, solvent concentration,
and a selector vector for the data source as inputs. However, temperature is
included in the output layer. The encoded temperature dependence is:

D ¼ D0 � exp � E
RT

� �
ð5Þ

whereD0 (cm
2/s) represents the pre-exponential constant,E (J/mol) denotes

the activation energy, R (8.314 J/mol-K) is the universal gas constant, and T
(K) is the temperature. PENN models were developed using TensorFlow
packages94.

Construction of ML based solvent-trade-off plots
According to the simplified solution-diffusion theory (Equation (1)), which
is accurate in the limit of dilute vapor streams, we calculated single-
component permeability as the product of ML-predicted diffusivity and
solubility coefficients95. Solubility coefficient (S) was determined by nor-
malizing the ML-predicted specific uptake solvent concentration (C)95 by
the solvent vapor pressure (psat), as follows:

S ¼ C
p sat

ð6Þ

Here, we utilize a simple approximation for the solubility coefficient,
which imagines the concentration profile in the membrane as linear, with
the feed-side driving force as the saturated vapor pressure psat, and the
permeate side driving force as being essentially zero pressure (perfect
vacuum). This situation roughly approximates an idealized pervaporation
membrane separation.

The vapor pressure values for the solvents are obtained fromPubChem
database96,97. Additionally, polymer densities were determined using a
separate ML model27, allowing for the calculation of solubility in terms of
volume. Moreover, the sorption uptake values served as concentration
inputs for the updated production diffusivity model, and the final perme-
ability was derived from the product of ML-predicted diffusivity and
solubility coefficients. Similarly, predicted ideal permselectivity was calcu-
lated using Equation (2). It is important to note that this approach did not
account for solvent-solvent interactions in a multi-component system, as
ourML predictions weremade for pure solvent systems. Therefore, caution
must be exercised in cases of non-ideal solvent behavior. However, this
approximation enabled the efficient screening of 13k known and 8Mvirtual
polymers, enabling the construction of the largest solvent trade-off plots and
providing a rapid framework for membrane design.

Membrane design search space
To find a suitable membrane for a given solvent separation, we explored the
known chemical space consisting of 13,000 polymers. To expand the search
for high-performance and sustainable membrane alternatives, we examined
twovirtual polymerdatabases. Thefirst, developedbyLuo et al.57, is the open-
source PI1M database, containing 1 million virtually generated polymers.
These polymerswereproducedusing a generativeRecurrentNeuralNetwork
(RNN) ML model trained on the SMILES strings of existing polymers from
the PolyInfo87 database. This approach was designed to cover a chemical
space similar to PolyInfo87 while significantly enhancing data density in
underrepresented regions. The second database comprises 7million virtually
generated polymers with strong potential for chemical depolymerization via
ring-opening polymerization (ROP), created by Kern et al.58. This affinity for
chemical recycling in ROP-based candidates stems from the favorable ther-
modynamics associated with these processes. This effort examined possible
hypothetical polymer candidates that could be generated using existing

Polymer and solvent, 
solvent activity

Specific uptake
concentration

Sorption Uptake
ML model
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Solvent 
diffusivity

Diffusivity
ML model

b)
Polymer and solvent,

specific uptake
concentration, temperature

Fig. 7 | Sorption Uptake ML model. a This model enables prediction of specific
uptake concentration as a function of solvent activity15. b The diffusivity ML model
built in this work. Together, these two models are used to estimate solvent perme-
ability through a polymer.
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molecules, a concept referred to as Virtual Forward Synthesis (VFS). VFS
utilizes 30,272,000 known commercial molecules and applies standard
polymerization reactionprocedures to generatehypothetical polymers.These
candidates are then screened to identify sustainable options that meet ML-
predicted criteria for high permeability and ideal permselectivity.

Data Availability
The compiled experimental and our generated simulated data is publicly
available on GitHub.

Code availability
The Polymer Structure Predictor (PSP) package to create simulation poly-
mer structures is available free of charge on GitHub. The simulation scripts
have also been made available on Github.
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