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Abstract 

Spall strength is a critical property that characterizes a material’s resistance to 

dynamic failure under impact or shock-compression loading. Accurate prediction 

and control of spall strength are essential for designing materials used in armor, 

vehicle components, structural barriers, and mining. Traditional methods for 

measuring the spall strength are slow, destructive, and expensive, while existing 

models offer limited predictive accuracy. This study introduces a machine learning 

(ML) regression model that rapidly and accurately predicts the spall strength of 

metals and alloys at strain rates in the range of 105 to 106 s-1. Trained on a dataset 

of over 70 metals and alloys and validated with recent data, the model identifies 

tensile yield strength and bulk modulus as key factors, with higher values of these 

properties correlating with increased spall strength. The findings offer an efficient 

method for screening metals and alloys and guiding the selection of high-spall-

strength candidates for targeted experimental validation. 
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1. Introduction 

Dynamic tensile strength, also known as spall strength, measures a material's resistance to 

internal failure under high-velocity impacts and explosive forces.1 It plays a crucial role in the 

design and performance of armor, vehicle components, structural barriers, and mining 

operations.2–5 Spall failure occurs through void or crack nucleation, growth, and coalescence due 

to the buildup of internal tension caused by wave reflections associated with high-pressure and 

high-strain-rate impact. 

Spall strength is typically measured using planar parallel plate-on-plate impact 

experiments. Shock waves generated upon impact travel through the plates and reflect off free 

surfaces, producing rarefaction (release) waves. The interaction of these waves leads to the buildup 

of internal tensile stresses, causing spall failure if the material's tensile strength is exceeded.2,3,6 

Shock compression preceding the build-up of tension can induce plastic deformation at strain rates 

exceeding 105 s-1, which increases with applied stress. The deformation can alter the pre-existing 

microstructure through competing processes of slip-dominated dislocation motion (influenced by 

thermal activation or viscous drag), twinning, or even martensitic transformation.6–8 

Measuring spall strength is both time-consuming and costly, and results in sample 

destruction.9 The need for time-resolved measurements commonly used in these experiments add 

further complexity. Although the spallation process is fairly well understood, as detailed in several 

review articles,1,10,11 predicting spall strength across a broad range of metals and alloys remains 

challenging. This difficulty arises from the vast diversity of materials, their inherent ductile or 

brittle behaviors, and the shock-compression induced microstructural changes that precede and 

influence spall failure. 

Grady’s12 energy-balancing approach provides a method for predicting spall strength by 

considering the equilibrium between elastic strain energy and material cohesive energy. The 

approach leverages the disparity between brittle and ductile material failures to formulate 

equations for theoretical spall strength. The knowledge of the ductile or brittle nature of the 

material, however, is possible through post-mortem fractographic analysis that may not always be 

feasible. Cochran and Banner13 developed a predictive spall model, utilizing void nucleation and 

growth processes of spall damage to simulate and correlate with the measured free surface 

temporal evolution or velocity profile to enable spall strength determination. Initially based on 

experiments with uranium, the model has been tested on a few other metals. A modified version 
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of the Cochran-Banner model,14 incorporating redefined damage parameters, has been shown to 

closely replicate experimentally determined spall strengths for copper, steel, and uranium. 

Calculating damage, however, remains computationally expensive and complex, as it requires in-

depth understanding of the shock compression behavior of the material. 

Machine learning (ML) has emerged as a powerful and efficient tool for developing 

predictive models for a wide range of material properties, including microstructure-dependent 

mechanical properties. Xiong et al.15 utilized a database of 360 different steels to build five ML 

models to predict fatigue strength, tensile strength, fracture strength, and hardness. Stoll and 

Benner16 employed small punch test data to predict the ultimate tensile strength (UTS) of steels 

using both linear and random forest models, utilizing values obtained from the load-displacement 

curve as characteristic features. Agrawal et al.17 predicted the fatigue life of steels based on 

chemical composition, upstream processing details, heat treatment conditions, and mechanical 

properties through ML techniques. ML has also been applied to model spall fracture mechanisms. 

For example, Mayer and Pogorelko et al.18 modeled the spall fracture of copper by performing 

molecular dynamics (MD) simulations and using an ML algorithm to optimize model parameters. 

They investigated strain-rate dependence of spall strength on initial defects like pores and how 

they evolve over time. In another study, Mayer and Lekanov et al.19 explored the deformation 

behavior of copper under high strain rates and severe strains during spall failure, integrating MD 

data into an ML model. Blaschke et al.20 used ML techniques to generate parameters for a model 

representing ductile failure in copper and an aluminum alloy, eliminating the need for experimental 

parameter generation. Mayer developed a machine learning model to predict the spall strength of 

aluminum, incorporating the effects of preliminary deformation and the resulting microstructural 

changes.21 Despite these advancements, no existing ML model predicts spall strength across a 

broad range of metals and alloys using intrinsic, readily available material properties. Current 

models either rely on computationally intensive calculations of material failure parameters or lack 

the precision needed to accurately predict spall strength values. 

In this study, an ML model was developed to predict the spall strengths of 73 metals and 

alloys. The model leverages key material properties that influence compressibility during initial 

shock compression, plastic flow strength (measure of resistance to permanent deformation from 

tensile forces), and fracture toughness (related to material failure and rupture following growth of 

cracks). These properties are hypothesized to influence spall strength and are therefore used as 
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features for prediction. The approach, illustrated in Figure 1, begins by identifying a dataset of 

easily accessible features related to spall strength. A regression model is then constructed using 

the Gaussian Process Regression (GPR) algorithm22 based on these features. The resulting model 

is employed to evaluate materials with spall strengths that are recently published or have not been 

published at all, followed by the extraction of predictive guidelines through model analysis. 

 
Figure 1: Workflow for developing the ML model and creating rules for predicting spall 

strengths of metals and alloys.  

 
2. Dataset and Methodology 

A compilation of the reported data of spall strength values for metals and alloys is presented in 

this section, along with properties that are expected to be correlated to spall strength. A physically-

based model previously used to compute the theoretical spall strength for metals and alloys with 

ductile/brittle considerations is then described, followed by the methodology used here for 

development of the ML model.  

 
2.1 Dataset of Spall Strengths and Features 

The dataset of spall strength values of 73 metals and alloys was collected from literature, 

and also obtained from prior experiments conducted in our high-strain rate laboratory at Georgia 

Tech.23–25 All spall strength values are exclusively those obtained from plate-on-plate impact 

experiments using gun- or explosively-launched projectiles, where strain rates range from 105 to 

106 s-1 and shock wave duration is approximately 1 µs. Spall strength values obtained from other 

methods, such as explosively generated shock waves, directed energy lasers, or laser-launched thin 

foil impact experiments—where strain rates exceed 10⁷ s⁻¹—were excluded from this study. This 

is because spall strengths at these higher strain rates are significantly elevated due to variations in 

the kinetic response of materials during spall failure.26 At different strain rates, fracture modes can 

also change, further influencing the spall strength of the material.27 Values of the spall strength 

(𝜎𝑠𝑝) used in the dataset were obtained either directly through measurements of stress profile with 
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use of stress gauges, or calculated from pullback velocities measured using interferometry 

techniques like VISAR or PDV using the following equation: 

𝜎𝑠𝑝 =
1

2
𝜌0𝐶0Δ𝑢𝑓𝑠……………………………………(Eq. 1) 

Where 𝜌0 is the density, 𝐶0 is the bulk sound speed, and Δ𝑢𝑓𝑠is the change in the free surface 

velocity caused by tensile pullback due to generation of free surface. 

Figure 2 displays the distribution of spall strength values for all metals and alloys included 

in the dataset (listed in Table S1). The dataset consists of 20 unique metals and 53 unique alloys, 

including iron-based alloys and steels (16 instances), aluminum and its alloys (13 instances), 

copper and its alloys (8 instances), nickel and its alloys (6 instances) and titanium and its alloys (5 

instances). Spall strength median values range from 0.36 GPa for Cu-10Ta to 5.77 GPa for 

Stainless Steel 2169. The four highest spall strength values are observed in specialty steels: 

Stainless Steel 2169, AF 9628, AISI Steel 4340, and Duplex Stainless Steel 2205.  

Alloys subjected to different heat treatments are treated as separate entries in the dataset 

due to the variations in spall strength and their other feature values. When multiple data points 

were available for a given material, either due to differences in experimental conditions, or data 

from various literature sources, the median value was used for consistency, with the variance in 

spall strength represented by vertical bars in Figure 2. For example, the spall strength of Al 6061-

T6 ranges from 0.8 to 2.3 GPa, owing to variations in impactor thickness, impact velocity, and 

other conditions. Similarly, AISI 1020 steel shows a spall strength range of 1.6 to 3.5 GPa due to 

experiments conducted under different impact stresses. Commercial purity titanium and Ti-6Al-

4V exhibit spall strength spreads of 2.1 to 3.9 GPa and 3.3 to 4.9 GPa, respectively, again 

influenced by varying experimental conditions across different laboratories. 

 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
48

56
0



6 

 
Figure 2: Median spall strength values for commercial purity metals (circles) and alloys 

(triangles). Colors indicate data types: singular data points (green), impact condition-dependent 

values (orange), and values varying by literature source (blue). Vertical bars represent the range 

for points with multiple values. 

The selection of features in this study is informed by the mechanisms driving spall failure,28 

which is preceded by compression from impact-induced shock loading29 prior to the build-up of 

internal tensile stresses exceeding the material’s strength. Since the mechanical properties of 

metals and alloys are influenced by their microstructure, shaped by thermomechanical processing 

during fabrication, this work assumes—and tests—that intrinsic elastic and extrinsic mechanical 

properties capture these effects, in line with the process-structure-property-performance paradigm. 

Key features influencing compressibility and wave propagation velocity during shock loading 

include material density and stiffness, represented by bulk, shear, and elastic moduli. The tensile 

and compressive yield strengths, ultimate tensile strength, and hardness represent the material's 

resistance to plastic deformation. Combined with fracture toughness, these properties represent the 

ability of materials to resist internal failure through void nucleation, growth, and coalescence 

processes. The selected features collectively capture the essential characteristics of materials 

relevant to spallation, consistent with Grady’s predictive model,12 providing a foundation for 

developing the ML-enabled model critical for material predictive guidelines and evaluation. 

Figure 3 illustrates the correlation between spall strength and each of the nine features 

selected for analysis: ultimate tensile strength (UTS), tensile yield strength, compressive yield 

strength, fracture toughness, hardness, density, bulk modulus, shear modulus, and Young’s 

modulus (listed in Table S1). It is worth noting that although all three moduli are considered, for 
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isotropic elastic bodies, such as polycrystalline metals, only two independent moduli are required.  

Later in this work, we determine which two of the three are best suited for the model. 

For consistency, when multiple data points were available for a given material, the median 

value and range were used, as mentioned before. Each plot in Figure 3 is annotated with the 

Pearson correlation coefficient (𝑟), for the linear relationship between the corresponding property 

and spall strength. Notably, UTS and tensile yield strength exhibit correlations greater than 0.5, 

despite some scatter. While these properties are relevant to spall failure under dynamic loading, 

no single property or combination of properties reliably predicts spall strength, as confirmed by 

the linear regression analysis shown in the parity plot in Figure S1. 

 

 
Figure 3: Median spall strength and feature values with their Pearson correlation coefficient (r). 

The calculated values (orange) are not directly from literature, unlike the non-calculated values 

(blue). Values have been calculated from various equations, including the rule of mixtures and 

the relationships between elastic moduli. The vertical and horizontal bars indicate the range of 

values for those with multiple data sources. 
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2.2 Grady’s Theoretical Spall Strength Model 

Grady12 developed a model to predict the theoretical spall strength of both brittle and 

ductile metals and alloys. The model considers potential and kinetic energy constraints associated 

with tensile loads exceeding the fracture energy and the balance between work done and energy 

dissipation in activation, growth, and coalescence of spall-induced crack/voids. The theoretical 

spall strength (𝑃𝑠) of brittle materials failing through linking of a network of cracks, is represented 

by the equation: 

𝑃𝑠 = (3𝜌𝑐0𝐾𝑐
2𝜀̇)1/3…………………………………(Eq. 2) 

 

Where ρc0
2 is the compressibility defined by bulk modulus, 𝐾𝑐 is the fracture toughness, and 𝜀̇ is 

the volumetric strain rate.  

In contrast, the theoretical spall strength of ductile materials is represented by the equation: 

𝑃𝑠 = (2𝜌𝑐0
2𝑌𝜀𝑐)1/2…………………………………(Eq. 3) 

where 𝑌 is the flow stress and 𝜀𝑐 is the critical void volume fraction, which is typically found to 

be 𝜀𝑐 = 0.15 for most metals and alloys. As an example, the theoretical and experimental values 

of spall strengths of commercial grade Ti (considered a brittle material) are reported by Grady as 

1.6 to 3.4 GPa and 2.1 to 3.9 GPa, respectively. For Ta (considered a ductile material), the 

corresponding values are given as 6.5 GPa and 4.4 to 6.8 GPa, respectively. Grady’s model was 

extended to predict the theoretical spall strengths of all metals and alloys considered in this work 

and correlated with their corresponding experimental values. 

 
2.3 Machine Learning Models  

This study utilized the ML model based on Gaussian Process Regression (GPR) with a 

radial basis function (RBF) kernel. Model training and predictions were executed using the GPR 

implementation from the scikit-learn library.30 GPR is a non-parametric Bayesian approach used 

for regression tasks. Its key principles include prior distribution, Bayesian inference, and 

uncertainty quantification. A Gaussian process defines a distribution over functions, characterized 

by a mean function and a covariance function (kernel), which captures relationships between data 

points. Given any observed data, GPR updates the function estimation, producing a posterior 

distribution that reflects both prior knowledge and observed data. Hence, GPR can provide not 

only predictions but also confidence intervals, making it particularly useful for modeling 

uncertainty in spall strength predictions. 
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The covariance function between two materials with features 𝑥 and 𝑥’ is defined as: 

𝑘(𝑥, 𝑥′) = 𝜎𝑓 exp (−
1

2𝜎𝑙
2 ||𝑥 − 𝑥′||

2
 ) + 𝜎𝑛

2………………...(Eq. 4) 

where the three hyperparameters 𝜎𝑓, 𝜎𝑙, and 𝜎𝑛 represent the variance, the length-scale parameter, 

and the expected noise in the data, respectively. These hyperparameters were optimized during the 

model training process. To evaluate the predictive performance of the model, four key error metrics 

were employed: the standard deviation, the coefficient of determination (𝑅2), the Pearson 

correlation coefficient (𝑟), and the root mean square error (𝑅𝑀𝑆𝐸). In GPR, the standard deviation 

at a point is computed from the model’s predictive variance, reflecting uncertainty from the 

model's learned structure and distances to training data. Together, these metrics provide insights 

into the accuracy and reliability of the model's predictions relative to the actual spall strength 

values.31  

 

The ML models were trained using a 90-10 train-test split, ensuring that the test set consisted of 

materials different from those in the training set. This approach allowed for evaluation on unseen 

cases. The model optimization process utilized a grid search to fine-tune hyperparameters, coupled 

with 3-fold cross-validation32 (CV) to enhance robustness and generalizability. In 3-fold CV, the 

dataset is partitioned into three subsets. Each subset is sequentially held out as a test set while the 

model is trained on the remaining two, ensuring that every data point is used for both training and 

validation. This approach helps mitigate overfitting and provides a more reliable assessment of 

model performance. Once the hyperparameters were optimized, two production models were 

developed. The first production model was validated using three previously unseen candidates 

(recently investigated materials), demonstrating its ability to generalize beyond the training data. 

After successful validation, these candidates were incorporated into the dataset to train the final 

production model using 100% of the available data. To ensure reliability, all models, including the 

final production model, underwent a rigorous 3-fold cross-validation process, reinforcing robust 

hyperparameter tuning and evaluation. 

 

Initially, we considered all nine potential features when building the ML models. Although 

using all nine properties yielded satisfactory results, we aimed to determine whether all were 

necessary. The objective was to achieve optimal model performance with the fewest features, in 
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10 

order to improve efficiency and reduce costs. Consequently, we developed multiple models, testing 

various combinations and numbers of features. To further refine our feature selection, we 

conducted correlation analyses on the features we hypothesized to be most similar, e.g., the three 

strengths and the three elastic moduli. As expected, there is a high correlation between the three 

strengths and the three moduli (Figure S2), suggesting that it may not be necessary to include all 

three from each category. We found that removing the compressive yield strength and shear 

modulus resulted in only a minimal decrease in model performance, allowing us to reduce the total 

number of features from nine to seven, as presented in Figure S3. Therefore, the models presented 

here forth utilize the following seven features: UTS, tensile yield strength, fracture toughness, 

hardness, density, bulk modulus, and Young’s modulus. 

 

3. Model Results 

We first present the results of the theoretical spall strengths of metals and alloys calculated 

using Grady’s model and correlate those with the corresponding experimentally measured values 

reported in the literature. Next, the development of the ML model is presented along with its 

validation, reliability for different classes of materials, statistical analysis for model prediction, 

and application with insights and guidelines for predicting spall strength for a complex alloys 

system. 

3.1 Grady’s Theoretical Spall Strength Model 

Grady's model was used to calculate the "theoretical" spall strength of metals and alloys by 

classifying them as either brittle or ductile. Metallic materials with a fracture toughness of 40 

MPa√m or higher generally exhibit ductile failure characteristics, while those with lower values 

are often considered as being brittle. Using this as the categorization of brittle and ductile 

behaviors, we calculated the theoretical spall strength values using the corresponding equations 

(2) and (3). Figure 4 shows the calculated “theoretical” spall strength values plotted against the 

actual measured values for the full range of materials considered in this work. The range in ductile 

values, indicated by purple vertical bars, reflects the variability in yield stress, while for brittle 

materials, the range (green vertical bars) corresponds to calculations based on strain rates of 2104 

and 2105 s-1, consistent with the criteria used by Grady. The negative 𝑅2 and high 𝑅𝑀𝑆𝐸 values 

for both ductile and brittle materials indicate a less than accurate correlation of the predicted versus 

the actual spall strength values. It can be seen that the model significantly overpredicts the 
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11 

theoretical spall strength values for ductile alloys, while it underpredicts for brittle metals and 

alloys. 

 

Figure 4: Results of theoretical spall strengths from Grady's ductile (purple) and brittle (green) 

model predictions plotted against experimental results, with vertical bars representing the range 

in calculated (theoretical) values. 

3.2 Machine Learning Model 

Figure 5(a) evaluates the performance of the developed ML model using learning curves, 

which show the average 𝑅𝑀𝑆𝐸 for the train, test, and CV sets as a function of trainset size. The 

error bars represent one standard deviation of the average 𝑅𝑀𝑆𝐸 values over 50 data splits, with 

error bars indicating the variability across these splits. As expected, the test and CV test 𝑅𝑀𝑆𝐸 of 

the ML model decrease with increasing trainset size, while the train and CV train 𝑅𝑀𝑆𝐸 increase 

with larger trainset size. A corresponding parity plot for the predicted and true experimental spall 

strength values from a single split of the 90% trainset size GPR model is shown in Figure 5(b). In 

this plot, the error bars for predicted values represent the standard deviation. The 𝑅2 values for the 

train and test sets were 0.803 and 0.777, respectively, while the 𝑅𝑀𝑆𝐸 values were 0.599 and 

0.710, respectively. To compare experimental uncertainties with model-predicted errors, we 

examined 56 metals and alloys with multiple reported spall strengths, totaling 340 measurements. 

A histogram for deviations from the median for each material is shown in Figure S4. The measured 

uncertainties follow a normal distribution with a standard deviation of 0.33 GPa. Thus, the 
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expected range for experimental anomalies is close to the model 𝑅𝑀𝑆𝐸 values, which indicates 

the model is capable of capturing the noise associated with experimental spall strength 

measurements. Materials with the highest spall strength are more likely to deviate from the 

predicted values due to the fewer number of data points in that range for the model to learn from. 

After optimizing the hyperparameters for the train-test model, a production model was developed 

using 100% of the dataset for training. 

 

 
Figure 5: (a) Prediction accuracy for GPR models trained using different trainset sizes, 

averaged over 50 runs and (b) Parity plot for the GPR model 90-10 train-test split, with standard 

deviation shown as error bars, against experimental results. 

 

3.2.1 Validation of Unseen Materials and Final Production Model 

The GPR model was validated before creating the final production model, by testing with 

three recently investigated materials whose spall strength measurements were not included in the 

original training dataset. The first is a high entropy alloy, HfZrTiTa0.53,33 which is compositionally 

distinct from any other complex alloy used in the dataset. The second is the additively 

manufactured titanium alloy Ti-5553.34 The third is a tungsten heavy alloy, 93WHA,35 which is 

compositionally similar to a material already included in the dataset (98WHA) but has different 

feature values. The results of the present GPR ML production model and Grady’s theoretical 

strength model are presented in Table 1. The GPR model predicts the spall strengths of 

HfZrTiTa0.53 and 93WHA within 13% and 19%, respectively, of the experimental spall strength 

values (and falls within the reported range). The results for Ti-5553 are not as closely aligned with 

the experimental results but still fit within the reported range. For comparison, the calculated 

theoretical spall strengths based on Grady’s model show significant discrepancies from the 
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13 

experimental results, over-predicting the spall strengths for HfZrTiTa0.53 and 93WHA and under-

predicting for the Ti-5553 alloy. With the addition of these three materials, the GPR trainset was 

updated, and the final production model was developed. 
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14 

 

Table 1: Features (median value) and spall strength values (experimental, theoretical as calculated by Grady’s models, and predicted 

by the GPR model) for the validation materials. 

 

Material 
𝝈𝑼𝑻𝑺 

(𝑴𝑷𝒂) 

𝝈𝒚,𝒕𝒆𝒏𝒔 

(𝑴𝑷𝒂) 

𝑲 

(𝑮𝑷𝒂) 

𝑬 

(𝑮𝑷𝒂) 

𝝆 

(𝒈/𝒄𝒎𝟑) 

𝑯𝑽 

 

𝑲𝑰𝑪 

(𝑴𝑷𝒂√𝒎) 

ductile/ 

brittle 

𝝈𝒔𝒑,𝒆𝒙𝒑 (median)  

(𝑮𝑷𝒂) 

𝝈𝒔𝒑,𝑮𝒓𝒂𝒅𝒚 

(𝑮𝑷𝒂) 

𝝈𝒔𝒑,𝑮𝑷𝑹 

(𝑮𝑷𝒂) 

HfZrTiTa0.53 1110 774 110 70 9.36 372 62 ductile 2.76-3.72 (3.24) 5.05 3.65  3.39 

Ti-5553 769 768 82 109 4.64 413 34 brittle 3.03-4.46 (3.72) 1.74  0.64 3.03  2.02 

93WHA 1241 920 285 368 17.61 295 41 ductile 2.40-2.73 (2.59) 8.86 3.08  2.12 
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15 

 

3.2.2 Statistical Analysis for Model Prediction 

The SHapley Additive exPlanations (SHAP)36,37 approach was used to explain statistical 

models by finding the importance of having a value for a feature when compared to that feature’s 

expected value. The kernel explainer was used to compute the SHAP values for the GPR model. 

The highest contributing features are seen in Figure 6, revealing that tensile yield strength, bulk 

modulus, and Young’s modulus are the three most significant features for the model. Notably, 

tensile yield strength emerges as the most influential feature, indicating that the spall strength is 

significantly affected by the quasi-static tensile yield strength. Therefore, compressibility 

associated with shock compression and the resistance to plastic deformation are shown to be 

important features that correlate best with the spall strength of the material. Fracture toughness 

does not serve as a primary factor. This could be associated with the fact that spall failure occurs 

via void nucleation and growth processes that are influenced more by strength properties.  

 
Figure 6: Feature importance based on SHAP analysis with the mean absolute SHAP values 

illustrating global feature importance. 

 

3.3 Reliability and Applicability for Different Classes of Materials 

The dataset of spall strength and features considered in this study comprises of various 

types/classes of metals and alloys, and we aimed to evaluate the performance of the final 

production model across the different material categories. We also sought to determine whether a 

correlation exists between the number of instances in a material category and lower error metrics. 

The average GPR standard deviation is calculated as the mean of the standard deviation values for 
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each material within a category. The 𝑅𝑀𝑆𝐸 is computed by comparing the GPR-predicted spall 

strength to the median experimental spall strength. Additionally, the CV train and test 𝑅𝑀𝑆𝐸 are 

derived from the average and standard deviation of 50 iterations of 3-fold CV runs.  

Table 2 summarizes the average GPR standard deviation, 𝑅𝑀𝑆𝐸, and CV train and test 

errors for the final production model across different categories of metals and alloys. The average 

GPR standard deviation in spall strength value across all categories is approximately 1.2 GPa. 

Notably, the model's performance is consistent for both pure metals and alloys, with an 𝑅𝑀𝑆𝐸 

around 0.5 GPa. Interestingly, despite having only two instances, the chromium-based alloy 

category demonstrates the lowest 𝑅𝑀𝑆𝐸 value. The categories for tungsten-, magnesium-, and 

aluminum-based metals and alloys also show 𝑅𝑀𝑆𝐸 values below 0.35 GPa. The iron and steels 

category, which has the highest number of instances, exhibits the next lowest 𝑅𝑀𝑆𝐸 value. The 

average CV train and test 𝑅𝑀𝑆𝐸 values are 1.3 GPa, with magnesium—despite having only four 

instances—showing significantly lower values than other material categories. Overall, the data in 

Table 2 indicates that there is no correlation between the increasing number of instances in a 

material category and improved model performance. 

 

Table 2: Average GPR standard deviation, 𝑅𝑀𝑆𝐸, and CV 𝑅𝑀𝑆𝐸 values of different categories 

of materials from the final production model that includes the validation materials. 

Material Category 
# of 

instances 

average GPR 

stdev (GPa) 

RMSE 

(GPa) 

CV train 

RMSE (GPa)  

CV test  

RMSE (GPa) 

All metals & alloys 76 1.197 0.566 1.349  0.037 1.406  0.071 

Only metals 20 1.262 0.582 1.331  0.036 1.446  0.117 

Only alloys 56 1.174 0.560 1.355  0.045 1.390  0.085 

Aluminum 13 0.829 0.337 1.040  0.082 1.147  0.270 

Cobalt 2 1.161 0.815 1.176  0.096 1.104 0.251 

Chromium 2 1.564 0.188 1.063  0.177 1.339 0.312 

Copper 8 0.882 0.624 1.167  0.157 1.214  0.263 

Iron and Steels 16 1.198 0.607 1.707  0.082 1.793  0.150 

Magnesium 4 0.992 0.309 0.335  0.074 0.345 0.075 

Nickel 6 1.358 0.709 1.646  0.076 1.583  0.193 

Titanium 5 1.371 0.905 1.510  0.037 1.521  0.169 

Tungsten 4 1.581 0.339 1.228  0.041 1.253  0.131 

 

3.3.1 Insights into Materials Classes 

 The experimental and GPR-predicted spall strengths of specific material categories are 

plotted in Figures 7-12 to obtain insights on observable trends of influential alloy characteristics. 

For pure metals (both polycrystalline and single crystal), experimental spall strength values (shown 
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in Figure 7) range from a low of 0.40 GPa for Ce-fcc, closely matching the GPR prediction, to a 

high of 4.77 GPa for Ta-bcc, which shows a larger deviation from the GPR prediction. It can be 

inferred that bcc and hcp metals generally have higher spall strengths than fcc metals, though there 

are examples of opposing trends on both sides. Aluminum and its alloys have spall strength values 

that are consistently among the lowest, in the range of 0.60 to 1.90 GPa as shown in Figure 8, with 

close correlation between experimental and GPR predictions. Interestingly, Al-2024, with three 

different heat treatments, shows both the lowest and highest spall strength values among all Al 

alloys considered, though these differences fall within the standard deviation range. For Cu-based 

systems (Figure 9), the ternary GRCop alloy containing Cr and Nb exhibits a higher spall strength 

than the binary systems. In the immiscible Cu-Ta and Cu-Pb systems, however, the GPR model 

predictions are higher than the experimental values. Fe-based alloys (Figure 10) exhibit the widest 

range of spall strength values, with minimal differences between GPR-predicted and experimental 

values. Complex alloy steels generally display higher spall strengths (5.30 to 5.77 GPa) compared 

to pure Fe and low-carbon steels (1.71 GPa). Ni-based alloys (Figure 11) exhibit no clear dominant 

characteristics affecting spall strength. Intermetallic compounds show contrasting trends: the B2-

NiTi alloy has a spall strength nearly four times that of L12-Ni3Al, while fcc-based complex alloys 

display similar differences compared to pure Ni and the Ni-60Co solid solution alloy. Overall, 

experimental and GPR-predicted values for Ni-based alloys are generally comparable. Lastly, Ti-

based alloys (Figure 12) display a narrow range of spall strength variation, though commercial 

purity Ti shows a significant deviation between GPR-predicted and experimental values. 

 
Figure 7: Median experimental spall strength of elemental metals (blue). The vertical bars 

indicate the range of values for those with multiple data sources. And GPR spall strength 
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(orange) values for each of the materials. The vertical bars indicate the standard deviation in the 

GPR prediction. 

 

 

Figure 8: Median experimental spall strength of aluminum and aluminum alloys (blue). The 

vertical bars indicate the range of values for those with multiple data sources. And GPR spall 

strength (orange) values for each of the materials. The vertical bars indicate the standard 

deviation in the GPR prediction. 

 

 

 
Figure 9: Median experimental spall strength of copper and copper alloys (blue). The vertical 

bars indicate the range of values for those with multiple data sources. And GPR spall strength 

(orange) values for each of the materials. The vertical bars indicate the standard deviation in the 

GPR prediction. 
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19 

 
Figure 10: Median experimental spall strength of iron and steels (blue). The vertical bars 

indicate the range of values for those with multiple data sources. And GPR spall strength 

(orange) values for each of the materials. The vertical bars indicate the standard deviation in the 

GPR prediction. 

 

 
Figure 11: Median experimental spall strength of nickel and nickel alloys (blue). The vertical 

bars indicate the range of values for those with multiple data sources. And GPR spall strength 

(orange) values for each of the materials. The vertical bars indicate the standard deviation in the 

GPR prediction. 
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Figure 12: Median experimental spall strength of titanium and titanium alloys (blue). The 

vertical bars indicate the range of values for those with multiple data sources. And GPR spall 

strength (orange) values for each of the materials in the dataset. The experimental point for Ti-

1023 is overlapped by the GPR data point. The vertical bars indicate the standard deviation in 

the GPR prediction. 

 

3.3.2 Predicting Spall Strengths for New Alloys 

 High entropy alloys (HEAs), also known as complex alloys containing five elemental 

components often as a single-phase solid solution, generally exhibit superior mechanical properties 

compared to conventional alloys.38 However, these alloys are relatively understudied in the context 

of their high-strain-rate mechanical behavior. The GPR model was employed to screen several 

instances of this alloy class. Currently, only eight HEAs have documented spall strengths along 

with the requisite seven features as reported in the literature. These eight HEAs are already 

included in the model’s trainset. Mechanical property data corresponding to the required features 

recently reported in the literature were gathered for six additional HEAs, though their experimental 

spall strengths are unavailable. The GPR model was utilized to predict the spall strength for each 

HEA, and the complete set of their predicted values and features is presented in Table 3. As noted 

in the table, while most HEAs are single-phase solid solutions, dual-phase alloys have also been 

recently investigated. Figure 13 shows a plot of the experimental and GPR predicted spall strength 

values of the eight HEAs, along with the GPR-predicted values of the six HEAs for which their 

experimental values are not reported. The predictions for the GPR model for this latter group of 

HEAs shows a higher standard deviation which we attribute to their not being included in the 

trainset of model development. In general, it is seen that the experimental spall strengths of fcc-
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based HEAs are generally lower than bcc-based HEAs, except for Al0.1CoCrFeNi, though in all 

cases, the HEAs have relatively higher values of spall strength.  

 It is interesting to note that, as presented in section 3.3.1, aluminum and its alloys almost 

uniformly have low spall strength. For HEAs based on aluminum, however, the spall strength 

values are higher, with two of those being dual-phase alloys. Similarly, for copper and its alloys, 

the spall strength values of the Cu-based HEAs fall at the higher end of the range. In contrast, for 

iron and steels, the spall strengths of HEAs fall in between that of the plain carbon steels and alloy 

steels. The single-phase Hf-, Co-, and Cr-based HEAs generally have spall strength values that are 

in the middle-to-high range for different metals and alloys.  

Overall, the predicted spall strength values for HEAs range from 1.54 to 4.13 GPa, closely 

aligning with their median experimental values in the model’s training dataset (1.52 to 3.69 GPa). 

These values are at the higher end of the spall strength range for all materials considered in our 

dataset. Given the similarity in features and spall strength values, predictions for HEAs without 

reported experimental values are anticipated to be reliable, providing the impetus for future 

experimental validation. These results also offer guidance for designing new high-strength multi-

component alloys, such as aluminum and copper-based alloys.
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Table 3: Median values for the features and spall strength values (median experimental and predicted by the GPR model) for the HEAs.  

 

Material 
Crystal 

structure 

𝝈𝑼𝑻𝑺 

(𝑴𝑷𝒂) 

𝝈𝒚,𝒕𝒆𝒏𝒔 

(𝑴𝑷𝒂) 

𝑲 

(𝑮𝑷𝒂) 

𝑬 

(𝑮𝑷𝒂) 

𝝆 

(𝒈/𝒄𝒎𝟑) 

𝑯𝑽 

 

𝑲𝑰𝑪 

(𝑴𝑷𝒂√𝒎) 

𝝈𝒔𝒑,𝒆𝒙𝒑  

(𝑮𝑷𝒂) 

𝝈𝒔𝒑,𝑮𝑷𝑹 

(𝑮𝑷𝒂) 

Al0.1CoCrFeNi fcc 531 199 172 211 7.88 458 14 3.69 2.94  1.41 

AlCoCrFeNi2.1 fcc + bcc 1165 750 169 185 7.37 9 119 3.35 3.40  1.61 

CoCrFeNi fcc 413 147 169 219 8.23 135 28 3.19 2.39  1.26 

CrMnFeCoNi fcc 600 265 144 203 7.86 228 262 2.12 3.24  1.26 

FeCrNiMn fcc 513 229 118 202 7.72 201 135 1.52 1.75  1.06 

Fe40Mn20Cr20Ni20 fcc 694 306 133 195 7.90 150 137 2.28 2.01  1.00 

Fe50Mn30Co10Cr10 fcc 763 410 144 202 6.65 259 217 2.10 3.04  1.27 

HfZrTiTa0.53 bcc 1110 774 110 70 9.36 372 62 3.24 3.39  1.66 

AlCoCrFeNi fcc + bcc 397 345 150 126 7.00 518 25 --- 4.13  2.37 

CoCrFeNiS0.5 fcc 2320 556 138 166 7.19 259 22 --- 3.29  4.03 

CuCrFeTiZn fcc + bcc 1436 585 201 241 6.94 655 22 --- 1.98  3.59 

(CuCrFeTiZn)90Pb10 fcc + bcc 1151 258 120 144 7.85 418 10 --- 1.54  3.03 

(CuCrFeTiZn)95Pb5 fcc + bcc 856 440 145 174 7.55 530 13 --- 2.93  2.26 

HfNbTaTiZr bcc 957 875 148 98 9.72 295 210 --- 4.02  3.72 
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Figure 13: Median experimental spall strength of HEAs for which there are values available 

(blue). The vertical bars indicate the range of values for those with multiple data sources. And 

GPR spall strength (orange) values for each of the materials. The vertical bars indicate the 

standard deviation in the GPR prediction. 

 

Based on the results reported in this work, it can be seen that, in general, Grady’s model for 

prediction of the theoretical spall strength generally overpredicts spall strength values compared 

to their experimental values as reported in the literature, especially for ductile metals and alloys. 

As an advantage, however, it requires minimal material properties as inputs. The GPR model, on 

the other hand, while needing seven features, is able to predict spall strength values that are closer 

to the experimentally measured values for a wide range of metals and alloys. Though the GPR 

model does not explicitly account for the microstructure, the properties considered relate to 

material compressibility and strength that are implicitly related to the microstructural effects. 

Future work can potentially incorporate microstructural characteristics, including phases present 

and their crystal structure, grain size, volume fraction, etc. Further correlation of the microstructure 

with processing conditions would enable pathways for tailoring spall strength properties for 

desired performance requirements or applications. 

 
4. Conclusions 

In this study, a Gaussian Process Regression (GPR) model was developed to predict the spall 

strengths of metals and alloys, trained on a dataset of over 70 materials. Validated on three recently 

reported materials, the model accurately predicted spall strength, underscoring its reliability. 
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Model analysis identified tensile yield strength and bulk modulus as the most important features 

for predicting spall strength, with higher values correlating to stronger spall strengths. Although 

fracture toughness improves model accuracy, it is not a primary factor influencing spall strength, 

which is more controlled by strength properties governing void nucleation and growth. However, 

removing it significantly reduces model performance. The model successfully predicted spall 

strengths for known high entropy alloys (HEAs) and made predictions for untested HEAs. A Colab 

notebook, accessible to non-experts, installs dependencies and enables rapid spall strength 

predictions across a range of metals and alloys, offering a valuable tool for the research 

community. 

 

Supplementary Material 

The provided supplementary material includes additional data and analyses supporting the findings 

in the main text. Key components include: (1) Median spall strengths and related properties of 

metals and alloys, (2) Linear regression parity plot illustrating model accuracy, (3) Correlation 

plots showing relationships among features, (4) Feature selection criteria and rationale, and (5) 

Estimations of experimental uncertainties for spall strength measurements across multiple 

samples. 
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