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ABSTRACT: Traditional approaches in polymer informatics often require labor-intensive data curation, time-
consuming preprocessing such as fingerprinting, and choosing suitable learning algorithms. Large language models
(LLMs) represent a compelling alternative by addressing these limitations with their inherent flexibility, ease of use,
and scalability. In this study, we propose a novel approach utilizing fine-tuned LLMs to classify solvents and
nonsolvents for polymers, a property critical to polymer synthesis, purification, and diverse applications. Our results
show that fine-tuned GPT-3.5 achieves predictive performance comparable to or exceeding traditional machine
learning methods, even with limited data sets. The model achieved predictive accuracies of 0.90 and 0.83 for
identifying soluble and insoluble solvent−polymer pairs, respectively. Remarkably, these models accurately classify
solvents and nonsolvents in entirely unseen scenarios, indicating that they are able to effectively leverage the
components embedded in their base models. The operational simplicity and accuracy of LLMs highlight their
potential for advancing polymer research.

The solubility of polymers in various solvents is
fundamental to the polymer industry, enabling diverse
applications in coatings, adhesives, biomedical sys-

tems, and electronics.1−6 Dissolved polymers exhibit essential
properties for forming films, creating strong adhesive bonds,
spinning fibers, or acting as encapsulating agents.7 Conversely,
polymers with low solubility find use in packaging and
transport applications, exemplified by polyethylene’s resistance
to water, making it ideal for water storage and transport.5,6

Environmental and health considerations are increasingly
guiding solvent selection.7−9 The growing demand for eco-
friendly, nontoxic solvents is driven by regulatory requirements
and a societal focus on sustainability.10 Water, which is a safe
and environmentally benign solvent, is often preferred in
biomedical applications for its excellent solubility properties
and compatibility with sensitive biological systems. Thus,
solvent selection is not only a technical necessity but also a key
factor in achieving a sustainable and safe material design.
Despite the critical importance of solvent selection,

determining the compatibility of a polymer with a specific

solvent remains a challenging task. Over the past few years,
many approaches leverage machine learning (ML) techniques
to predict polymer−solvent interactions. These methods
involve representing polymers and solvents using computa-
tional descriptors such as Polymer Genome, RDKit, or
MACCS fingerprints.11−19 While effective, these approaches
often require significant effort in data preprocessing, model
training, and interpretation, making them less accessible to
experimentalists without specialized computational expertise.
For instance, answering a straightforward question such as “Is
polyethylene soluble in dichloromethane?” typically requires
complex workflows involving polymer and solvent finger-
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printing, followed by the application of machine learning
models. This labor-intensive process creates a bottleneck for
users who could benefit from a simpler and more intuitive
solution.
To address these challenges, we explored the potential of

natural language processing (NLP) models, particularly large
language models (LLMs). LLMs are especially appealing due
to their ability to process natural language inputs and generate
coherent, contextually relevant outputs.20−24 This capability
offers an intuitive interface, allowing people to pose questions
in plain language. An intriguing question arises: can LLMs
effectively address scientific queries, such as polymer−solvent
compatibility, with the same ease as conversational prompts?
Investigating this possibility opens the door to a transformative
approach to predicting polymer solubility.
In this study, inspired by several recent efforts that leverage

LLMs to solve materials problems,24−28 we evaluated the
capabilities of GPT-3.5, a state-of-the-art large language model
developed by OpenAI,29,30 for predicting polymer−solvent
solubility. Using a data set comprising 3,373 polymers and 51
solvents, we fine-tuned GPT-3.5 to enable it to predict
solubility with high accuracy. The fine-tuned model demon-
strated good performance, accurately predicting the solubility
for previously unseen polymers and solvents. This work
represents a novel application of NLP models in materials
science, showcasing their potential to simplify complex
prediction tasks and improve accessibility for nonexperts. By
eliminating the need for labor-intensive preprocessing and
choice of learning algorithms, our approach bridges the gap
between advanced computational tools and practical applica-
tions in polymer science. Furthermore, this study highlights the
broader potential of LLMs in advancing data-driven research
across chemical and material informatics.
The data set used in this fine-tuning study was previously

obtained from a wide range of published sources, including
peer-reviewed journals, printed handbooks, and online
repositories.18 The chemical space of the polymers included
in the data set encompasses elements such as carbon (C),
oxygen (O), selenium (Se), nitrogen (N), fluorine (F),
phosphorus (P), sulfur (S), bromine (Br), silicon (Si), chlorine
(Cl), iodine(I), boron (B), and hydrogen (H). To ensure
clarity and consistency, the study excludes copolymers,

polymer blends, polymers with additives, and cross-linked
polymers. Additionally, this investigation focuses solely on
room-temperature solubility, disregarding cases of partial
solubility or solubility under high-temperature conditions.
The data set comprises 6,282 polymers and 58 solvents,
resulting in 19,649 soluble pairs and 9972 insoluble pairs,
making a total of 30034 polymer solvent pairs. The data set
does not provide exhaustive combinations of solvent−polymer
pairs. For example, a given polymer might have solubility data
with only five solvents, while another polymer might have data
with entirely different solvents, as shown in Figure 1. In
addition, some polymers and solvents had data exclusively for
either solubility or insolubility, without any instances of both.
The complete list of 58 solvents used in the study is provided
in Table S1. Additionally, the polymers used in this study
include a few common polymers, listed in Table S2. However,
the majority of polymers lack specific names, so the SMILES
representations of the polymers were used instead. This
curated data set was then utilized to fine-tune the LLM, as
discussed in the next subsection.
Large language models (LLMs) have demonstrated excep-

tional capabilities in handling tasks involving simple language
prompts. This study aims to extend their applicability to a
scientific challenge�classifying polymer−solvent solubility. To
adapt these models to such specialized tasks, fine-tuning was
employed. Fine-tuning involves training the base LLM model
on a curated data set consisting of prompts and their
corresponding responses, tailored to the specific problem
domain. For this study, a data set comprising 30,034 polymer−
solvent pairs was converted into question-answer format. The
fine-tuning of GPT follows a structured format, as illustrated in
Figure 1, involving three distinct roles in the input message.
First is the system role, which defines the model’s expertise and
sets the context for the task. Second is the user role, where the
input is framed as a question. Each data point in this study was
converted into the question: “Is the polymer with ‘SMILES’
soluble in the solvent ‘solvent name’?” Here, the placeholder
‘SMILES’ was replaced with the polymer’s Simplified
Molecular Input Line Entry System (SMILES) representation,
and ‘solvent name’ was replaced with the corresponding
solvent’s name from the data set. Finally, the assistant role
provides the correct answer to the questions for the training

Figure 1. Fine-tuning workflow of GPT-3.5: The process begins with data set curation, proceeds to prompt generation, followed by fine-
tuning the GPT-3.5 base model via the OpenAI API, and concludes in inference by the user.
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set. The model was trained to respond with a text completion
from a predefined set of possible responses: “yes” or “no”,
depicting soluble and insoluble polymers in the given solvent.
This structured approach enabled the model to learn and
respond accurately to solubility classification tasks during fine-
tuning.
To evaluate the model’s performance under varying training

data set sizes, we fine-tuned the LLM on data sets of different
sizes, ranging from 2,000 to 25,000 data points. Each subset
was balanced to include an equal number of soluble and
insoluble polymer−solvent pairs for training. The results of
these experiments provide insights into the model’s robustness
and efficiency in low-data regimes.
A critical aspect of this study was to assess the model’s

ability to generalize to unseen polymers and solvents. The
complete data set was partitioned such that 10% of the
polymers were set aside as unseen polymers, ensuring they
were entirely absent from the training set. Additionally, eight
solvents were excluded from the training data and designated
as unseen solvents. After isolating these two sets, the remaining
data was divided into training and testing subsets. The training
data sets were constructed incrementally (e.g., 0, 100, 500,
1000, 2,000, 5,000, 10,000, 15,000, and 25,000 rows), as

discussed above. The remaining data and the unseen held out
data are considered as test data. As a result, the test data
contained examples of four distinct categories: seen polymers
with seen solvents, seen polymers with unseen solvents, unseen
polymers with seen solvents, and unseen polymers with unseen
solvents. This systematic approach allowed for a comprehen-
sive assessment of the model’s ability to handle both familiar
and novel scenarios. The framework for data set preparation
and the systematic partitioning scheme for training and testing
are visualized in Figure S1 and Figure 1, providing a clear
outline of the methodology employed in this study.
Fine-tuning using the polymer−solvent database was

conducted with GPT-3.5. This process involved training the
base GPT-3.5 model on a task-specific data set. By fine-tuning
of the model for the specific task, the weights of the layers were
updated, resulting in a specialized and optimized language
model, as illustrated in Figure 1. The procedure was both
efficient and scalable, completing in just a few minutes for
smaller data sets. Even with larger data sets, fine-tuning never
exceeded 1 h, highlighting GPT-3.5’s rapid adaptability. This
capability demonstrates its practical utility for scientific tasks,
enabling swift and effective customization.

Figure 2. Class-wise accuracy for each finetuned model from 2000 question/answers to 25000 (a) for test data set having seen solvents, seen
polymers, unseen polymers, and unseen solvents, (b) test set with only unseen polymers, and (c) test set with only unseen solvents. The
confusion matrices for each test set correspond to the 25k-finetuned model.
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Once fine-tuned, the model was deployed for solubility
classification tasks, including predictions on the reserved test
set containing seen solvents, seen polymers, unseen polymers,
and unseen solvents. This inference stage involved querying
the fine-tuned model with test polymer−solvent pairs to
classify their solubility. Similar to the training set, the test set
was also formatted into the GPT message structure. However,
the assistant role, which provides the response (Figure 1), was
excluded to allow the model to generate predictions
independently during testing. The process took a few minutes
to hours to complete depending on the test set size. The results
provided critical insights into the model’s performance across
various test scenarios, including its accuracy with seen and
unseen data. Each fine-tuned model was evaluated on the test
set using accuracy metrics designed to assess its performance in
predicting polymer−solvent solubility. Two distinct accuracy
scores were computed to separately measure the model’s
ability to classify soluble and insoluble cases. Accuracy (yes)
evaluates the model’s performance in correctly identifying
soluble polymer−solvent pairs. It is calculated as the ratio of
true positive cases (correctly predicted “yes” responses) to the
total number of actual soluble cases in the data set:

Accuracy (yes)
Correctly predicted soluble

Total number of soluble
=

(1)

Accuracy (no) assesses the model’s ability to correctly
identify insoluble polymer−solvent pairs. It is computed as the
ratio of true negative cases (correctly predicted “no”
responses) to the total number of actual insoluble cases in
the data set:

Accuracy (no)
Correctly predicted insoluble

Total number of insoluble
=

(2)

Both accuracy (yes) and accuracy (no) was calculated for
the responses generated by base GPT model and the fine-
tuned models. Figure 2 illustrates the accuracy for both yes
(soluble) and no (insoluble) classifications with increasing data
set size. It is evident from the figure that the accuracy is lowest
for the base GPT model with a 0 train set size. The accuracy
increases with an increasing number of training question-
answer pairs. The results indicate a clear trend: the accuracy of
the model improves consistently with an increase in the
number of training examples across all test cases. For the test
set, which includes combinations of seen and unseen polymers
and solvents (Random split) as shown in Figure 2 (a), the
model trained on 25,000 question-answer pairs has the highest
accuracy for both classes. An accuracy (yes) of 0.9 and an
accuracy (no) of 0.83 was achieved. A similar trend was
observed when the model was tested specifically on unseen
polymers (Figure 2 (b)): accuracy (yes) of 0.89 and accuracy
(no) of 0.85, confirming the model’s ability to generalize to
completely novel polymers. This finding highlights the model’s
potential applicability to real-world scenarios where previously
unencountered polymers require solubility predictions. In the
case of unseen solvents, the model also achieved competitive
accuracy with an accuracy (yes) of 0.99 and an accuracy (no)
of 0.68 (Figure 2 (c)). This demonstrates the robustness of the
fine-tuned language model in extrapolating its understanding
to new solvent systems, even when those solvents were absent
from the training data. Note, for base GPT model (0 train-set
size), all the polymers and solvent are unseen; therfore, the
accuracy values were kept same in all the three plots. The large
error bars at a training size of 2k in the plot indicate high

variability in model performance across different training
subsets. This suggests that at this specific training size, the
model may be particularly sensitive to the composition of the
training data. Possible reasons include an imbalanced
representation of solvents, leading to inconsistent learning
outcomes, or the inherent difficulty of generalizing to unseen
solvents with limited data of 2k. Additionally, this fluctuation
could be due to instability in model convergence at
intermediate training sizes. This further suggests that
increasing data size enhances the performance of the model.
To further assess the model’s classification performance,
confusion matrices for the best performing model (Figure 2)
and other models (Figure S2 and S3) were generated. These
matrices provide a detailed breakdown of the model’s ability to
classify soluble and insoluble polymer−solvent pairs. The high
diagonal values in the matrices (representing correct
classifications) affirm that the model effectively distinguishes
between soluble and insoluble cases for all three train cases.
Our model performs comparable to existing machine

learning models.11−18 As shown in Figure S4, for a random
split, the accuracies for “yes” (0.90) and “no” (0.83)
predictions closely match the F1 scores reported by Kern et
al.18 using random forest classifier (RF) (0.92 and 0.89,
respectively). Similar performance trends are observed for
unseen polymers. However, a notable improvement is evident
in the case of the unseen solvents. After fine-tuning on 25,000
training question-answer pairs, our model achieves an accuracy
of 0.99 for predicting solubility and 0.69 for predicting
insolubility, exceeding the previously reported F1 scores of
0.73 and 0.67, respectively. While this analysis highlights that
the fine-tuned model performs on par with conventional
machine learning models and demonstrates superior perform-
ance on unseen data, it is important to note that a direct
comparison is limited due to differences in the training data
and data-splitting methods.
The fine-tuning process involved optimizing the number of

training epochs and the softmax temperature during inference
to maximize the model’s performance. Figure S5 presents the
effect of varying the number of epochs, starting from 5 epochs,
on the model’s accuracy. Training the model for different
epochs revealed that 10 epochs provided the most optimal
balance between performance and computational efficiency for
the data set used in this study. While increasing the number of
epochs beyond 10 did not significantly improve accuracy, it
introduced the risk of overfitting. In addition to epochs, the
softmax temperature, a key parameter in text generation, was
tuned to evaluate its impact on prediction accuracy. The
softmax temperature controls the imaginativeness of the
model’s text generation. A lower value (e.g., 0.1) makes the
model more deterministic, focusing on high-probability
outputs. On the other hand, a higher value (e.g., 1.0) increases
randomness, allowing the model to explore diverse outputs but
at the risk of generating less accurate or coherent predictions.
For this study, a temperature of 0.5 was found to be the most
efficient as shown in Figure S5, yielding the highest accuracy
across test scenarios. At this setting, the model maintained a
balance between deterministic and probabilistic behavior,
ensuring consistent and reliable predictions.
To gain deeper insights into the best model’s performance

for each solvent and its ability to differentiate between soluble
and insoluble cases, accuracy was calculated using the best
performing model (25k-model) individually for each solvent in
the data set as shown in Figure 3. The figure provides a
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comprehensive view of the relationship between data
distribution and model accuracy. The bars in Figure 3
represent the number of data points per solvent in the training
data set, categorized as soluble (blue) and insoluble (orange).
The corresponding accuracy scores for each class (accuracy
(yes) for soluble cases and accuracy (no) for insoluble cases)
are depicted as circles. Solvents with a higher number of data
points for a particular class tend to show a higher accuracy for
that class in most cases. For instance, methanol (MeOH),
water, and acetone have a larger proportion of insoluble cases
in the training data set, resulting in higher accuracy (no).
Conversely, chloroform, dimethylformamide (DMF), and
tetrahydrofuran (THF) have more soluble cases, leading to
an accuracy (yes). Looking closely at the accuracy and the
number of data points per each solvent, it is evident that most
of the protic solvents have lower accuracy (yes) compared to
accuracy (no). Therefore, the solvents were divided into protic
and aprotic solvents, and the accuracies were calculated. It is
clear from the Figure 4(a) that the aprotic solvents had a larger
number of soluble cases in the training data, resulting in higher
accuracy (yes) for the test set. On the other hand, protic
solvents had more insoluble cases, which translated to higher
accuracy (no). This analysis highlights the influence of the
distribution of solubility data on the resulting model
performance. Similar trends were observed across the other
fine-tuned models trained with varying amounts of data,
ranging from 2,000 to 15,000 train set size as shown in
supplementary Figure S6 and S7. In each case, the model’s
performance consistently improved with an increasing volume
of training data for each class per solvent type, mirroring the
patterns seen in for 25,000 questions. This highlights a clear
correlation between the distribution of the training data set
and the model’s accuracy in predicting solubility.
Furthermore, for unseen solvents, the results (Figure 4(b))

show a generally high accuracy (yes), demonstrating the
model’s capability to generalize to new solvents. The model is
performing well for a few of the unseen solvents, which appears
to be similar to the solvents present in the training data set.
This suggests that the model is able to establish a correlation
between similar types of solvents. However, a few cases exhibit

slightly lower accuracy, primarily due to an imbalance in the
training data. For majority of the solvents in the training data
there are fewer insoluble cases, evident from Figure 3, where
orange bars are smaller than blue bars. This imbalance affects
the model’s performance, leading to slightly reduced accuracy
(no) for these unseen solvents. One notable exception is the
unseen solvent n-[bis(dimethylamino)phosphoryl]-n-methyl-
methanamine (nbm), which is entirely different in chemical
nature from all of the seen solvents present in the training data.
The model struggles to establish correlations between nbm and
the seen solvents, resulting in the poorest performance for this
solvent. This indicates that the model’s extrapolation ability is
limited when faced with chemically distinct solvents that
deviate significantly from the training examples. This analysis
underscores the model’s ability to understand and generalize
solubility relationships from the SMILES representation of
polymers and solvents. The strong performance across seen
and unseen cases confirms the model’s utility in practical
applications, while the observed limitations highlight areas for
improvement, particularly in handling underrepresented or
chemically unique solvents.
The fine-tuning of the GPT model comes with associated

costs, as charged by OpenAI. These costs depend on the
number of tokens or rows used during the fine-tuning and
inference stages. The cost of fine-tuning is $0.0036 per row.
For example, fine-tuning the model on 25,000 rows of
polymer−solvent data (including corresponding responses)
amounts to $90. This cost scales linearly with the number of
rows, meaning smaller data sets incur proportionally lower
costs. Inference costs are significantly lower than fine-tuning
costs, at $0.0005 per row. For instance, processing 5,000 rows
during the inference stage costs $2.50. In total, we fine-tuned
six different models, each trained on an increasing number of
rows, ranging from 2,000 to 25,000. The cumulative cost for
fine-tuning and inference across all models amounted to
approximately $400. While the use of GPT models
demonstrates promising results in solving scientific problems
like solubility prediction, the associated costs may be a limiting
factor, particularly for large-scale data sets or iterative fine-
tuning efforts. However, this study also opens doors for

Figure 3. Accuracy (yes) and Accuracy (no) for all seen solvents, correlated with the data distribution of each solvent in the training set. Blue
and orange bars depict the number of data points corresponding to that solvent in the training set. The blue and orange circles represent the
corresponding accuracy (yes) and accuracy (no), respectively.
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exploring open-source alternatives such as LLaMA, Falcon, or
other publicly available large language models. These models
offer the potential to significantly reduce costs while
maintaining competitive performance levels, especially when
fine-tuned and deployed on a local or cloud-based infra-
structure.
In terms of runtime, the Random Forest (RF) model

including hyperparameter tuning took approximately 9 min,
while polymer genome fingerprinting for 80% of the data
required an additional 30 min. In comparison, fine-tuning GPT
on 80% of the data took around 45 min. The times required for

both approaches are thus comparable. However, GPT offers
the added advantage of a more user-friendly implementation,
making it accessible for broader applications.
This study explores the use of fine-tuned large language

models (LLMs), specifically GPT-3.5, for predicting polymer
solubility in solvents, a fundamental property in polymer
science. Starting with a curated data set of 30,034 polymer−
solvent pairs, the data was reformulated into question-answer
prompts to enable model fine-tuning. To systematically
evaluate model performance on both seen and unseen
polymer−solvent combinations, fine-tuning was conducted
on varying data set sizes. The results demonstrated increasing
accuracy with larger training data sets, with fine-tuned models
achieving comparable or superior performance to traditional
methods without requiring complex preprocessing like finger-
printing and choosing learning algorithms. Performance
analysis revealed that the solvent type and data distribution
were critical factors influencing accuracy, and the model
exhibited strong generalization capabilities for previously
unseen cases. These findings underscore the ability of fine-
tuned LLMs to directly infer solubility relationships from
SMILES representations of polymers and solvents, offering
significant practical utility. The demonstrated feasibility and
efficiency of LLMs in material informatics position them as a
promising alternative to conventional machine learning
methods.
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