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An informatics framework for the design
of sustainable, chemically recyclable,
synthetically accessible, and durable
polymers
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We present a novel approach to designing durable and chemically recyclable ring-opening
polymerization (ROP) class polymers. This approach employs digital reactions using virtual forward
synthesis (VFS) to generate over 7 million ROP polymers and machine learning techniques to rapidly
predict thermal, thermodynamic, andmechanical properties crucial for performance and recyclability.
This methodology enables the generation and evaluation of millions of hypothetical ROP polymers
from known and commercially available molecules, guiding the selection of approximately 35,000
candidateswith optimal features for sustainability andutility. Threeof these recommendedcandidates
have passed validation tests in the physical lab— two of the three by others, as published previously
elsewhere, and one of them is a new thiocane polymer synthesized, tested, and reported here. This
paper highlights the potential of VFS and machine learning to enable a large-scale search of the
polymer universe and advance the development of recyclable and environmentally benign polymers.

Plastics, central to everyday life and pivotal in diverse applications ranging
from food packaging to electronic components, cause a concerning amount
of environmental pollution. Studies reveal pervasive microplastic con-
tamination globally that negatively impacts humans, plants, and animals1–5.
The quest for sustainable alternatives that balance the beneficial attributes of
plastics (such as cost-effectiveness, durability, and performance) with
environmental considerations (such as recyclability and reduced ecological
footprint) is a significant focus in contemporary materials development.

Creation of new plastics amenable to chemical recycling, i.e., trans-
forming them back tomonomers at the end of their life, will be enormously
beneficial. Traditional mechanical recycling methods suffer from degrada-
tion limits6, whereas chemical recycling promises near-infinite recyclability.
However, polymers that can undergo chemical recyclingmust still meet the
demands of their application needs. A new take-out container that is
recyclable sounds attractive, but consumers will not use it if it breaks after
holding just a single item or if it is too expensive.

As depicted in Fig. 1a, polymer design can be complex. Various classes
of propertiesmust be considered as they profoundly influence the polymer’s
performance within consumer and industrial environments. These
encompass thermal properties, such as the glass transition temperature (Tg)
andmelting temperature (Tm),whichnotonlydictate stability at operational

temperatures but also affect processing conditions. Additionally, mechan-
ical properties like Young’s modulus (E), tensile strength at break (σb), and
elongation at break (ϵb) play crucial roles in determining the polymer’s
stiffness, strength, and stretchability. Certain applications, such as take-out
containers for food, demand thermal insulation properties to prevent heat
transfer or minimize the risk of burn injuries upon contact, while others,
such as plastic food wrap, necessitate specific gas permeabilities. Adding
thermodynamicproperties such as the enthalpyofpolymerization (ΔH) and
ceiling temperature (Tc), essential to assess chemical recyclability, compli-
cates the design process further.

In thiswork, our focus is on the design of suitable chemically recyclable
polymers for a specific application, namely, a replacement material for
polystyrene (PS) used in containers. This focus is significant considering
PS’s notable presence in plastic production, its recyclability challenges, and
its associated environmental and health concerns. PS constituted 6.8% of
plastic production in Europe in 20197, while the U.S. alone saw the creation
of 220 thousand tons of PS containers, bags, sacks, andwraps in 20188. Such
substantial volumes are required for recyclable alternatives, as economies of
scale often dictate affordability9. While PS is technically recyclable, it is not
commonly recycled due to prohibitive costs10,11. Styrene, themonomer used
in its production, is also classified as “reasonably anticipated to be a human
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carcinogen”by theDepartmentofHealth andHumanServices (DHHS)and
the National Toxicology Program (NTP)12. PSmicroplastics have also been
identified as potential immune system stimulants and toxic to freshwater
organisms13,14.

Although compostable or recyclable alternatives to PS, such as poly(-
lactic acid) (PLA) and poly(butyl succinate) (PBS), are available, they often
exhibit limitations that render them unsuitable for specific applications.
Notably, PLA’s glassTg of 331 K andPBS’s even lowerTg range (230–263 K)
make them ill-suited for moderate heat exposure, highlighting the need for
more robust recyclable alternatives15,16.

In Fig. 1b, a radar chart illustrating the properties of PS (depicted as
blue dots) alongside the specific property targets set for our design (repre-
sented by orange lines) is presented. These targets, explicitly outlined in the
first box of the informatics workflow of Fig. 1c, were carefully selected
through a comprehensive analysis of PS properties, coupled with con-
siderations of the typical operating conditions of a container.

Concerning thermal properties, our design prioritizes a Tg value sur-
passing the boiling point of water (373 K), ensuring the container’s integrity
under operational conditions typical of PS containers. Additionally, main-
taining the polymer in a glassy state below this temperature is essential for
structural rigidity. A decomposition temperature (Td) set 100 K above the
boiling point of water is chosen to prevent decomposition during thermally
induced chemical recycling.

Addressing mechanical considerations, we establish a σb exceeding
39MPa to ensure the container’s resistance to breakage when subjected to
typical loads. Similarly, a minimum E exceeding 2 GPa is stipulated to
mitigate excessive bendingwhen loadedwith contents, aligning closely with
the properties exhibited by PS17.

In assessing thermodynamic attributes, a heat capacity (Cp) akin to
that of PS is desired, emphasizing the necessity for thermal insulation to
prevent burns from hot contents. While considerations such as thermal
conductivity are desirable, rapid and accurate models to predict this

Fig. 1 | Informatics-driven polymer design approach. a Classification of key
polymer properties, including specific properties within each class, and their rele-
vance. b Radar chart illustrating the design targets for a polystyrene container,
highlighting polystyrene properties in blue and target values in orange17,72,73.

c Overview of the material informatics workflow, starting with the definition of
screening criteria, followed by the development of ML models, defining of the
polymer search space being explored, and ending with the screening and recom-
mendation of suitable candidates for further experimental validation and testing.
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property for polymers are not available. Unlike other properties where
exceeding a threshold is sought, the ΔH is constrained within a narrow
range of −10 to −20 kJ/mol. It’s noteworthy that the true quantity of
interest that determines the polymerization/depolymerization equili-
brium is the Tc, which is defined as the ratio of ΔH to the entropy of
polymerization (ΔS) when the monomer concentration is one. However,
predicting ΔS or Tc remains challenging due to the limited availability of
large datasets, their strong dependence on environmental factors (such as
solvents, initial monomer concentration and other experimental vari-
ables) and the lack of established computational methods, such as density
functional theory (DFT) or molecular dynamics (MD), to accurately
predict these properties over a range of realistic conditions adopted in the
physical lab. Consequently, we focus on ΔH, leveraging its proportional
relationship to Tc to infer that excessively negative ΔH values may hinder
depolymerization, while negative values close to zero may impede
polymerization.

We limited our analysis to these six properties due to the complexity
of designing a new material that meets multiple property requirements.
Incorporating additional properties like transparency and solubility,
which are crucial for polymer processing and certain applications, would
further restrict the search space, potentially resulting in no suitable or
synthesizable options. Ultimately, we believe that virtual or informatics-
based approaches are primarily intended to alert us to hidden opportu-
nities and point us in the right direction to accelerate design progress.
This consideration guided our decision to focus on a manageable set of
key properties.

For each of these properties, we developed rapid and accuratemachine
learning (ML)models topredict them fromapolymer’smolecular structure,
as displayed in the informatics workflow’s second box in Fig. 1c18,19. These
models offer a significant advantage over physics-based simulation tech-
niques such as DFT and classical MD due to their remarkable speed,
enabling them to evaluate the millions of polymers in our search space
efficiently.

Notably, the modeling of polymer recyclability remains an emerging
field. As such, our exploration, illustrated by the sample UniformManifold
Approximation and Projection in the third box of Fig. 1c, concentrated on
the search space of ROP polymers. We chose to narrow our focus to ROP
polymers because of their demonstrated potential to meet the necessary
thermodynamic criteria for facilitating chemical recycling tomonomers20,21.
Moreover, ROP polymers have garnered significant attention in the phar-
maceutical industry owing to their customizable properties, biocompat-
ibility, and biodegradability22–24. Our ΔHmodel is specifically trained on a
dataset tailored to ROP, thereby improving its accuracy in predicting out-
comes related to ROP polymers19,25.

Subsequently, after a thorough exploration of the molecular space to
find candidates that could undergo ROP, we screened over seven million
hypothetical polymer designs (encompassing 9 polymer classes) to
identify promising candidates that met our stringent screening criteria.
The screened candidates are then recommended for further in-depth lab-
based studies, as depicted in the final box of Fig. 1d. Given the vastness of
this search space, traditional Edisonian trial-and-error methods would
prove impractical. While experienced chemists are capable of dramati-
cally narrowing this search space through literature reviews and chem-
istry first principles, an informatics-based approach offers several
additional benefits, including accelerated discovery, reduced reliance on
expert knowledge, and the ability to systematically explore complex
chemical spaces. Consequently, there is a pressing need for computa-
tional techniques capable of swiftly predicting polymer properties and
identifying promising candidates, as has been done here. In the sub-
sequent sections, we delineate our polymer design process and spotlight
designs deemedmost promising for environmentally friendly alternatives
to PS. We also highlight three experimentally validated designs, two of
which have been previously published by others, and a third, a novel
thiocane polymer, which we have synthesized, tested, and report on here
for the first time.

Results
Virtual forward synthesis (VFS) reactions
As stated previously, in the pursuit of our design goals, we narrowed our
focus to ROP polymers, because of their potential to meet the requisite
thermodynamic criteria for facilitating chemical recycling tomonomers20,21.
The polymer should undergo depolymerization into itsmonomer ring form
above its Tc, while remaining stable in polymer form below it.

To initiate the search for viable polymer candidates, we employ a VFS
approach. This method involves the systematic generation of hypothetical
polymers from a database of initial monomers, following established reac-
tion pathways. Although the technique dates to the early 2000s26, recent
advancements in this area, exemplified by initiatives such as the Open
MacromolecularGenome, SMiPoly, and polyVERSE27–29, have underscored
the potential of this methodology when integrated with ML. Unlike these
predecessors, our approach places a significant emphasis on database
design, as detailed in the “Database and molecule data” section, and sup-
ports the integration of multi-step reaction pathways.

Figure 2 depicts a high-level flowchart of the VFS procedure. Our
technique interfaces heavily with a database, as can be indicated by the
database icons within the figure, indicating when data is stored. Our
workflow begins with a computational chemist creating a virtual reaction
using reaction smarts from known reaction pathways.

Within our database, a structured query language (SQL) table houses
the simplified molecular-input line-entry system (SMILES) of both known
and hypotheticalmolecules. Knownmoleculeswere gathered frommultiple
sources, including ZINC15, ChemBL, compounds sourced from literature,
eMolecules, and VWR30–33. During each VFS reaction procedure, we search
this repository for known molecules possessing the required substructures
via SMILES arbitrary target specification (SMARTS) substructure queries34.
Subsequently, to ensure synthetically tractable molecules, we apply a
stringent filter, excluding thosewith a synthetic accessibility score (SAscore)
above 7, which is substantially higher than the average score of approxi-
mately 3 commonly observed for synthetic molecules.

We selected the SAscore as an initial screening metric due to its well-
established validation on a large corpus of synthesized molecules, high
computational efficiency, and seamless integrationwithRDKit. This score is
calculated by incorporating penalties for atom count, chiral center count,
and ring complexity (including spiro andbridge atoms).Notably, theRDKit
implementation also accounts for molecular symmetry, rewarding highly
symmetrical structures with lower scores, which are indicative of enhanced
synthesizability. Although our focus on ringed monomers was expected to
yield higher scores on average, due to the inherent penalties associated with
ringed motifs, we deemed this metric suitable for preliminary filtration due
to its efficiency advantages over more computationally expensive finger-
printing techniques, which can be prohibitively slow for complexmolecules
(https://www.rdkit.org/)35,36.

Following this filtration process, we subject the retained molecules to
the reaction procedure to generate virtual polymers (denoted by the poly-
merize process in the flowchart). Additionally, for multi-step reactions, we
generate virtualmonomers, essential forΔHpredictions. Subsequently, both
monomers and polymers are converted to SMILES format and subjected to
canonicalization, ensuring that molecules with the same structure output
the same string37. For example, polyethylene can be encoded as “[*]CC[*]”
and “[*]C[*]” and canonicalization will ensure these are both recorded as
“[*]C[*]”. This canonicalization step is crucial for database querying effi-
ciency, as it enables us to perform string comparisons on the canoni-
cal_smiles column in O(log(n)) search complexity due to B-Tree indexing.
This allows us to assess if the polymer is “known” already or “hypothetical”.
WhileRDKit’sCanonSmiles function is used formonomer canonicalization
(https://www.rdkit.org/), the canonicalize_psmiles package18,38 serves this
purpose for polymers.

We query the molecules table for the monomer’s molecule ID (mid in
the flowchart) and the polymers table for the polymer ID (pid in the
flowchart). If a monomer or polymer already exists within our database, we
extract its ID.Otherwise, wewill add it to the database with a unique ID and
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flag it as a “hypothetical” structure. If the monomer or polymer already
exists within the database, it will have been flagged as “known” if it origi-
nated from literature reviews, database dumps, or previous experimental
characterization, or “hypothetical” if it was generated through our VFS
technique and not corroborated by existing literature or experimental data.
Upon identification or generation of IDs, amapping table is used to store the
pertinent associations amongmolecule ID, reactionprocedure ID (rid in the
flowchart), and polymer ID. This facilitates the swift retrieval of reactants
necessary for promising polymer synthesis, alongside the proposed reaction
pathway. The identification of promising polymers entails fingerprinting
the polymers (andmonomers for enthalpy predictions) and then leveraging
ML techniques to predict their properties and subsequently evaluating them
against predefined screening criteria, as identified inFig. 1c.The efficiencyof
virtual polymerization, canonicalization-enhanced databasing, andML has
shifted the bottleneck to fingerprinting, which requires approximately 1000
compute seconds to process 10,000 polymers. We estimate this step is at
least an order of magnitude slower than the combined time of the other
processes18.

In Table 1, a simplified version of the ROP reaction is displayed,
along with the class of monomer ring being opened, the number of
polymers generated from each class, and how many successfully met all
target criteria. Our investigation encompasses ring-opening reactions of
ethers, thioethers, esters, thioesters, thionoesters, amides, cycloalkenes,
carbonates, and thiocanes. For cycloalkenes, we assume the poly-
merization and depolymerization process would occur through a ring-
opening metathesis reaction39. For thioethers, thioesters, and thionoe-
sters, in addition to exploring commercially available options, we also
explored hypothetical monomer designs by swapping the appropriate
oxygen in an ether or ester with a sulfur. This approach resulted in a

substantially larger explored chemical space than would be expected
from a sole search of these structures in the database.

Similarly, for thiocanes, because so few commercially available mole-
cules with the thiocane structure existed, we developed a two-step reaction
procedure guided by the expertise of our polymer chemists. This two-step
procedure had two variants, R1 and R2, as outlined in Table 1. The variants
differ in their functionalization step: R1 involves modifying the vinyl sul-
fide’s vinyl component with a terminal alkyne-containing molecule,
whereas R2 involves functionalizing the ring’s ketone component with a
bromine-containing molecule. Notably, both the alkyne and bromine
groups are eliminated during this initial reaction step, leaving behind the
R-groupattached to the thiocane. The resulting thiocane canbe either theR1

or R2 variant, but not both. Both variants undergo ring-opening in the
second step, yielding a novel polythiocane.

All 30,272,000 molecules in our database were screened using
SMARTS to assess if they contained specific substructures relevant to our
reaction procedures, as outlined in Table 1. For example, 2,321,545 mole-
cules contained the ether ring structure (SMARTS of “[C; R; !$(C =O)][O;
R][C; R; !$(C =O)]”). These molecules are eligible for use in both our ether-
to-polyether ring-opening reaction procedure and the ether-to-thioether-
to-polythioether ring-opening reaction procedure. From the 30,272,000
molecules, we generated a total of 7,301,681 polymers using nine distinct
classes of reaction procedures. The full list of necessary substructures
searched using SMARTS can be found in the “reaction_procedures.json”
located on the GitHub page linked in the “Fitness assessment” section. This
file contains detailed single and multi-step reaction procedures, which
constitute the structures searched for within each molecule using SMARTS
nomenclature, the step at which themonomer is generated (if distinct from
the initial molecule), and the reaction SMARTS employed at each step. For

Fig. 2 | VFS workflow for polymer design. Flow-
chart of the VFS design workflow. Arrows indicate
the direction of data flow. Cylindrical elements
represent database tables accessed during the pro-
cess. A total of 30,272,000 molecules were analyzed,
yielding 35,321 polymer designs.
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additional details on the database schema and VFS, refer to the Supple-
mentary Section “VFS and theDatabase Schema”. For a detailed example of
creating reaction procedures and multi-step reactions, see the example
presented in Supplementary Fig. S14 and the corresponding lines 251–299
of “reaction_procedures.json”, as well as the “Reaction procedures” section.

Predictive models
Polymers generated in this study had their properties predicted using two
subsets of previously developed and published models18,19, as described in
the “Predictive models for polymer properties: Gaussian process regression
andmultitaskneural network” section: aGaussianprocess regression (GPR)
model to predictΔH based on the polymer andmonomer19, and amultitask

neural network (MTNN) trainedonhomoand copolymer data topredict all
other properties18. Parity plots illustrating theMTNNmodels’ performance
on test data of known polymers (red dots) and our dataset of known ROP
polymers (black stars) are depicted in Fig. 3. The count and root mean
squared error (RMSE) shown represents firstly the test dataset size and
model performance on the test data, then on the knownROPpolymers. For
ΔH, the black stars and labeled RMSE and count indicate the performance
on test ROP data and the size of the test dataset, while the colored circles
represent the training data.

With the exception of ΔH, the models generally perform worse for
known ROP polymers than their known test dataset chemistries. This
outcome is unsurprising given the limited variety of ROP chemistries in the

Table 1 | ROP VFS results

With the exception of thiocanes, the inclusion of ‘R’ in the reaction signifies that the ring can be of any size, and the ‘R’ ring atoms can be any element with any substituents attached. For thiocanes, ‘R1’ and
‘R2’ involve distinct modifications to themolecule, with ‘R1’ adding a terminal alkyne-containingmolecule to the vinyl component and ‘R2’ functionalizing the ketone component with a bromine-containing
molecule, resulting in either the ‘R1’ or ‘R2’ thiocane variant after the elimination of the alkyne and bromine groups.
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original training data. Of the 138 unique ROP polymers with thermal
property data available, only eight were seen in the training data, and of the
twenty with mechanical property data available, none were in the training
data. However, predictions for thermal properties tend to align closely with
the parity line, indicating acceptable performance. In contrast, for
mechanical properties, the models tend to over-predict performance. In
addition to the lack of ROP data, this discrepancy could be attributed to the
training process, as the models only consider molecular structure, while
factors such as molecular weight, which contribute significantly to
mechanical properties, are not considered. It is possible that while the ROP
molecular structure enhances strength, the molecular weight remains
insufficient40. Unfortunately, due to the scarcity of reliable datasets that
include molecular structure, mechanical property values, and molecular
weight, we were unable to train a machine learning model that effectively
utilizesmolecular weight information. The predictedmechanical properties
should thus be viewed as a stochastic average over morphological and
molecular weight variations, and should be used as a guide that points us in
the right direction.

This observation is supported by two outlier polymers in the σb plot.
These outliers exhibit predicted values of 58 and 77MPa, whereas their actual
values are 3.4 and 3.1MPa, respectively. Notably, the molecular weights
associated with these polymers are very low at 18 and 10.8 kDa, compared to
other ROP polymers in the dataset, which range from 109–126 kDa
(44MPa), 198 kDa (39MPa), to 266–438 kDa (46.4MPa)21,41,42.

Similarly, in the case of E, one outlier exhibits a predicted value of
2.07 GPa, while its true value is 0.17 GPa, with a low molecular weight of
18 kDa21. However, this theory fails to account for some other inaccuracies
of the model, as evidenced by two other polymers with predicted values of
2.44 and 2.08 GPa. Their true values were considerably lower at 0.45 and
0.64 GPa, despite higher molecular weights of 85.6 kDa and 69.3 kDa.42,43.
These instances suggest that themodel has not encountered enough similar
chemistry.

Figure 4 shows the histograms representing the distribution of the
predicted polymer properties for the entire pool of over seven million
hypothetical ROP polymers generated here (green), as well as for the
measured properties of presently known ROP polymers (black). Note
that the y-axis is on a log scale. Based on Fig. 4, it can be concluded that
existing ROP polymers generally have low mechanical and thermal
properties. In contrast, our models predict that many hypothetical ROP
polymers could potentially surpass these limitations, achieving higher
performance values.

Promising polymers
To determine which hypothetical polymers are most promising, we
employed a three-step fitness function defined mathematically in the “Fit-
ness assessment” section. This assessment multiplies scaled property pre-
dictions, each normalized between zero and one, to compute a polymer’s
fitness score. The scaling ensures that properties with different units and
scales, such as Tg and Cp, are treated equally, preventing any one property
from dominating the fitness score due to its magnitude. We chose a mul-
tiplicative approach to emphasize the importance of meeting all target
properties, as a single property falling short can significantly impact the
overall performance of the polymer. Polymers achieving a perfect fitness
score of one met all predefined property requirements. The fitness dis-
tribution among the polymers and their classes is illustrated in the stacked
bar plot in Fig. 5a.

The multiplicative approach employed in our fitness assessment
heavily penalizes polymers that significantly fall short of achieving a single
property or moderately miss multiple targets. This enables us to prioritize
polymers that most closely match all target properties, even when not all
properties are perfectly met. The effect of this approach is reflected in the
right-skewed distribution of polymer classes in the left plot of Fig. 5a,
characterized by a sharp decline at 0, a gradual decrease between 0.2 and 0.4,
and a more pronounced drop-off thereafter. Furthermore, due to the

Fig. 3 | Parity plot for property predictions. Parity plot illustrating model per-
formance across different properties. The first set of values in the top left showcase
counts and RMSE on the model test data of known polymers, which are represented
by red circles. The second set delineates the dataset size and model performance

specifically on known ROP polymers, denoted by black stars. For the enthalpy of
polymerization, dots depict training data, while black stars indicate test data, as the
model was exclusively trained on ROP polymers.
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capping of values above the target at 1, a clustering of polymers at the
maximum fitness value of 1 is observed.

Toaccount formodeling errors,we establishedafitness score threshold
of 0.8 to identify promising polymer candidates.Despite generatingmillions
of polymers, only 817 achieved all property targets, while 35,321met the 0.8

cutoff, underscoring the intricate challenge of designing polymers with
multiple desired properties. The successful polymers were predominantly
thioethers, ethers, and amides, with smaller subsets of cycloalkenes, thio-
noesters, thioesters, esters, and a negligible number of thiocanes and car-
bonates, as can be seen in the right plot of Fig. 5a. However, amides, esters,

Fig. 4 | Histograms of predicted andmeasured ROP polymer properties.Histograms illustrating predicted property distributions for hypothetical ROP polymers (green)
and measured property distributions for known ROP polymers (black).

Fig. 5 | Polymer fitness and fingerprint embed-
ding. a Histogram illustrating the distribution of
fitness values among hypothetical polymers (left)
and a count plot for polymers achieving fitness score
>0.8 for each monomer class (right). b Uniform
manifold approximation and projection (UMAP)
visualization of high-dimensional polymer finger-
prints condensed into two dimensions, with class
colors matching (a) and (b) to indicate target-
achieving polymers. The stars correspond to the
bottom three polymers shown in Table 2.
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thionoesters and carbonates exhibited a higher frequency of meeting the
target criteria, relative to their representation in the population, as shown in
Table 1.

We visualized the high-dimensional polymer fingerprint, as
described in the “ Fingerprinting techniques for polymers and mole-
cules” section, using a UMAP (see the “Uniform manifold approxima-
tion and projection (UMAP)” section for an overview of the method)44.
Employing a cosine similarity metric, we configured the UMAP with
200 nearest neighbors and a minimum distance setting of 0.25, opti-
mizing for a balance between local and global manifold structures and
ensuring adequate spacing of data points45. The result is shown in Fig.
5b. Known ROP polymers are denoted by green circles, while known
ROP polymers achieving the desired fitness score, discussed in the
“Synthetic validation & design guidelines” section, are marked with
colored stars. Hypothetical ROP polymers achieving the fitness score are
represented by colored plus symbols, contrasting with the gray x’s
representing other hypothetical ROP polymers. The color scheme for
stars and plus symbols in (b) corresponds to the class colors in (a),
facilitating intuitive comparison.

The UMAP visualization unveils discernible clusters, particularly
noticeable on the upper right side, where hypothetical polymers exhibit
substantial deviations from current ROP chemistries, hinting at uncharted
realms with untapped potential. However, given that these chemistries are
novel to the model, the extrapolation may not be accurate. Therefore, we
recommend validating these predictions using more rigorous computa-
tionalmodels, such asDFT, before pursuing experimental synthesis. On the
other hand, there are some promising polymers situated near established
ROP domains, particularly in the left portion of the map. This proximity
suggests the existence of novel candidate polymers that may be able to
effectively leverage known ROP reaction catalysts, solvents, and
temperatures.

To comprehensively examine the distinct properties of the polymer
classes,we devised radar plots for eachcategory, as depicted inFig. 6.Within
each plot, the shaded region delineates theminimum tomaximum range of
predicted properties for the polymer class and the solid lines represent the
properties for ten randomly chosenpolymers achieving thefitness threshold
within the class. Additionally, the predicted properties for known ROP
polymer within a class are colored gold.

Fig. 6 | Property ranges for polymer classes and values for achieving candidates.
Radar plots showcasing ranges for Cp (J (g*K)

−1), ΔH (kJ/mol), Tg (K), Td (K), σb
(MPa), and E (GPa) of different polymer classes. Each shaded area delineates the
minimum to maximum range of predicted properties within the respective polymer
class, while the orange line denotes the targeted design region. Additionally,

individual lines trace ten randomly chosen polymers that successfully meet the
fitness objective (>0.8). The gold lines in the 'Amide`, 'Ester,̀ and 'Thiocane` charts
delineate the predicted properties for the known ROP polymers within these classes
that achieved the fitness objective.
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The plot reveals that themajority of polymers hover around or slightly
exceed the target thresholds for each property. Notably, some polymers
excel in specific properties like E or Tg, while barely meeting the other
targets. Conversely, a subset of polymers falls short of the target region for
certain properties, particularlyΔH. However, these deviations aremarginal,
and therefore, the fitness function imposes only minimal penalties.

Table 2 showcases a selected group of hypothetical polymers that
achieved all targeted properties, along with their predicted properties. The
corresponding reactant monomers and polymer repeat units are illustrated
in Fig. 7. A common structural motif among all promising polymers is the
presence of cyclic elements within their backbones or substituents, which is
known to enhance polymer rigidity and consequently improve thermal
stability, stiffness, and strength46,47. In our dataset of known polymers, we see
a statistically significant upward shift in the histograms of Tg, E, and σb for
polymers with either aliphatic or aromatic rings. Moreover, there is a notable
further shift toward higher values when these rings are incorporated within
the backbone, as illustrated in Supplementary Fig. S1. For the hypothetical
polymers, those with the ring in the backbone also tended to have higher Tg.

Among the 35,321 selected polymers, only 416 lacked any ring struc-
tures entirely. Notably, 323 of these polymers featured alcohol, (thio)imide,
or amide moieties with no or short substituents attached to the polymer
backbone.We hypothesize that the observed enhanced performance of these
interesting cases may stem from the potential for hydrogen bonding within
these structures. Indeed, hydrogen bonding has been recognized to augment
mechanical properties by promoting inter-chain interactions that enhance
polymer rigidity48–52, so long as intrachain bonding that can increase chain
flexibility is avoided50. Moreover, substituents and side chains are known to
influence polymer properties significantly. Increasing their size typically leads
to greater free volume and reduced packing density, factors known to lower
both the Tg and mechanical strength53,54.

Mirroring the stiffening trend observed in ring-containing polymers,
we once again noted a rightward shift in the histograms depicting the

property distributions of known polymers containing nitrogen, as shown in
Supplementary Fig. S2.While the presence of amines and amides seemed to
have little impact on mechanical properties, thermal properties saw a small
effect. Furthermore, both categories of properties exhibited a statistically
significant rightward shift when featuring an imide structure. In general, we
observed that an increase in the number of hydrogen-bond acceptor atoms
in the chain corresponded to an increase in both properties, as seen in
Fig. S2c. Moreover, a distinct positive correlation between Tg and σb was
discerned in our experimental dataset, as illustrated in Fig. S3. This is likely
because both properties are influenced by chain stiffness.

The downside to functional groups that induce hydrogen bonding,
however, is their tendency to be inherently reactive. Chemical intuition
dictates caution against the inclusion of amines, hydroxyls, carboxylic acids,
and acidic methylene groups in the monomer structures. While these
groups have the potential to enhance thermal and mechanical properties
through hydrogen bonding, their high reactivity could lead to undesirable
side reactions during synthesis, ultimately diminishing the likelihood of
successful ring-opening polymerization. Filtering out molecules containing
these functional groups yields a list of 6477 promising polymer candidates.

Synthetic validation & design guidelines
Ourdesignprocess identified twopreviously knownpolymers (IDs 13&14)
as potential candidates to replace PS (these were not part of the training set
used to create our non-enthalpy property prediction ML models). Sig-
nificantly, both featured rings in their backbone structures, with one addi-
tionally incorporating an amidemoiety. Polymer 13was synthesized from a
Γ-butyrolactone derivative and successfully met all target properties except
for the Cp, which was not determined, and the Tg, which we predicted to be
393 K but was measured at 322 K. The deviation in Tg could potentially be
attributed to the polymer’s low crystallization rate or variations in stereo-
chemistry that are not adequately represented by the models55. The other
values listedwere aΔH of−20 kJ/mol, aTd of 613 K, aE of 2.7 GPa, and a σb
of 54.7MPa, all slightly higher than our model predictions, but close.

For polymer 14, experimental measurements revealed a Td of 630 K
and a Tg spanning from 419 K to 472 K. Impressively, the polymer
demonstrated outstanding chemical recycling capabilities, boasting a
remarkable mass recovery rate of 93–98%. Moreover, upon copolymeriza-
tion with nylon 4, it achieved an impressive E value of 2.28GPa. Although
literature lacks information regarding its Cp or σb, the other properties were
consistent with both our predictions and design targets56.

The discovery of these polymers marks a compelling initial validation
of our informatics-based approach. Moreover, they exhibit chemical motifs
akin to other polymers flagged by our models. This promising discovery
bodes well for unveiling more mechanically and thermally resilient, che-
mically recyclable polymers (poised to serve as ideal substitutes for PS)
within our catalog.

In addition to the above “designed” candidates previously identified in
the literature,we endeavored to synthesize the other promising, entirely new
candidates. Focusing on the thiocane class, we selected one functionalized
with an alkyne-containing, comparatively low-cost dimethyl fluorene,
polymer15 inTable 2. In selecting this candidate,weutilizedpolymerization
efficacy heuristics; dimethyl fluorene lacked additional functional groups
that could potentially disrupt the polymerization process. The polymer was
synthesized according to the procedure outlined in the Supplementary
Section “Thiocane Synthesis” andour recent publication57. Excitingly, theTd
of the synthesized polymer met our target, and while the Tg did not fall
precisely within our desired range, it reached 352 K—only 27 K lower than
the predicted value of 379 K. This discrepancy between predicted and
measured valuesmay be attributed to the polymer’s relatively lowmolecular
weight (6 kDa), suggesting potential improvement with higher molecular
weights based on the Flory-Fox equation.

Unfortunately, we encountered difficulties during the polymer
synthesis. Low yield in monomer preparation posed an initial challenge,
limiting our ability to produce sufficient quantities of monomer for poly-
merization. Additionally, we were unable to exceed a molecular weight of

Table2 |PredictedandmeasuredpropertiesofpromisingROP
polymer candidates

ID Class Tg (K) Td

(K)
E
(GPa)

σb
(MPa)

ΔH
(kJ/
mol)

Cp

(J(gK)−1)

1 Amide 397 612 2.21 80.6 −18.45 1.42

2 Ether 381 580 2.71 54.72 −10.26 1.62

3 Ether 386 558 2.07 41.66 −15.31 1.66

4 Ether 394 511 2.68 57.84 −16.22 1.48

5 Ether 384 568 2.44 51.17 −16.45 1.6

6 Amide 479 725 2.24 80.06 −10.15 1.34

7 Ether 392 530 2.27 50.06 −16.14 1.59

8 Thioether 470 689 2.14 77.52 −13.55 1.26

9 Ether 385 525 2.73 57.99 −13.91 1.41

10 Ether 419 622 2.47 60.76 −11.78 1.51

11 Ether 434 623 2.42 63.63 −14.72 1.42

12 Ether 393 619 2.27 48.17 −16.45 1.43

13 Ester
(Known)

393 (322) 595
(613)

2.22
(2.7)

47.24
(54.7)

−19.63
(−20)

1.28

14 Amide
(Known)

473
(419–472)

646
(630)

2.02
(2.28)

52.15 −12.48
(−10)

1.37

15 Thiocane
(Known)

379 (352) 613
(563)

1.93 48.1 1.92 1.37

Polymers 1–12 represent hypothetical polymers, while polymers 13–15 have been synthesized and
tested55,56. The selection process for the hypothetical polymers was based on the length of the
SMILES, serving as a heuristic for polymer complexity, with the 12 shortest strings presented here.
For synthesized polymers, the measured properties are shown in parentheses below the predicted
values. The complete list of hypothetical polymers, including their corresponding fitness values, is
available in our data repository, referenced in the “Fitness assessment” section. Images
corresponding to these polymers are displayed in Fig. 7.
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6 kDa as a result of solubility problems, which hindered measurements of
mechanical properties. Despite numerous adjustments to the polymeriza-
tion solvent, these challenges persisted. Nonetheless, this experience serves
as robust validation of the VFS technique and underscores the inherent

complexity of translating polymer “design” to polymer synthesis57. Among
thousands of designs, only a select few are predicted to achieve the requisite
property targets, and fewer still prove viable for synthesis due to potential
interference from certain functional groups in the reaction pathway. Even

Fig. 7 | Promising polymer structures. Polymer (top) and monomer (bottom) structures for promising candidates, labeled with corresponding IDs from Table 2. Polymer
bonding locations are indicated by gray-highlighted stars.
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when a viable candidate shows initial promise, achieving high monomer
yields and large polymer molecular weights remains a formidable task.
Thus, although employing informatics approaches may not lead to an
immediate synthesizable hit, it can be instrumental in prioritizing efforts.

A comprehensive catalog of the promising polymers, along with their
predicted properties, precursor materials, and suggested synthesis routes, is
provided in Supplementary Materials. Typically, the most promising can-
didates exhibit the following characteristics:

1. Preference for theheterocycle being opened tohave a size of 4, 5, 6, or 7.
These comprised 6%, 46%, 35%, and 11% of the down-selected
polymers, respectively.

2. Presence of rings within the backbone structure, observed in 64% of
down-selected polymers.

3. Inclusion of rings somewhere in the polymer structure (either the
backbone or side groups), with 99.3% of down-selected polymers
meeting this criterion.

4. Absence of side chains or presence of short substituents or those
containing bulky rings.

5. Ability to hydrogen bond (however, care is needed to ensure the
bonding group does not interfere with the polymerization chemistry).

Discussion
In this study, informatics advancements were employed to generate over
seven million hypothetical ROP polymer candidates from a dataset com-
prising 30,272,000 known and commercially available molecules, with the
aim of identifying recyclable alternatives to conventional plastics that are
both thermally and mechanically durable. Our methodology yielded over
35,000 promising recyclable candidates demonstrating predicted mechan-
ical and thermal durability close to PS. With input from polymer chemists,
we further narrowed down this number to 6477. Furthermore, we identified
two known chemically recyclable polymers, not initially included in our
thermal and mechanical property training datasets, yet meeting the criteria
for PS substitutes alongside our hypothetical polymers, serving as validation
for our informatics approach. Additionally, we synthesized a novel thiocane
polymer designed using our methodology with enhanced thermal proper-
ties. This achievement represents a significant milestone, as our metho-
dology not only designs novel polymers but also provides clear reaction
pathways, enabling rapid experimental synthesis - a rarity in the field of
generative polymer design7,58,59. Investigation of all promising candidates
revealed that suitable substitutes for PS containers shared similar chemical
characteristics, notably involving theopeningofheterocycles ranging from4
to 7 atoms, the presence of a ring within the polymer backbone, the absence
of side chains, or the incorporation of bulky constituents within them.
Additionally, numerous polymers contained atoms conducive to hydrogen
bonding.

While VFS shows promise in generating synthetically feasible polymer
candidates, only a minute fraction (<0.5%) of the polymers produced
meet all desired properties. This low success rate highlights the need for
accelerated discoverymethods, particularly when expanding to copolymers
for recyclable designs or complex reactions withmultiple reactants21,60–64. In
such cases, the search space grows exponentially with the number of
molecules involved. For instance, a reaction with two reactants (n and m
options, respectively) would have n ×m possible combinations. To effi-
ciently navigate this vast space, we propose leveraging GAs in conjunction
with VFS to identify promising reaction procedures and reactants and
prioritize their exploration, thereby streamlining the discovery process58,59,65.

The reliance on ML models warrants caution, however, especially
during extrapolation to unseen chemical spaces. Enhancements in these
models, particularly by using multi-fidelity methods that combine lower
fidelity simulation data with experimental observations, will be crucial to
extrapolating to unexplored chemical regions19,66–68. Regardless, informatics
approaches, when executed synergistically and iteratively with physical
experiments, have the potential to rapidly accelerate the discovery of novel
and beneficial materials.

Despite the promise of informatics-discovered, recyclable polymer
alternatives, significant economic hurdles must be overcome to facilitate
their widespread adoption, particularly in replacing commodity plastics.
A notable example in this work is the substantial cost disparity between
the dimethyl fluorene functionalizing component ($39.6 per gram) used
in our synthesized polythiocane and polystyrene (approximately $1 per
gram). Notably, this was one of the cheaper competitive options available
to us, as can be seen in Supplementary Fig. S4. This cost disparity renders
it non-competitive with polystyrene. Bridging this economic gap will
require future research efforts to focus on identifying more economically
viable components, developing process optimizations, scaling up man-
ufacturing, and implementing other cost-reduction strategies to enhance
the financial competitiveness of proposed recyclable polymer
alternatives.

Methods
Database and molecule data
A PostgreSQL version 12.17 on an Ubuntu 20.04.6 LTS system was used
to store all molecule, reaction, and polymer data. The full details of the
database schema can be found in the Supplementary Section “Database
Schema”.

Themolecule section of the database features a “category” column that
delineates between known and hypothetical molecules. Known molecules,
crucial for generating synthetically accessible polymers, are drawn from five
distinct subsets: ZINC15, ChemBL, compounds sourced from literature, an
eMolecules database dump from December 19th, 2020, and data from a
VWRdatabase, harvested through a tailoredwebscraper (details available in
Supplementary Section “Webscraper”)30–33. Molecules from the ZINC15
and ChemBL datasets are reportedly “commercially available,” although in
reality, they can be challenging to procure. Those sourced from literature
theoretically can be synthesized based on the referenced procedures.
Molecules in the eMolecules database are likely available commercially,
though without assurance. However, each eMolecules ID is cataloged,
facilitating easy cross-referencing from the eMolecules site. Entries from the
VWR database, covering the years 2023–2024, are also presumed to be
commercially accessible.

Reaction procedures
The Supplementary File “reaction_procedures.json” (refer to the “Fit-
ness assessment” section for availability) presents a comprehensive
inventory of reaction procedures in a structured JavaScript object
notation (JSON) format. Each entry encapsulates the class of the
monomer being manipulated alongside the corresponding reaction
procedures. These procedures comprise a sequence of reactions, with
each step delineated by its reaction SMARTS and a succinct description
of its intended outcome. Additionally, the requisite reactant SMILES are
delineated, along with specifications regarding which reactants must be
queried from the database. These reactants are characterized by lists of
essential and prohibited substructures, each defined by their respective
SMARTS notation. The presence of necessary substructures within the
reactants is restricted to be between a minimum and maximum value,
while no such restriction is provided for unacceptable substructures. For
a reactant to be deemed suitable, it must possess all requisite sub-
structures within the provided range while excluding any flagged as
unacceptable.

Predictive models for polymer properties: Gaussian process
regression and multitask neural network
Theprediction of polymer properties outlined in Fig. 1 relied on twodistinct
types of machine learning (ML) models. The first type employs GPR to
predict theΔH for ROP polymers. The second type usesMTNNs to predict
the remaining polymer properties.

TheGPRmodelwas trained using a dataset consisting of experimental
ΔH values from ROP polymers, supplemented with DFT data. This hybrid
dataset effectively predicts experimentalΔH values forROPpolymers25. The
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choice of GPR wasmotivated by its proven efficacy in accurately predicting
polymer properties, particularly with small datasets.

The model employs a Matern kernel, selected via leave-one-out cross-
validation (LOOCV) among Rational Quadratic, RBF, andMatern kernels.
A white noise kernel was added to account for inherent data noise, with the
noise level determined by the standard deviation of the training data. The
alpha parameter, which ensures a positive definite matrix and accounts for
measurement noise, was tuned using LOOCV19.

Multiple MTNNmodels were trained using a diverse array of homo-
polymer and copolymer property data. Thesemodels were trained based on
distinct classes of correlated properties, including thermal, mechanical, gas
permeability, thermodynamic&physical, electronic, andoptical&dielectric
properties. The focus of this study, depicted in Fig. 1a, primarily involved
thermal, mechanical, and thermodynamic properties. For comprehensive
details on the training and testing methodologies, refer to the original
MTNN paper18.

Fingerprinting techniques for polymers and molecules
Both the GPR model and MTNNmodels rely on the molecular features of
polymers for predictions, with the GPR model also requiring monomer
molecular features.

Polymer fingerprinting entails three hierarchical levels of descrip-
tors. The initial level quantifies atomic triplets (e.g., H1-C4-H1, denoting
two one-fold coordinated hydrogens and a four-fold coordinated car-
bon). The subsequent level encapsulates predefined chemical building
blocks (e.g., –C6H4–, –CH2–, –C(=O)–). The third level encompasses
Quantitative Structure-Property Relationship (QSPR) descriptors,
incorporating molecular features like molecular quantum numbers and
molecular connectivity chi indices, alongside other descriptors such as
non-hydrogen atom count and molecular weight. These features are then
normalized by the number of atoms in the polymer. Additional details
can be found at69,70.

For copolymers, each feature is derived through a linear combination
of homopolymer features, with weights determined by the fraction of the
respective homopolymer in the copolymer18,60.

Molecule fingerprinting involves the same three hierarchical levels
of descriptors as polymer fingerprinting. However, unlike polymers,
these descriptors are not normalized based on the number of atoms.
Additionally, certain descriptors, like the length of the longest side
chain, are disregarded. Crucially, ROP-specific features such as the size
of the ring being opened and the valence electron differences in the
broken bond of the ring were integrated into the fingerprinting
process19,71. This resulted in approximately 200 chemical descriptors,
which were then down-selected using feature permutation for the GPR
enthalpy model19.

Uniform manifold approximation and projection (UMAP)
UMAP is a widely employed technique for reducing high-dimensional
fingerprints to a lower-dimensional space, referred to as an embedding.
Its methodology is predicated on the premise that high-dimensional data
can be conceptualized as a Riemannian manifold. By undertaking the
task of mapping this manifold to a lower-dimensional embedding while
conserving the relative distances between data points, UMAP endeavors
to adequately represent the data in fewer dimensions. This approach
ensures that the structure of the original data is preserved as faithfully as
possible in the reduced space, facilitating efficient visual analysis and
interpretation.

The embeddings generated by UMAP are stochastic and influenced
by key hyperparameters: ‘n_neighbors’, ‘min_dist’, and ‘metric’. The
‘n_neighbors’ parameter determines the number of neighboring data
points considered by the algorithm when constructing a topological
representation of the data, affecting the preservation of global versus
local structure. A larger ‘n_neighbors’ value emphasizes global topology
preservation, while a smaller value emphasizes local structure. On the
other hand, ‘min_dist’ regulates the minimum distance between points

in the embedding; a higher value prevents points from clustering too
closely together for effective visualization, while a lower value can result
in more tightly packed points. Lastly, the ‘metric’ parameter specifies the
distance metric used in the high-dimensional space to compute dis-
tances between data points, which influences how neighboring data
points are identified. UMAP was employed to visualize polymer features
in two dimensions, facilitating analysis of polymer similarity
graphically44.

Fitness assessment
The evaluation of hypothetical polymers against the screening criteria
depicted in Fig. 1b, c entailed a three-step procedure:

1. Enthalpy transformation: The target range for ΔH was set between
−10 kJ/mol and −20 kJ/mol. To ensure uniform weighting between
values less than -20 kJ/mol and greater than -10 kJ/mol, ΔH values
were adjusted using Eq. (1):

ΔHt
i ¼

ΔHi þ 30; if ΔHi < � 20

10; if � 20≥ΔHi ≤ � 10

ΔHi � �1; ΔHi > � 10

8
><

>:
ð1Þ

Here, ΔHt
i stands for the transformed ΔH value for polymer i, and ΔHi

stands for the predicted ΔH value for polymer i.
2. Clipping of predicted properties: Predicted properties exceeding the

target thresholds were clipped to the targets. This process is mathe-
matically represented by Eq. (2):

k0i ¼ minðki; ktargetÞ ð2Þ

In the equation, ki represents the predicted value of property k for polymer i,
where k canbe anyof the following:Tg,Td, σb,E,Cp, orΔH. ktargetdenotes the
minimum threshold that a property must meet, as defined in Fig. 1b, c. k0i
signifies the clippedpredicted valueofpolymer i: it remainsunchanged if the
value is below the target, or becomes the target if it exceeds it. This calcu-
lationprioritizes polymers that satisfy all criteria over those that excel inonly
a few aspects.
3. Normalization and fitness calculation: The adjusted property

values were normalized within the range of 0–1 using a Min-
MaxScaler. A composite fitness value for each polymer was then
calculated bymultiplying these normalized properties, as described
in Eq. (3):

θi ¼
Y

k¼Tg ;Td ;E;σb ;Cp ;ΔH
t

k0i � k0min

ktarget � k0min
ð3Þ

Here, k0min represents theminimum clipped predicted value for all polymers
in the dataset. θi represents the fitness score for polymer i.

Data availability
All relevant resources, including polymer designs, detailed reaction proce-
dures, and accompanying code for generating polymers from monomers
and reactionprocedures, are publicly available in our polyVERSE repository
on GitHub.
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