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a b s t r a c t 

Polymer-based electrostatic capacitors find critical use in high-temperature applications such as electri- 

fied aircraft, automobiles, space exploration, geothermal/nuclear power plants, wind pitch control, and 

pulsed power systems. However, existing commercial all-organic polymer dielectrics suffer from signifi- 

cant degradation and failure at elevated temperatures due to their limited thermal stability. Consequently, 

these capacitors require additional cooling systems, that require increased system load and costs. Tradi- 

tionally, an inability to directly predict or model key properties - such as thermal stability, breakdown 

strength, and energy density has been an impediment to the design of such polymers. To enhance the 

experimentation and instinctive-driven approach to polymer discovery there has been recent progress 

in developing a modern co-design approach. This review highlights the advancements in a synergistic 

rational co-design approach for all-organic polymer dielectrics that combines artificial intelligence (AI), 

experimental synthesis, and electrical characterization. A particular focus is given to the identification of 

polymer structural parameters that improve the capacitive energy storage performance. Important struc- 

tural elements, also known as proxies, are recognized with the rational co-design approach. The central 

constituents of AI and their influence on accelerating the discovery of new proxies, and polymers are pre- 

sented in detail. Recent success and critical next steps in the field showcase the potential of the co-design 

approach. 

© 2025 Published by Elsevier Ltd. 
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. Introduction 

Grid distribution networks are progressively facing more and 

ore challenges due to the increasing need for electric vehicle 

EV) charging stations, the growing adoption of renewable energy 

ources, the requirement for effective energy storage solutions, and 

he significant impacts of climate change [ 1 ]. The changing dynam- 

cs of electricity sources, loads, and consumption patterns highlight 

he imperative for improved scalability, distribution, and flexibility 

n their efficient administration. The advancement of energy stor- 

ge technology is a crucial factor for the stability, consistency, and 
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igh-field performance of energy systems. Energy storage compo- 

ents – electrostatic and electrochemical capacitors, batteries, and 

uel cells are gaining increased attention. In comparison to energy 

torage devices which utilize electrochemical reactions to store en- 

rgy, dielectric capacitors, which store electrical energy through 

n electrostatic field, are distinguished by their exceptional power 

ensities attributable to their swift charge-discharge capabilities 

ithin brief time frames [ 2–4 ]. Polymer-based dielectrics overcome 

he disadvantages of ceramic dielectrics by offering a compara- 

ively higher breakdown strength, flexibility, ease of processing, 

ariable structural design, and a smoother failure mode [ 5 , 6 ]. Elec-

rostatic (dielectric) capacitors in particular offer high power den- 

ity, high operating voltage, and lesser loss as compared to other 

lasses of energy storage components [ 7 ]. For applications involv- 

ng extreme thermal and electrical conditions, all-organic polymer- 

ased electrostatic capacitors are vital in achieving high energy 
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Nomenclature 

AI Artificial intelligence 

BNNS Boron nitride nano sheets 

BOPP Biaxially oriented polypropylene 

DFT Density functional theory 

ECFP Extended connectivity fingerprint 

Eat Atomization energy 

Ebd Dielectric breakdown field 

ecoh Cohesive energy density 

Egap Bandgap 

EV Electric vehicle 

FVEs Free volume elements 

GA Genetic algorithm 

GNN Graph neural network 

GPR Gaussian process regression 

K Dielectric constant 

KRR Kernel ridge regression 

LLM Large language models 

MD Machine data 

MGI Material genome initiative 

ML Machine learning 

MLP Multilayer perceptron 

NLP Neural language processing 

PDTC-HDA Poly para-phenylene diisothiocyanate hexane 

diamine 

PDTC-HK511 Poly para-phenylene diisothiocyanate jef- 

famine 

PDTC-MDA Poly para-phenylene diisothiocyanate 

diphenylmethanediamine 

PDTC-ODA Poly para-phenylene diisothiocyanate oxydi- 

aniline 

PDTC-PhDA Poly para-phenylene diisothiocyanate phenyl- 

methanediamine 

PEEK Polyether ether ketone 

PEI Polyetherimide 

PEN Polyethylene naphthalate 

PET Polyethylene terephthalate 

PG Polymer genome 

PI Polyimide 

PMDA Pyro metallic gianhydride 

PNB-2Me5Cl 2-methyl-5-choro polynorbornene 

PNB-3Cl4Me 3-chloro-4-methyl polynorbornene 

PNB-2,5DM Dimethyl polynorbornene 

POFNBs Polyoxafluoronorbornenes 

PolyG2G Polymer graph-to-graph 

PONB-2Me5Cl 2-methyl-5-chloro polyoxanorbornene 

PVK Polyvinylkarbazole 

ROAM Restricted orientation anisotropy method 

RPD Probability distribution 

SD-VAE Syntex directed variational autoencoder 

SMILES Simplified molecular input line entry system 

Tg Glass transition temperatures 

Tm Melting temperature 

Ud Energy density 

εr Relative permittivity 

εo Vacuum permittivity 

εelec Electronic component of the dielectric con- 

stant 

εion Ionic component of the dielectric constant 

φe 
Al Electron injection barrier 

ensity, and optimum efficiency for harsh condition electrifica- 

ions. 
2

For linear dielectrics, the induced polarization is proportional 

o the total external and internal electric fields. For such dielec- 

ric, the energy density (Ud ) can be derived [ 3 ] and represented as 

hown: 

d = 1 / 2εo εr E
2 (1) 

As seen from Eq. (1) , the energy density varies with the square 

f the applied electric field (E, often interpreted as the break- 

own strength), and the dielectric constant ( εr , relative permittiv- 

ty) varies linearly with the energy density. The charging and dis- 

harging energy density along with the above-mentioned variables 

lay an important role in tuning the charge-discharge efficiency of 

he polymer dielectrics [ 8 ]. 

For high-temperature applications, the electronic systems are 

sually exposed to temperatures above 150 °C, thus dielectric poly- 

ers should be stable and efficient for energy storage at such high 

emperatures. Polyolefins commonly have a high bandgap and low 

onduction loss which is preferred for high electric field applica- 

ions [ 9 ]. However, these polymers cannot withstand high temper- 

tures due to their low glass transition temperatures (Tg). Gen- 

rally, the application temperatures for such polymer dielectrics 

re usually < 100 °C. For example, biaxially oriented polypropy- 

ene (BOPP), which is a widely used polymer dielectric has a high 

reakdown strength of ≈700 MV m-1 and small loss, but can be 

perated efficiently to a maximum operating temperature of only 

5 °C [ 10 , 11 ]. Such polymer dielectrics require an external cool- 

ng system which boosts their cost and required maintenance lim- 

ting their scope of application. Polymers with conjugated aro- 

atic backbones having a high Tg have been reported for high- 

emperature energy storage applications, but these polymers dis- 

lay a higher conduction loss due to their lower bandgap which 

urther leads to a drop in electric field endurance and an amplified 

nergy loss. Low thermal stability not only limits the maximum 

perating temperature of all-organic polymer dielectrics but also 

imits the maximum energy density of these dielectrics is the low 

ielectric constant (K) of polymers [ 4 ]. Extensive research in im- 

roving the dielectric constant involved adding fillers in the poly- 

er matrix. Although these fillers enhance the overall permittivity 

f the polymer matrix by providing more polarizable sites, they 

ause a significant deterioration in the breakdown strength as the 

mount of the filler exceeds the percolation threshold [ 3 ]. The de- 

erioration of the local electric field is mainly due to the big dif- 

erence in dielectric constant between the filler and the polymer. 

enerally, the dielectric constant of nanocomposites will have a 

ignificant increase when the ratio of fillers is close to the perco- 

ation threshold. This can lead to a current pathway and thus a re- 

uction of breakdown strength. For example, fillers like BNNS have 

een used to improve the breakdown strength and reduce conduc- 

ion losses owing to their high band gap (5.5–5.8 eV) and excel- 

ent thermal stability. However, it was seen that the breakdown 

trength increased up to 10 % to 12 % BNNS loading followed by 

 reduction of the breakdown strength as the % loading increased 

 12 , 13 ]. 

Several previous studies have demonstrated the significance 

f bandgap, dielectric constant, free volume, and high break- 

own strength on polymer dielectric performance [ 14 ]. Decipher- 

ng structural elements in the polymer backbone and their effect 

n a particular dielectric property is fundamental for the discov- 

ry of new polymer dielectrics. This article presents insights into 

he polymer structural elements and discusses their dependence 

n the dielectric properties for high-temperature and high-density 

nergy storage. Considering the mutual constraints between the 

roperties and the scope for extensive structural modification of 

olymer chains, a co-design approach that combines experimen- 

al investigation and computational (AI-based) techniques is highly 

aluable. Elements of artificial intelligence, machine learning, and 
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Fig. 1. Polymer chain modifications using several proxies for optimal capacitive energy storage. 
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igh-throughput computational screening of dielectric properties 

re explored further which can accelerate the discovery of new 

olymer dielectrics. 

. Rational Co-design strategy for all-organic polymer 

ielectrics 

Given the complexity involved in polymer structure design and 

ielectric performance, a sophisticated rational approach is nec- 

ssary. In the pursuit of developing novel all-organic polymer di- 

lectrics, a primary objective is to devise a strategy for discov- 

ry that aims to achieve polymers with specific properties op- 

imized for capacitive energy storage. These properties are intri- 

ately linked to various structural elements within the polymer 

hain, referred to as proxies, through structure-property relation- 

hips. Numerous proxies can be discerned from existing literature, 

nd polymer chain structures can be designed accordingly. An ex- 

mple of polymer chain design is shown in Fig. 1 where different 

roxies are highlighted. The impact of different proxies on the ca- 

acitive energy storage performance is further discussed in detail 

 Section 3 ). 

The conventional approach for polymer discovery requires syn- 

hesizing the polymer experimentally and assessing its proper- 

ies through experimental measurements. Based on these results, 

djustments may be made to some proxies, leading to the syn- 

hesis of new polymers and subsequent experimental measure- 

ents. This conventional method is time-consuming and resource- 

ntensive, particularly for all-organic polymer dielectrics, where 

ultiple structure-property relationships are involved, necessitat- 

ng elaborate synthesis, processing, and characterization proce- 

ures. To mitigate the drawbacks of the conventional method, the 

iscovery strategy can be enhanced through the integration of a 

o-design methodology, combining computational techniques with 

xperimental measurements. A co-design methodology fosters a 

ymbiotic relationship between experimental and computational 

pproaches, wherein each complements the other. This facilitates 

he acceleration of polymer discovery while reducing costs and 

ime expenditures. Fig. 2 highlights the major steps involved in all- 
3

rganic polymer dielectrics discovery. This approach proves advan- 

ageous in uncovering novel proxies, thereby broadening the scope 

or the discovery of new polymer dielectrics [ 15 , 16 ]. 

. Structure-property insights from proxies for all-organic 

olymer dielectrics 

.1. Thermal stability 

The operating temperature requirements for dielectric capaci- 

ors in various electronic systems are shown in Fig. 3 . Capacitive 

nergy storage is crucial for space exploration, oil and gas opera- 

ions, electric vehicles, commercial aircraft, geothermal and nuclear 

ower plants, as well as electrification systems that require stabil- 

ty at high temperatures. The maximum operating temperatures of 

everal commodity polymers generally do not meet the required 

ange of operation and thus cooling systems are coupled with the 

ielectric capacitor assembly to protect and operate the capacitors. 

o meet the required demand at high temperatures it is indis- 

ensable that the polymers should have inherent high-temperature 

hermal stability [ 9 ]. 

The two main transition temperatures in polymers are the glass 

ransition temperature (Tg) and the melting temperature (Tm). For 

morphous polymers, the thermal stability is determined by Tg, 

hereas for semi-crystalline polymers it is determined by Tm [ 17 ]. 

t temperature below Tg, the segmental motion of polymer chains 

s terminated and there is a restricted bond rotation and chain im- 

obility causing the polymer to withhold the structure. As the 

emperature increases above Tg the chains gain mobility with a 

oncurrent increase in free volume. In such a molten state there 

s an increase in the leakage current due to a surge in charges 

nd dipolar relaxation which eventually results in a decline of 

reakdown strength and a rise in polarization loss [ 18 ]. Introduc- 

ng more amorphous segments such as rigid aromatics and bulky 

roups helps in increasing Tg. Polymers with high crystallinity have 

 low Tg which inhibits their performance at high temperatures. 

ighly crystalline polymers are not preferred for high-temperature 

ielectric applications. One of our pioneering studies on polyimides 
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Fig. 2. The overview of the key elements involved in the rational co-design approach. 

Fig. 3. Application areas of high-temperature electrostatic capacitors and respective operation temperatures. 
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here pyromellitic dianhydride (PMDA) was reacted with several 

hort-chain diamines revealed that when heating above Tg the di- 

lectric loss increases rapidly [ 19 ]. Although the synthesized poly- 

mides had a significantly large dielectric constant the Tg was con- 

idered a main proxy for failure at high temperatures. Thus, a 

igher Tg of the polymer is a decisive factor for the performance 

f dielectric polymer at high temperatures. 

Other techniques used to enhance thermal stability are 

rosslinking, introduction of high thermal conductivity fillers, 

lends, and fabricating sandwiched polymer structures [ 3 ]. Al- 

hough these modifications increase the thermal stability of the 

olymers, they continue to face several drawbacks at high tem- 
4

eratures. For example, at high temperatures, crosslinking can re- 

ult in restricted dipolar motions which results in a lowering of 

he dielectric constant, and the addition of fillers can display a rise 

n electrical conductivity which increases the leakage current [ 14 ]. 

t high voltages, the all-organic polymers with high thermal con- 

uctivity can dissipate heat better and prevent the thermal break- 

own process. Modifications that enhance the thermal conductiv- 

ty of the polymer also support the thermal stability of polymers 

ith naturally high Tg, which is essential for maintaining thermal 

tability [ 20 , 21 ]. 

Several reported high-temperature polymer dielectrics mainly 

omprise amorphous aromatic chain units. These polymers contain 
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Fig. 4. a Ebd for 10 Al-polymer interfaces shown as a function of Egap and φe 
Al . b Screened polymers with computed Egap and φe . (The proxies of 10 polymers named in the 

legend were overlayed to come up with screening criteria to discover high Ebd polymers. The shaded regions are the predicted polymers) [ 34 ]. Copyright 2020, Reproduced 

with permission from the American Chemical Society. 
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onjugated π bonds which are central to the thermal stability of 

he polymer as they help in the delocalization of electrons and de- 

rease the energy of the molecular units [ 8 ]. In the case of dielec-

ric applications, this phenomenon of delocalization causes a draw- 

ack resulting in increased leakage current at higher electric fields. 

hus, many polymers with conjugated backbone have a higher Tg 

ut they tend to have lower bandgap due to increased conductiv- 

ty at higher temperatures. Having a higher Tg is one of the many 

onditions required for high-temperature polymer dielectric. Thus, 

 rational co-design approach is a must when designing polymers 

ith high Tg without conceding the bandgap [ 14 ]. 

.2. Breakdown strength 

Dielectrics are divided primarily into organic and inorganic ma- 

erials. Among the several requirements for all-organic polymer di- 

lectrics, the breakdown field strength is extremely important for 

 material to be used in high-field dielectric applications. Organic 

aterials are preferred over inorganic materials due to their higher 

exibility and graceful breakdown strengths [ 22–25 ]. Dielectric 

reakdown field (Ebd ) is defined as the value of the strongest exter- 

al electric field a material can withstand before becoming electri- 

ally conductive, leading to the breakdown of the material [ 26 , 27 ].

Polymer dielectric breakdown can be categorized into intrinsic 

reakdown and extrinsic breakdown. The intrinsic breakdown pro- 

ess is related to the electronic structure of pure dielectric materi- 

ls. The extrinsic breakdown process is related to the accumulation 

f structural defects and charge carriers over a long time result- 

ng from aging and field-induced material degradation [ 28 ]. The in- 

erplay of thermal, electronic, and mechanical properties together 

mpacts the dielectric breakdown of a polymer. This has resulted 

n a lack of complete understanding of the factors or mechanisms 

eading to the breakdown of materials [ 29–32 ]. Apart from the 

rtbauer theory of dielectric breakdown, it has also been stated 

hat as high-density current is applied breakdown occurs when 

he polymer rapidly loses its ability to resist the passage of cur- 

ent through it [ 33 ]. 

Given the complexity of the dielectric breakdown mechanism, 

t is a difficult task to evaluate structural design for polymers with 

igh breakdown strength. Our efforts in the field have revealed the 

mportance of various proxies on which the breakdown strength of 

olymer dielectrics depends. An innovative approach was further 

dopted in screening potential polymers that can have high break- 

own strength Ebd . As computing the Ebd is demanding we inves- 

igated other interdependent properties and aimed to find corre- 

ations that can enhance the Ebd. It was found that the Ebd of the 

olymer when interfacing with a metal electrode correlates with 
5

he bandgap (Egap) and the electron injection barrier ( φe 
Al ) at the 

nterface, Fig. 4 a shows the direct proportionality of the two prox- 

es with the breakdown strength [ 34 ]. Using such correlations and 

omputational methods to validate the proxies we were able to 

creen 990 previously made polymers and discover 53 potential 

olymers which can exhibit high Ebd ( Fig. 4 b). 

An overview of our computational and experimental studies ex- 

oses the dependence of three proxies namely, bandgap, charge 

njection barrier, and cohesive energy density. These proxies are 

f primary importance in enhancing the breakdown strength of 

olymers. Dielectric breakdown mechanisms are intricate and pri- 

arily determined by factors such as material composition, elec- 

rical conductivity, thermal conductivity, film thickness, operating 

emperature, and electrical stress conditions [ 35 ]. Not limited to 

hese proxies other parameters can affect the breakdown strength 

f polymers. For instance, the gradual decline in capacitive storage 

erformance of polymer dielectrics at high temperatures is linked 

o the rise in leakage current caused by thermal and electric fields 

 36–39 ]. The rise in conduction as the electrical resistivity of poly- 

ers decreases with applied field and temperature is well known 

 39 ]. Structural modification such as introducing a local rotation 

n the polymer backbone is a useful proxy to mitigate conduction 

oss and increase the chain flexibility. The improved chain flexi- 

ility improves the bandgap and prohibits localized defect states. 

olymers with inherently large bandgaps are more likely to exhibit 

igher breakdown strength and lower conduction loss. 

To explore the impact of the rotational barrier on the conduc- 

ion loss, we modified the polyetherimide (PEI) with structural de- 

ects (paddle-wheel effect) ( Fig. 5 a and b) by introducing a small 

mount of p-phenylenediamine which has a lower rotational en- 

rgy barrier around the N (imide) – C (aromatic) bond for the 

olymer as compared to the conventional m-phenylenediamine 

hich was confirmed using comparative results [ 40 , 41 ] as shown 

n Fig. 5 c . The introduction of 5 % p-phenylenediamine (5p-PEI) in- 

reased the bandgap of modified PEI to 3.32 eV compared to the 

andgap of PEI which was 3.24 eV. PEI is one of the outstand- 

ng commercial polymers which has a high Tg. However, at ele- 

ated temperatures, it displays a rise in electric conduction ham- 

ering the energy storage performance at high temperatures. A 

inor modification in polymer structure design significantly af- 

ected the high-temperature energy storage performance without 

ajorly affecting the Tg of the polymer. Modified PEI due to its 

nhanced flexibility displayed a better charge-discharge efficiency 

nd repressed conduction loss at high temperatures as shown in 

ig. 5 d. The maximum electric fields for 5p-PEI were statistically 

igher than PEI as shown in Fig. 5 e indicating a higher breakdown 

trength. 
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Fig. 5. a Synthesis of PEI with the structural defect. b Schematic representation of paddle-wheel effect with repeating units having rotational freedom. c Rotational energy 

barrier observed for the PEI chains. d High electric field conduction of PEI and modified PEI (5p- indicating 5 % defect) at 150 °C. e The maximum electric field in DE loops 

for PEI and 5p-PEI as a function of the temperature. (The data points are average values and error bars denote the standard deviation) [ 40 , 41 ]. Copyright 2020, and 2022, 

Reproduced with permission from the Institute of Electrical and Electronics Engineers, and American Chemical Society. 
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Fig. 6. Schematic of the real and imaginary parts of the orientationally averaged 

dielectric permittivity [ 43 ]. Copyright 2016, Reproduced with permission from Else- 

vier Science Ltd. 
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.3. Dielectric polarizations 

Polarization can be expressed as the sum of all the dipole mo- 

ents per unit volume. Dipole moments are essential for the di- 

lectric performance of the polymers. Polarization (P) can be re- 

ated to dielectric permittivity ( εr ) and the applied electric field (E) 

ccording to Eq. (2) [ 42 ]. Dielectric permittivity ( εr ) is a frequency-

eliant complex number that accounts for the developed polariza- 

ions in an insulator in response to an external electric field. The 

eal part of εr is related to the energy storage capability and the 

maginary part determines the dielectric loss [ 43 ]. In an applied 

lectric field, the more the polarizations developed in the polymer 

ore the dielectric constant. Also, from Eq. (1) the dielectric per- 

ittivity (dielectric constant) is directly proportional to the energy 

ensity (Ud ) of the capacitor. Hence, polarizations, or a high di- 

lectric constant are ideal for the high efficiency and high energy 

ensity performance of the capacitor. 

 = Eεo ( εr − 1 ) (2) 

Depending on the source of dipoles, the polarizations can be 

istinguished into three types – electronic, atomic, and dipolar 

olarization. All these polarizations depend on the frequency of 

he electric field and influence the total permittivity. As shown in 

ig. 6 , the electronic and atomic polarizations occur at a higher fre- 

uency, as these involve displacement of electrons and alterations 

n atomic positions respectively which requires higher energy. At 

ower frequencies (operating frequencies for dielectric capacitors) 

he dipolar polarizations, which are a result of dipolar rearrange- 

ents with the electric field, have a major effect on the capac- 

tor performance. The relaxation of these polarizations results in 

ielectric loss which leads to energy dissipation over the charg- 

ng and discharging cycles. The polarization losses due to electronic 

nd atomic polarization are insignificant in the range of operation. 
6

hereas the loss due to dipolar relaxations plays a major role in 

apacitive energy storage. 

High temperature and high electric fields have an inverse ef- 

ect on the dipole movements. The high temperature increases the 

hermal motions which hinder the alignment of the dipoles in re- 

ponse to the external field and eventually lowers the polarization. 

herefore, the polymers should have a constant dielectric constant 

ver a range of temperatures, which is generally not the case for 

ow Tg polymers as the dielectric constant gets altered as the tem- 

erature bumps above the Tg. Several tactics to improve dielectric 

olarizations such as including more dipoles in the polymer back- 
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e
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one, insertion of high εr fillings into the polymer matrix, and en- 

ancing the flexibility of the dipoles have been studied over the 

ast. As many of these alterations increase the dielectric loss care 

ust be taken in adjusting the degree of these modifications. For 

xample, when the amount of the conducting fillers is near the 

ercolation threshold the dielectric losses due to conduction in- 

rease drastically. Similarly, the introduction of excess dipoles can 

ead to long-range dipolar interaction which can further result in 

ragic dielectric loss at higher temperatures. 

We initially investigated to explore the dielectric perfor- 

ance of polymers by enhancing the dielectric constant. The 

tructure-property relationship was developed for polyurea and 

olyurethane thin films with dielectric constant against the dielec- 

ric loss [ 44 ]. It was found that the dielectric constant increases 

nd dielectric loss decreases as the number of carbons between 

olarizable function groups decreases. This was supported by the 

ata obtained by the high throughput density functional theory 

DFT) calculations. In a subsequent study, the influence of differ- 

nt proxies including dielectric constant and bandgap on capacitive 

nergy storage were examined [ 45 ]. DFT calculations were used to 

erform an initial screening and down selection of polymer struc- 

ures. Through this rational co-design, polyimides were determined 

o be an important class material for high dielectric constant and 

ow loss for energy storage applications. One of the rationally co- 

esigned polyimides was able to achieve the highest dielectric con- 

tant 7.8 with a potential energy density of ∼15J/cm3. This study 

stablished the importance of the increased dipole volume from 

he ether linkage as well as the longer conjugation length when 

 carbonyl spacer was inserted between the benzene ring on the 

ielectric constant. 

With the advancement of computational and experimental 

nalysis to uncover the relationship between the dielectric con- 

tant and bandgap it was found that the electronic component of 

he dielectric constant ( εelec ) had an inverse relationship with the 

g. Whereas the ionic component of the dielectric constant ( εion ) 

nd the total non-electronic component has no relation with Eg 

 Fig. 7 a). This further motivated us to develop metal-containing 

olymers via which εion can be enhanced without sacrificing the 

g. The validity of the computational calculations was confirmed 

ith experimental validations, Fig. 7 b shows measured and com- 

uted similar results. Further exploration of organometallic poly- 

er dielectrics which were predicted to have a higher Eg and high 

( Fig. 7 c) led us to develop several metal-containing polymers that 

ad high dielectric constant between 5 and 8 and which also main- 

ained a high bandgap Eg > 6eV [ 46–57 ]. 

For commercial dielectric polymers, it is observed that the di- 

lectric constant and the bandgap follow an inverse relationship 

 Fig. 7 f). As both these parameters are essential for efficient di- 

lectric performance, a cautious approach is needed when increas- 

ng the dielectric constant without affecting the bandgap [ 14 ]. 

he complex interdependence of these parameters can be con- 

ronted using a rational co-design approach where the design of 

he polymer structure restricts the dipolar relaxation loss and pro- 

otes unrestricted rotation of dipoles [ 14 ]. A class of rationally co- 

esigned polyoxafluoronorbornenes (POFNBs) breaks the inverse 

elation between the dielectric constant and bandgap. The poly- 

er design elements in POFNBs promote strong dipolar relaxation 

ithout compromising the bandgap ( Fig. 7 d, e, and f) [ 58 ]. The

orrelation between the Tg, bandgap, and the dielectric constant 

s difficult to comprehend when designing polymers. More impor- 

antly, the discovery of new proxies like the free volume element, 

nd the paddle-wheel effect, increases the design complications. 

n such situations, a co-design approach where an AI-based infor- 

atics approach can assist the experimental observations would 

rovide key insights into improving and augmenting the polymer 

esign strategy. 
7

.4. Free volume elements 

Free volume in polymers is primarily responsible for several 

acroscopic properties such as thermal stability, viscosity, gas per- 

eability, and transport properties. It also affects the dielectric 

onstant [ 61 ] and the Tg of the polymer. At temperatures below 

g, the polymer chain movement is restricted, making the polymer 

hains randomly pack with minimal segmental motion. This ineffi- 

ient packing leaves multiple vacancies of unoccupied space which 

ave different shapes and sizes. These pockets with a radius on the 

ngstrom scale are referred to as the free volume elements (FVEs) 

 62–65 ]. 

FVEs can be used to determine and explain the motion of liq- 

ids and solids. They are only a portion of the total percent of 

he unoccupied volume of a polymer and partially determine the 

tructural heterogeneity of the polymeric materials. Free-volume 

lements have potentially been proven to influence the electri- 

al properties of all-organic polymer dielectrics [ 66 ]. As temper- 

ture increases, the polymer experiences different physical confor- 

ations due to mobility because of the increase in the free vol- 

me. Free volume in a polymer is observed to a greater extent 

n the polymer chain end than in the units within the chain [ 67 ]

s the end chains have a longer intermolecular distance with the 

eighboring chain ends. Free volume also has been shown to have 

 direct effect on conduction, with various studies and theoretical 

odels predicting increased electron mobility through free space 

 68–71 ]. 

Based on this ideology, recent research was done to compare 

yclic polystyrene films compared to their linear chain melt [ 72 ]. 

he authors demonstrated that cyclic polystyrene showed an en- 

anced dielectric strength and capacitive energy density compared 

o its linear chain melt which is attributed to the enhanced pack- 

ng of cyclic polymers due to lack of free chain-ends. Consequently, 

he void spaces created due to free volume elements in polymers 

ive room for the acceleration of electrons at high fields leading 

o high dielectric breakdown as demonstrated by Artbauer in the 

ree volume theory. The work confirmed that polymer topology can 

ubstantially influence the capacitive properties of all-organic poly- 

er films. A recent collaborative work on free-volume elements 

n polyetherimide polymers was conducted [ 67 ] to show the re- 

ationship between the free-volume elements and the breakdown 

trength. This was achieved by keeping molecular weight, and 

lass transition temperature constant and only changing the end- 

apping groups ( Fig. 8 a). Substituting the end groups is a better 

trategy than any other structural modification for altering the dis- 

ribution of free-volume elements. The measurement of free vol- 

me elements radius probability distribution curves was done us- 

ng an ultrafast infrared laser technique known as the Restricted 

rientation Anisotropy Method (ROAM). The observations indicate 

hat large FVEs lower the breakdown strength of the polymer lead- 

ng to polymer breakdown at lower electric fields when FVE in- 

reases. The results emphasize the importance of chain packing 

nd restricted free rotations of molecules in space which is often 

eglected when designing dielectric polymers. Excellent results are 

chieved when the probability for large FVEs is low as displayed in 

ig. 8 b. The Gaussian line shape is an indication of low FVEs and 

orrespondingly high Ebd. This study motivates researchers to con- 

ider the effect of voids on dielectric performance as space itself 

an play a major role in conduction loss and dielectric loss. 

. Accelerated polymer discovery with rational Co-design 

While commercial high-temperature all-organic polymer di- 

lectrics offer enhanced thermal stability, their aromatic struc- 

ures reduce the bandgap, leading to high conduction loss and low 

reakdown strength. Previous studies have demonstrated the sig- 
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Fig. 7. a Computed bandgap and dielectric constant of the 4-block polymers. b DFT computed structures for the repeat units and the measured and computed (in brackets) 

values of the first generation of rationally co-designed polymers. c Computational dielectric constant of over a thousand organic and organometallic materials vs their 

computational bandgap. (the two ovals indicate different spaces which consist of either organic or organometallic materials). d, and e The real part (d) and imaginary part (e) 

of the relative permittivity of m-POFNB. f Correlation between the measured dielectric constant and band gap for POFNBs and other commercial polymer dielectrics [ 42 , 58–

60 ]. Copyright 2018, 2016, 2022, and 2021, Reprinted with permission from Elsevier Science Ltd, John Wiley & Sons Inc, The Royal Society of Chemistry, and Proceedings of 

the National Academy of Sciences of the United States of America. 
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ificance of bandgap in polymer dielectric performance. Further- 

ore, introducing rigidity and thermally conductive fillers does not 

ignificantly enhance capacitive energy storage. Polymer structure 

odifications should yield adequate dipolar relaxation to enhance 

he dielectric constant without compromising thermal stability or 

he polymer’s bandgap [ 14 ]. 
8

The interdependence of Tg, εr , and Eg on the breakdown 

trength (Eb ) and the energy density (Ud ) of polymer dielectric can 

e explained using the trends shown in Fig. 9 a, and b [ 4 ]. Both Eb 

nd Ud demonstrate comparable trends at both room temperatures 

nd high temperatures, but a contrasting trend is noticed in the 

ase of εr . The fall in the energy density and breakdown strength 
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Fig. 8. a Synthesis scheme for polyetherimide (PEI) with different end caps. b FVE radius probability distribution (RPD) in four end-capped PEI films - (a) Probability curves 

are area normalized to emphasize the variations in line shapes. RPD for 2,4,6 -tri–tert-butylaniline-PEI is similar to a Gaussian curve, and others are non-Gaussian with 

elongated tails and bigger radii. (b) Zoomed-in representation of (a) where the amplitude of tails is correlated with the breakdown field, the higher the amplitude lower the 

breakdown strength [ 67 ]. Copyright 2023, Reproduced with permission from Elsevier Science Ltd. 

Fig. 9. Difference in energy storage performance of linear polymer dielectrics at a) 25 °C and at b) 150 °C [ 4 ]. Copyright 2022, Reproduced with permission from John Wiley 

& Sons Inc. 
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or high Tg polymers at high temperatures underscores the chal- 

enge of avoiding conduction losses which are due to the presence 

f the inherent aromatic structure of these polymers. Thus, com- 

aring Fig. 9 a and b one gets an idea of how a high operating

emperature can alter the dielectric performance of a polymer. This 

otivates the search for modern rational co-design strategies that 

an develop polymer structures without compromising all the es- 

ential parameters that are responsible for optimum performance. 
9

An example of an effective rational co-design strategy is illus- 

rated by the development of a unique class of polyolefins known 

s polyoxafluoronorbornenes (POFNBs). These polymers have a 

tructure comprising flexible and rigid bicyclic chemical compo- 

ents that maintain a high Tg and high bandgap ( Fig. 10 ) [ 11 ].

he dipolar relaxations are preserved, resulting in a favorable di- 

lectric constant that can be adjusted through the incorporation 

f different functional groups ( Fig. 10 c). These polyolefins exhibit 
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Fig. 10. Structural design and performance of POFNBs. a Polymer structure study. b The bandgap vs. Tg for polymers synthesized in this study and for established polymers 

with a high electric field and/or high-temperature stability. c Dielectric constants as a function of the bandgap for POFNBs and established all-organic dielectric polymers 

and energy storage performance of o-POFNB at 150 °C and 200 °C. d Discharge energy density and electric field endurance for POFNBs vs other polymer dielectrics at 150 °C 
[ 60 ]. Copyright 2022, Reproduced with permission from The Royal Society of Chemistry. 

Table 1 

Comparison of experimental glass transition temperature (Tg), dielectric constant (K), and 

bandgap (Eg) of commercial polymer dielectrics and rationally designed polymer dielectrics 

for capacitive energy storage. 

Polymers Tg ( °C) K (r.t 1 kHz) Eg (eV) Ref 

Commercial 

Polymer 

Dielectrics 

PET 75 3.3 3.9 [ 46 , 73 ] 

BOPP −5 2.2 5.9 [ 46 , 73 ] 

PEI 217 2.9 3.3 [ 42 , 74 ] 

PI 360 3 2.6 [ 42 , 74 ] 

PEEK 149 3 3.5 [ 42 , 74 ] 

PEN 120 3.2 3.6 [ 46 , 73 ] 

Rationally 

Designed 

Polymer 

Dielectrics 

PONB-2Me5Cl 232 3.29 4.39 [ 75 ] 

PNB-2Me5Cl 243 3.06 4.32 [ 75 ] 

PNB-3Cl4Me 220 2.9 4.27 [ 75 ] 

PNB-2,5DM 232 3.14 4.34 [ 75 ] 

o-POFNB 245 2.90 4.92 [ 60 ] 

m-POFNB 178 3.25 4.84 [ 60 ] 

p-POFNB 220 2.80 4.45 [ 60 ] 

PDTC-ODA N/O 4.52 3.22 [ 54 ] 

PDTC-MDA N/O 4.08 3.16 [ 54 ] 

PDTC-PhDA N/O 4.89 3.07 [ 54 ] 

PDTC-HDA 139 3.67 3.53 [ 54 ] 

PDTC-HK511 92 6.09 3.51 [ 54 ] 
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 high discharge density, outperforming several commercial all- 

rganic polymer dielectrics. Additionally, they have also demon- 

trated low conduction loss at elevated temperatures. Among the 

arious POFNBs, ortho-POFNB stands out with the highest Tg of 

44 °C ( Fig. 10 b) and an energy density of 6.5 J/cm3 at 200 °C
 Fig. 10 c). The inherent flexibility of the polymer chain proves cru- 

ial in dissipating loss and maintaining stability at high tempera- 

ures, providing greater rotational freedom for the polymer chain. 

he effectiveness of the rational co-design strategy is demonstrated 

n Fig. 10 , showcasing experimental results of various POFNBs at 

levated temperatures [ 60 ]. A comparative property analysis of 

ommercial polymer dielectrics and selected rationally co-designed 

olymers is shown in Table 1 . The selected polymers are from the 
10
lass of rational-designed functional polynorbornenes that show 

nhanced thermal stability and polythioureas with high dielectric 

onstant. It can be observed that the newly designed polymers 

reak the mutual constraints between the properties discussed in 

revious sections. 

Addressing the interdependence of several proxies and under- 

tanding their influence on dielectric properties requires a system- 

tic exploration of polymer space [ 3 , 14 ]. For polymer dielectrics, 

FT has proven to be reliable and accurate in predicting several 

lectronic properties and further assisting in the development of 

everal new polymer structures. Fig. 11 shows a few rationally 

o-designed polymers using DFT which outperform BOPP. How- 

ver, due to the computational overhead of DFT, only a limited 
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Fig. 11. Comparison of rationally co-designed polymers with commercial polymer dielectric BOPP using DFT [ 59 ]. Copyright 2018, Reproduced with permission from Elsevier 

Science Ltd. 

Fig. 12. The ecosystem of AI-based design of polymer dielectrics. The starting point is high-throughput simulations, publications, handbooks, and web sources from which 

computational and experimental data are integrated and managed. From there, AI algorithms are used in two modes. In the “forward” mode, the algorithms are trained 

to make instant property predictions for an enumerated set of polymers. In the “inverse” mode, the algorithms are trained to generate polymers on-demand for an enu- 

merated set of target properties. The polymers suggested by either mode undergo validation by physics-based computational methods, chemical synthesis, and physical 

experimentation; a process that generates new data. That data is then fed back into the loop. 
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umber of polymer chemistries and topologies can be explored. 

lso, Tg, and therefore thermal stability, cannot be computed us- 

ng DFT. This is why, for high-temperature dielectric design, AI and 

L techniques have been pursued, as they can estimate the Tg by 

raining on large experimental data sets. 

. Elements of artificial intelligence (AI) for high-temperature 

olymer dielectric co-design 

Within the vast expanse of chemical possibilities for polymers, 

 wide variety of high-performance dielectrics likely await discov- 

ry. Well-trained and calibrated artificial intelligence (AI), capable 

f handling large numbers that challenge human imagination, can 

elp converge on extraordinary or “outlier” materials rapidly [ 76 ]. 

hile the AI methods may come in different flavors, most share 

he common elements listed in Fig. 12 : [ 77 ] data, representation

i.e., fingerprinting), prediction, and design. These elements will be 

iscussed one by one in the following sections. Table 2 classifies 
11
he primary computational methods that have influenced the de- 

ign of polymer dielectrics, with a particular emphasis on methods 

elated to artificial intelligence. 

.1. Data 

The starting point of any machine learning model is data. In 

he context of polymer dielectrics, an individual data point takes 

he form of the tuple [Polymer, Property]—where "Property“ cor- 

esponds to one of the proxy properties identified in Section 3 . 

his type of data can be acquired from various sources, including 

andbooks, online repositories, and published journal articles (see 

able 2 for examples). 

Experimental data extracted from several scientific resources 

orms a reliable basis of information as it has already been peer- 

eviewed by the scientific community [ 78–80 ]. Several of these 

ata sources have been digitalized enabling users to access the 

ata over different online platforms [ 81 , 82 ]. For example, one of 
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Table 2 

Notable data sources and methods for AI-based design of polymer dielectrics. 

Name Category Description Web Source 

Prediction of polymer 

properties, CRC Press [ 88 ] 

Experimental 

data set 

Handbook of polymer properties including 

dielectric constant and glass-transition 

temperature 

Polymer Data Handbook, 

Oxford University Press 

[ 89 ] 

Experimental 

data set 

Handbook of polymer properties including 

dielectric constant 

PoLyInfo [ 80 ] Experimental 

data set 

∼500k point database of polymer properties 

including glass transition temperature, 

thermal decomposition temperature, melting 

temperature, and thermal conductivity 

https://polymers.nims.go.jp 

Khazana [ 84 ] Computational 

data set 

Database of DFT-computed properties 

including dielectric constant and band gap 

https://khazana.gatech.edu 

RandonPy [ 86 ] Computational 

data set 

Database of MD-computed properties 

including thermal conductivity and dielectric 

constant 

https://github.com/RadonPy/ 

RadonPy 

PSP [ 90 ] Enabling 

technology 

A tool to generate the 3D structure of 

polymers from SMILES strings at various 

scales (oligomers, loops, crystals, amorphous 

structures, etc.), thereby expediting 

high-throughput MD data generation. 

https://github.com/ 

Ramprasad-Group/PSP 

ECFP [ 91 ] Representation An algorithm for solving molecular 

isomorphism has since been adapted into a 

polymer representation. Not invariant to 

addition, subtraction, and translation of 

polymer repeat units. 

https://github.com/rdkit/rdkit 

PG [ 92 ] Representation A hierarchical algorithm for representing 

polymers. Invariant to addition, subtraction, 

and translation. 

https://polymergenome.org/ 

KRR General ML 

algorithm 

An algorithm that has been used to develop 

structure-property models. Limited capacity 

to model non-linear relationships. 

GPR General ML 

algorithm 

An algorithm that has been used to develop 

structure-property models. Can model 

non-linear relationships. Scales poorly as 

training data grows. 

polyGNN [ 93 ] Representation, 

polymer- 

specific ML 

algorithm 

A graph neural network-based algorithm for 

representing polymers as graphs. Invariant to 

addition, subtraction, and translation. 

polyGNN has also been used to develop 

structure-property models that scale favorably 

as training data grows. 

https://github.com/ 

Ramprasad-Group/polygnn 

polyBERT [ 94 ] Representation, 

polymer- 

specific ML 

algorithm 

A Transformer-based algorithm for 

representing polymers as a language. 

polyBERT has also been used to develop 

structure-property models that scale favorably 

as training data grows. 

https://github.com/ 

Ramprasad-Group/polyBERT 

Multitask learning [ 95 , 96 ] Enabling 

technology 

A concept that improves structure-property 

model accuracy, especially in data-scarce 

situations. 

Genetic Algorithm [ 97 , 98 ] General ML 

algorithm 

An algorithm that has been used to generate 

polymer dielectric chemical structures. 

https://github.com/ 

Ramprasad-Group/polyga 

SD-VAE [ 99 ] General ML 

algorithm 

A generative algorithm that has been used to 

generate polymer dielectric chemical 

structures. 

polyG2G [ 100 ] Polymer- 

specific ML 

algorithm 

A generative algorithm that casts chemical 

structure generation as a translation problem 

over graphs. Has been used to generate 

polymer dielectrics. 
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he pioneering databases “PoLyInfo” has a compilation of several 

undreds of polymer structures and properties that can be used 

or a variety of applications [ 83 ]. Given the possible variations in 

ifferent polymer structures and the vastness of available scientific 

ata, a manual approach to data extraction from literature is usu- 

lly a strenuous task. 

Computations, based on first-principle theory and classical 

olecular dynamics techniques, offer potential prospects for the 

utomated generation of polymer datasets (albeit at lower fidelity 

ompared to experimental data) [ 84 ]. Relatively large computa- 

ional data sets include Khazana [ 84 , 85 ]which contains polymer 

and gap and dielectric constant data from DFT calculations, and 

adonPy, [ 86 ] which contains data on dielectrics constant and a 
12
andful of other properties from MD simulations of various poly- 

ers. 

MD simulations require an initial 3D atomic structure, and the 

tructure that is chosen can have a significant impact on the tra- 

ectory of the simulations and therefore on the calculated materi- 

ls properties. Traditionally, the creation of this structure has been 

 manual step and an impediment to scaling up simulation pro- 

ocols to many different polymers. To address this problem, PSP 

as developed [ 85 ]. The primary input to PSP is the SMILES string 

f the polymer repeat unit. Optional inputs include polymer chain 

ength, density, size of simulation box for amorphous models, etc. 

he tool then uses this information, and geometry optimization 

outines, to generate 3D structures of and loop oligomers, infinite 

https://polymers.nims.go.jp
https://khazana.gatech.edu
https://github.com/RadonPy/RadonPy
https://github.com/Ramprasad-Group/PSP
https://github.com/rdkit/rdkit
https://polymergenome.org/
https://github.com/Ramprasad-Group/polygnn
https://github.com/Ramprasad-Group/polyBERT
https://github.com/Ramprasad-Group/polyga
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Fig. 13. Hierarchical fingerprints used to represent polymers in the Polymer Genome pipeline [ 92 ]. Copyright 2020, Reproduced with permission from American Institute of 

Physics Publishing. 
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olymer chains, polymer crystal structures, and polymer amor- 

hous structures. Adoption of this tool has accelerated the devel- 

pment of datasets for gas transport in polymers [ 87 ], and may be

sed in the future to generate data relevant to high-temperature 

ielectrics. 

.2. Polymer representations 

After compiling the data set, the next step is to represent 

he key chemical aspects of each polymer in a machine-ingestible 

anner. Modern approaches to representing (i.e., fingerprinting) 

olymers rely on the SMILES language [ 101 ], which is used to 

epresent 2D chemical structures as text. The string of text cor- 

esponding to one structure is a so-called “SMILES string“. An- 

ther key development has been the RDKit package [ 102 ], which, 

ia a SMILES string, can generate a 2D mathematical graph, with 

toms as nodes and bonds as edges, for any given molecule. The 

epresentation of a 2D chemical structure as a graph allows for 

he calculation of certain chemical features to be automated and 

ompleted efficiently. One such group of features is contained in 

he Extended-Connectivity Fingerprint (ECFP) [ 91 , 103 ]. Initially de- 

eloped to address the mathematical challenge of molecular iso- 

orphism (the task of identifying instances where two molecules, 

ith different atom numberings, are the same), ECFP accurately 

dentifies unique chemical structures. Subsequently, ECFP has been 

sed as a fingerprint for training polymer structure-property mod- 

ls. However, the ECFP, when applied to graphs of polymer repeat 

nits, is not invariant to relevant transformations such as transla- 

ion, addition, and subtraction. The process of translation involves 

hifting the periodicity window, leading to equivalent periodic re- 

eat units, such as (–OCC–), (–COC–), and (–CCO–) in polyethylene 

lycol. Addition refers to extending a repeat unit by incorporating 

ne or more minimal repeat units, exemplified by (–COCO–) and 

–COCOCO–). Subtraction is the opposite, where a repeat unit is 

educed by removing minimal repeat units. 

Over the past decade, a successful fingerprinting approach has 

een developed as part of the Polymer Genome (PG) project [ 92 ]. 

mportantly, the fingerprint generated by this approach is invari- 

nt to translation, addition, and subtraction. The input to the fin- 

erprint algorithm is the SMILES string corresponding to a poly- 

er’s repeat unit. The algorithm is characterized by a key fea- 

ure: hierarchical representation, organized across physical length 

cales (see Fig. 13 ). At the smallest length scale, the atomic features 

f a polymer are considered. Specifically, we check the frequency 
13
f various small substructures, known as atomic triples. Moving 

p a rung, the block-level features of a polymer are considered. 

his corresponds to checking the frequency of large substructures 

ithin a polymer. Finally, at the largest length scale, chain-level 

eatures—spanning the entire polymer repeat unit—are computed. 

ome example chain-level features include the distance between 

ings, side-chain length, and the number of aromatic rings. The 

G approach works well because it encapsulates chemical features 

upported by decades of science and natural intelligence. For ex- 

mple, side-chain length, one of the features in the PG fingerprint, 

s known to impact several properties, including glass-transition 

emperature. 

.3. Structure-Property prediction models 

Once the data set has been compiled and fingerprinted, a 

tructure-property prediction model may be trained. During the 

raining process, a set of relationships is learned between the fin- 

erprint components and the properties are interest, such that the 

elationships can best fit the fingerprinted data set. This set of 

earned relationships is the structure-property model and, once ob- 

ained, may be used to predict the properties of known and un- 

nown structures. 

Our initial work [ 104 ] in this area focused on the prediction 

f five properties (atomization energy Eat , band gap Eg , and the 

lectronic, ionic, and total dielectric constants) using the kernel 

idge regression (KRR) machine learning algorithm and the atomic- 

evel components of the PG fingerprint. In the intervening time, 

dditional layers of sophistication have been added to model the 

forementioned five properties and more (e.g., Tg , electron injec- 

ion barrier, etc.). The advanced due to the curation of larger data 

ets, [ 93–96 , 105 ] advancements beyond KRR (Gaussian Process Re- 

ression, [ 106–108 ] neural networks, [ 93 , 95 , 96 , 98 ], etc.), multi-

ask learning, [ 96 ] and improved fingerprinting techniques [ 93 , 94 ]

many of the advanced models are currently deployed at https: 

/polymergenome.org/ ). 

While KRR is a useful method, it is only able to learn linear re- 

ationships between fingerprints and properties. GPR, on the other 

and, can pick up nonlinear relationships and was employed in 

everal works for this reason. The accuracy of models trained using 

ither method suffers when data is scarce or of poor quality. To 

itigate this issue, we have utilized multitask learning, wherein 

nstead of training one model per property, a singular model is 

rained to learn multiple properties simultaneously. By training a 

https://polymergenome.org/
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Fig. 14. a A graph neural network (termed polyGNN) for polymers. The starting point is the repeat unit, which is then passed into the polyGNN encoder. The encoder 

generates initial features for each atom and bond in the graph. These atom and bond features are passed to the polyGNN Message Passing Block, which updates the atom 

features using a set of MLPs. The updated atom features are averaged together, yielding the polymer features. These features are input, along with selector vectors, into 

the polyGNN Estimator (another MLP) which yields the property prediction [ 93 ]. Copyright 2023, Reproduced with permission from American Chemical Society. b polyBERT 

is designed to process Polymer Simplified Molecular-Input Line-Entry System (PSMILES) strings. It performs several key steps, including canonicalization, tokenization, and 

masking (steps 1–3) of PSMILES strings, before passing them into the DeBERTa [ 113 ] model for further processing (steps 4–6). The architecture includes 12 Transformer 

encoders, each equipped with 12 attention heads. To predict masked tokens, a final dense layer with a softmax activation function is employed. Additionally, polyBERT 

generates fingerprints by averaging over the token dimension (sentence average) of the last Transformer encoder, to create meaningful representations for downstream 

applications [ 94 ]. Copyright 2023, Adapted with permission from Springer Nature. 
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ingle model to simultaneously learn a group of target properties 

t once, the risk of generating overfitted predictions for any one 

pecific target property is reduced [ 109 , 110 ]. As a result, the accu-

acy of each property is improved. For instance, for 24 out of 34 

olymer properties ( ∼71 %), models leveraging multitask learning 

utperformed their single task counterparts [ 93 ]. 

An important aspect of multitask involves carefully ensuring 

hat all properties selected for co-learning are interrelated [ 96 ]. 

his selection is a heuristic process that relies on materials do- 

ain expertise. Failing to establish such links may result in learn- 

ng spurious correlations, thereby impairing the model’s ability to 

eneralize effectively. A challenge with multitask learning is that 

he number of training data points n can be quite large. In these 

ases, GPR is an inefficient choice, as it requires a n × n matrix in-

ersion during training. Neural networks offer improved efficiency. 

Over the past few decades, huge amounts of research and in- 

estment have gone into producing ever-more-performant neural 
14
etwork architectures. The most basic neural network is a multi- 

ayer perceptron (MLP), which takes as input a fixed-length vector 

e.g., the PG fingerprint, ECFP, etc.). More advanced architectures 

nclude the graph neural network (GNN) for processing graph data 

 111 ] and the Transformer [ 112 ] for processing text. As mentioned

arlier, polymers may be represented using either data type and 

herefore both the GNN and the Transformer architectures may be 

sed to produce polymer structure-property models. In these mod- 

ls, unlike with the MLP, there is no need to calculate the fin- 

erprint components before training, reducing the computational 

verhead. In our work ( Fig. 14 ), we have found that both GNN and

ransformer-based polymer prediction algorithms are up to two or- 

ers of magnitude faster than MLP-based approaches with com- 

arable or better model accuracy [ 93 , 94 ]. The enhanced computa- 

ional efficiency of GNN and Transformer architectures is expected 

o drive their broader adoption, unlocking the ability to screen ex- 

remely large polymer libraries at scale. 



P.S. Aklujkar, R. Gurnani, P. Rout et al. Progress in Polymer Science 161 (2025) 101931

Fig. 15. a Chemical space of 13,0 0 0 previously synthesized polymers, displayed with the help of the first two principal components (PC1 and PC2). b Property heat map of 

machine learning glass transition temperature, band gap, dielectric constant, and electron injection barrier for aluminum electrode - ML Tg, ML Eg, ML ε100 Hz, and ML ϕe 
AI 

(circles sizes) respectively of 13,0 0 0 polymers. (The experimental Ebd DC values at 100 °C of 11 commercial polymers (stars) and lab-made PVK (square) and the average 

D−E loop Ebd of PolyOFNB (triangle) are shown). c Down-selection procedure for polymer dielectrics screening [ 114 ]. Copyright 2021, Reproduced with permission from the 

American Chemical Society. 

Fig. 16. The calculated bandgaps and dielectric constants from density functional theory (DFT) computations are compared against experimental measurements for selected 

inorganic compounds and polymers [ 42 ]. Copyright 2016, Reproduced with permission from John Wiley & Sons Inc. 
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.4. Structure generation 

The space of known polymers is one such library. In our recent 

ork, [ 114 ] starting from a list of 13,0 0 0 known polymers, we used

n informatics-based approach to identify promising dielectrics. 

he space of polymers in our data set, displayed in Fig. 15 a, spans

ver 18 polymer families, including some that have not previously 

een tested for dielectric properties. Promising dielectrics should 

xhibit high Tg and high Eg . While these properties are uncom- 

on for commercial polymer dielectrics (stars in Fig. 15 b), our 

tructure-property models reveal interesting candidates (dots in 

ig. 15 b) that are known polymers but have not yet been commer- 

ialized as dielectrics. 

To focus on the most promising of these candidates, a four- 

tage approach is used, detailed in Fig. 15 c. In the first stage, af-

er models are trained for five properties (glass transition temper- 

ture, band gap, dielectric constant at 100 Hz, electron injection 

arrier for aluminum electrode, and cohesive energy density - Tg , 

g , ε100 Hz , ϕe Al, and CED), we keep the 196 structures with pre- 

icted Tg ≥ 450 K, E ≥ 4 eV, ε100 Hz ≥ 3, ϕe Al ≥ 2.5 eV, and CED 

130cal/cm3. For these 196 structures, we compute the Eg us- 

ng DFT, keeping the 136 structures with computed Eg ≥ 4 eV. In 

he third stage, we eliminate structures with undesirable, as de- 

ermined by polymer chemists, functional groups (e.g., OH), leav- 
15
ng 101 candidates. Finally, in the fourth stage, a handful of candi- 

ates are synthesized and characterized in the lab. Among these, 

e identified polyvinylcarbazole (PVK) and discovered that it has 

 relatively high Ebd of 476 kV/mm at 100 °C, thus making it a 

romising candidate for applications requiring high temperature, 

igh energy density capacitors. 

The aforementioned 13,0 0 0 known polymers represent a speck 

n the universe of possible polymers. Several methods have been 

eveloped and used to chart these unknown regions. A polymer 

epeat unit may be viewed as a sequence of connected chemical 

ragments (e.g., NH, CO, CS, etc.). By identifying suitable fragments 

nd combining them, a list of candidate polymers can be enumer- 

ted. Following this approach, we identified polymers with excep- 

ional predicted band gap and dielectric constant (see ”New poly- 

ers” in Fig. 16 ) [ 42 ]. These “first-generation” structures were used 

s starting points to identify promising polymer families. We syn- 

hesized a set of “second-generation” polymers within these fami- 

ies, and found a few (see Fig. 11 ) with unprecedented energy den- 

ities, up to 16 J/cm3 at room temperature. 

Rather than generating polymers from all possible fragment 

ombinations, another approach is to use an optimization algo- 

ithm to navigate and selectively screen the space. One optimiza- 

ion algorithm that we have used is the genetic algorithm (GA) 

 97 , 98 ], described, for polymers, in Fig. 17 a. In this evolution-
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Fig. 17. (a) Illustrates the iterative workflow for polymer design using a genetic algorithm framework. (b) Depicts the mutation and crossover operations to generate new 

’offspring’ polymer structures from a pair of ’parent’ polymers. (c) Shows a plot of glass transition temperature (Tg) versus bandgap (Eg) for the offspring polymer population 

[ 98 ]. Copyright 2021, Reproduced with permission from Elsevier Science Ltd. 
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nspired scheme, the starting point is a set of chemical fragments, 

nalogous to the set of base pairs found in DNA. An initial pop- 

lation of “parent” polymers is created by a random combina- 

ion of the fragments. A fitness function is used to select the 

ost fit parents. Crossover and mutation (see Fig. 17 b) of the par- 

nts’ chemical fragments produce “offspring polymers”. These off- 

pring serve as parents for the next generation. This iterative pro- 

ess continues until the goal (high-performance dielectrics in this 

ase) has been met. In this work, structure-property models are 

everaged to assess fitness in each iteration of the optimization 

rocess. 
16
This GA has been used to produce polymers with high predicted 

g , high predicted Tg , and beyond (see Figs. 17 c and 18 ). Of particu-

ar interest are the polymers listed in Fig. 18 , which were screened 

ased on both predicted properties and synthesizability. Each poly- 

er is predicted to display an Eg > 5 eV, a dielectric constant 

t 100 Hz ε > 4, a Tg > 500 K, a cohesive energy density ecoh 〈
0 cal cm−3 , and an electron injection barrier with Al electrode φe 

 3 eV. In addition, Fig. 18 lists potential monomers and a synthe- 

izability score for each polymer. The monomers and scores were 

enerated using a retrosynthesis tool developed by us [ 115 ]. Using 

he tool, out of the large number of generated polymers with good 
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Fig. 18. Polymers derived using a genetic algorithm for achieving the optimal values for intended proxies [ 97 ]. Copyright 2021, Reproduced with permission from Springer 
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redicted properties, the ones with available monomers were effi- 

iently identified. 

Another optimization algorithm useful for polymer design is 

radient descent, which is used to train generative neural networks 

apable of design. A benefit of these approaches is that, in prin- 

iple, structure-property models are not required. In practice, we 

nd that incorporating structure-property models into the design 

rocess improves performance, although the models need not be 

sed iteratively (as was required with the GA). The first approach 

e have explored is the Syntax-Directed Variational Autoencoder 

SD-VAE) [ 99 , 116 ]. A VAE is a neural network that learns a map-

ing between a discrete input sequence (i.e., a polymer SMILES 

tring in this case) and a continuous “latent” space. The VAE con- 

ists of an Encoder, to learn the input to latent mapping, and 

 Decoder, to learn the latent to input mapping. Thus, by sam- 

ling the latent space and then using the Decoder, SMILES strings 

orresponding to new polymers may be generated. Notably, the 

AE is an unsupervised learning method that only requires poly- 

er SMILES strings for training, without any associated property 

abels. 

SMILES strings have syntactical and semantic rules that must 

e followed for the string to represent a polymer. These rules are 

ncorporated into the VAE using grammar parse trees and stochas- 

ic lazy attributes, details of which can be found in Ref. [ 99 ]. To

ocate new polymers with high Eg and Tg , we sampled points in 

he latent space that lie on straight lines between the latent space 

ectors of known polymers with high Eg and Tg . The samples were 

creened using Eg and Tg structure-property models. A handful of 

he screened candidates are displayed in Fig. 19 . 

Another generative neural network-based approach for polymer 

esign has been developed by us. The algorithm is called Poly- 

er Graph-to-Graph translation (polyG2G) [ 100 ]. In the SD-VAE 

pproach, the Decoder was trained to reproduce the sequence fed 
17
nto the decoder. Here, the Decoder is trained to produce not the 

ame sequence, but a closely-related sequence. Specifically, the 

odel is trained to translate the input sequence, which represents 

 polymer with low dielectric performance, into a chemically sim- 

lar polymer with much better dielectric performance. 

The training methodology for the polyG2G system involves sev- 

ral intricate steps, as illustrated in Fig. 20 (steps A-J). At a high 

evel, the polyG2G process starts by mapping a polymer to both a 

unction tree (JT) and graph representation. These representations 

re encoded into latent vectors, concatenated, and sampled to pro- 

uce translated Jts and graphs. These are then decoded into new 

olymer candidates by determining the constituent atoms, rings, 

nd chemical bonds. During training, the objective is to generate 

 graph sufficiently similar to the target graph, with the training 

oss measuring the success of this objective. During inference, the 

rained model performs the same steps but focuses on generating 

ew polymers. 

Once trained, the polyG2G model was used to design polymers 

ith Eg > 4 eV, φe > 3 eV, and Tg > 450 K. Our analysis identified

556 unique polymers (0.45 % of the total) that met our prede- 

ned objectives. In contrast, only 8 out of 13,014 (0.061 % of the 

otal) polymers from the dataset used to train polyG2G satisfied 

ur objectives. This stark difference demonstrates that polyG2G is 

ot only capable of generating a large number of high-performing 

esigns but also that these designs "hit" the target objectives an 

rder of magnitude more frequently than the space of synthesized 

olymers. In other words, polyG2G can effectively learn targeted 

esign rules specifically aimed at producing high dielectric break- 

own strength polymers. 

To further refine our search, we subjected 20 of the 3556 poly- 

ers to density functional theory (DFT) computations to calculate 

heir bandgap and electron injection barrier. These 20 candidates 

ere specifically chosen from the larger pool as they exhibited the 
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Fig. 19. Polymers developed using the SD-VAE approach and their Gaussian process regression (GPR) Tg and Eg estimates and error (in parenthesis). (‘∗ ’ is a representative 

of polymer chain ends) [ 99 ]. Copyright 2020, Reproduced with permission from the American Chemical Society. 

18
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Fig. 20. The polyG2G workflow for the example case of polystyrene, where the hyperparameters npair and ntranslate are set to 2 and 1, respectively. The result of the latent 

translation step is encircled by a dashed red line. The pink circles represent carbon atoms, the yellow circles denote benzene rings, and the blue circles symbolize NH2 

groups. All hydrogen atoms are implicit in this representation [ 100 ]. Copyright 2021, Reproduced with permission from the American Chemical Society. 
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ighest fitness score F , as defined in Equation 4. 

 = Tg × Eg × ϕe × Rmt × U (3) 

here Tg, Eg , φe are the ML property predictions of a given poly- 

er, Rmt is the ratio between the number of atoms in the main 

hain per repeat unit and the total number of atoms per repeat 

nit, and U is the uniqueness of the polymer. 

After subjecting these 20 candidates to DFT computations, 10 

olymers exhibited computed properties that surpassed our prede- 

ned objectives, indicating their resistance to large electric fields. 

hese top-performing candidates are presented in Table 3 . 

. Critical next steps 

.1. Beyond homopolymers 

Homopolymers possess structural simplicity; they can be de- 

cribed by a single repeating unit. However, neat copolymers and 

olymer blends, which are structurally stochastic, are much more 

ommon in everyday life. Polymer composites, in which the poly- 

er (homo-, co-, and/or blend) matrix forms the primary contin- 

ous phase, are even more common. In the context of dielectrics, 

ach polymeric material class has its merit [ 117 ]. However, to date, 

ost work in polymer informatics has focused on homopolymers. 

imited work has been done on copolymers [ 118–124 ], blends 

 109 , 125–127 ], and polymer composites [ 128 ]. These effort s have

lucidated techniques for representing complex polymer systems. 

hese techniques now need to be applied to model properties rel- 

vant to dielectric design. For example, while models [ 95 ] exist 

or the glass-transition temperature of complex polymer systems, 

here are not yet curated data sets or models for the dielectric con- 

tant and band gap of complex polymer systems. 
19
.2. Synthesis and processing 

As detailed in prior sections, a handful of methods have been 

eveloped for designing or enumerating novel polymer repeat 

nits. In these methods, the repeat units are produced atom-by- 

tom or by combining molecular fragments. However, ranking such 

epeat units in terms of their synthesizability remains a highly 

ontrivial task. For example, a polymer with repeating unit –NR1 - 

R2 – having a nitrogen backbone with R1 , and R2 , being sub- 

tituent functional groups might have a high Tg, and dielectric con- 

tant theoretically, but the synthesis of such polymer is challeng- 

ng, especially on an industrial scale. 

A promising alternative approach [ 75 , 129 , 130 ] is to start with a

ibrary of synthesizable small molecules, and then digitally trans- 

orm them into repeat units using a set of well-known polymer- 

zation reactions. This way, some aspects (e.g., the monomers and 

he reaction type) of the polymer synthesis are known a priori for 

ach repeat unit. 

Computational assessment of polymer synthesis or processing 

arameters will also be critical. To date, in the context of poly- 

er dielectrics, computations have mainly been used to predict the 

roperties (e.g., Tg, band gap, dielectric constant) of polymers in 

he solid state (e.g., dielectric films). Limited work exists on com- 

utations for dielectric polymers in other states (e.g., in solution 

r melt), however, there is a tremendous opportunity to accelerate 

ielectric design by looking beyond the solid state. 

For instance, prior work has focused on predicting the compat- 

bility of polymers in a variety of solvents [ 131–134 ]. These mod- 

ls may be extended to future studies of dielectric polymers. The 

odels can accelerate the choice of solvent (and minimize solvent 

aste) for a given polymer dielectric during chemical synthesis or 

ven help design new polymers that are compatible with targeted 

e.g., green) solvents. 
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Table 3 

Structures and properties of 10 novel, high-value, targets discovered by 

polyG2G. Band gaps ( Eg ) and electron injection barriers ( φe ) are DFT estimates. 

Glass-transition temperatures ( Tg ) are ML estimates [ 100 ]. Copyright 2021, Re- 

produced with permission from the American Chemical Society. 

Structure Properties 

Eg , DFT (eV) φe , DFT (eV) Tg , ML (K) 

6.04 3.13 549 

6.52 3.05 520 

6.21 3.27 480 

6.07 3.12 511 

6.14 3.08 495 

6.28 3.24 502 

6.32 3.24 474 

6.07 3.08 524 

6.26 3.19 478 

6.29 3.17 499 
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Compared to polymers in solution, the body of informatics 

ork on polymers in melt is limited and has mainly focused on 

odeling the polymer melting temperature [ 93 , 135 ]. Other models 

xist for properties such as melt quality [ 136 ] and melt instabil- 

ty, [ 137 ] but the models were trained on just a handful of poly-

er chemistries and therefore do not generalize to new polymeric 

aterials. Future work focused on creating general-purpose mod- 

ls for polymer melt properties is needed. 

.3. Data collection 

Many of the critical next steps identified above depend on the 

resence of yet-to-be-developed data sets. There are two pathways. 

he first is to curate data that already exists, albeit among several 

isparate sources, into one place. Advancements (e.g., the Trans- 

ormer [ 112 ], ChatGPT [ 138 ], BERT [ 139 ]) in the field of Natural

anguage Processing have led to the creation of Large Language 

odels (LLMs) that can reliably perform complex natural language 

asks. These tasks include sentiment analysis [ 140 ], machine trans- 
20
ation [ 141 ], and spam detection [ 142 ]. LLMs have also been used

o mine literature data on polymeric materials from published ab- 

tracts [ 143 ]. Expansion of this capability to more abstracts, full- 

ext, tables, and graphs is a promising direction for obtaining nec- 

ssary, dielectric-relevant, data. 

The other data-collection pathway is generating new data, 

hich may be done using high-throughput simulations (e.g., MD 

r DFT). Such data is unlikely to replace ground-truth experimen- 

al data in terms of fidelity. However, using the multi-task learning 

chemes described in previous sections, the simulation data may 

e used as a complement to improve models that are only trained 

n experimental data. 

.4. Physics-informed machine learning 

While low barriers exist to curating and generating large data 

ets for some properties (e.g., by NLP or simulation), there are 

ther properties for which data is scarce. In these scenarios, physi- 

al or empirical equations may be used to decrease an ML model’s 

ependency on data. For instance, an Arrhenius relationship was 

ncorporated into a deep neural network model for the prediction 

f lithium-ion conductivity in polymer electrolytes [ 144 ]. By incor- 

orating physics (in the form of the Arrhenius relationship), the 

odel produced smooth and meaningful predictions of conductiv- 

ty as a function of temperature, despite only a limited amount of 

emperature variation in the training data. 

Likewise, there exist well-known relationships for important 

ielectric properties, such as the Fox Equation, [ 145 ] for glass- 

ransition temperature. Future work that incorporates the time- 

ested wisdom of these equations will improve the generaliz- 

bility and reliability—especially in low-data situations—of next- 

eneration ML models for dielectric design. 

. Challenges and future directions 

Structural modifications for improving the capacitive energy 

torage can simultaneously influence a variety of other polymer 

roperties. While it is important to improve the thermal stabil- 

ty (Tg) to avoid thermal degradation, increasing Tg can introduce 

hallenges in polymer processing, such as increased film brittleness 

nd internal stress [ 3 ]. Similarly, enhanced dielectric polarization 

o improve the energy density may inadvertently elevate dielectric 

oss, which can degrade performance efficiency over multiple oper- 

tion cycles [ 146–148 ]. Excessive dielectric loss is particularly con- 

erning for large-scale applications of capacitor films, where even 

 small increase in loss can result in significant heating of the elec- 

rical assembly due to the large surface area of the film. The intro- 

uction of polar groups for enhancing the dielectric constant can 

ecrease the moisture resistance of the polymer film if the func- 

ional groups are hydrophilic. The presence of unwanted moisture 

an lead to an unstable dielectric constant, which is not desired 

or capacitive energy storage leading to early dielectric breakdown. 

everal such structural modifications can also affect the polymer- 

olvent interactions, film morphology, mechanical properties, etc. 

lso, the mechanism of dielectric breakdown and the direct effect 

f thermal conductivity on capacitive energy storage performance 

s not fully understood [ 149 ]. 

Properties such as Tg, dielectric loss, mechanical strength, and 

hermal and electrical breakdown are inherently complex and 

ulti-variable, depending on the polymer morphology, multi-scale 

eometric architectures, defects of different sizes, etc. AI-based 

ools that offer economical screening of existing polymers, and 

uild on to discover new polymers can be instrumental in un- 

erstanding these properties across multiple variables [ 150 ]. Well- 

rained and calibrated artificial intelligence (AI) models, can be 

sed to compute the calculation of large numbers that are difficult 
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o manually comprehend, and unravel the mutual interdependence 

f various structure-property relations. 

. Conclusion 

The co-design approach has the potential to accelerate the 

esearch and develop technologies that can moderate the rising 

nergy-storage demand. Machine learning techniques can signif- 

cantly reduce the time required to develop new polymers and 

o elucidate the interdependencies of various parameters follow- 

ng structural modifications. For instance, through initiatives like 

he Material Genome Initiative (MGI), the time required to develop 

ew materials could be cut by more than half compared to con- 

entional methods [ 151 ]. 

In conclusion, it is important to highlight the promising poten- 

ial of a systematic method for the discovery of new polymer di- 

lectrics. Recent achievements in the field of computer engineer- 

ng and material science demonstrate that innovative collaborative 

ethods integrating computation, synthesis, and characterization 

an lead to significant progress [ 152–157 ]. The co-design approach 

nables us to move ahead of the traditional trial-and-error and 

nstinct-based methods that have been used so far. 
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