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Polymer-based electrostatic capacitors find critical use in high-temperature applications such as electri-
fied aircraft, automobiles, space exploration, geothermal/nuclear power plants, wind pitch control, and
pulsed power systems. However, existing commercial all-organic polymer dielectrics suffer from signifi-
cant degradation and failure at elevated temperatures due to their limited thermal stability. Consequently,
these capacitors require additional cooling systems, that require increased system load and costs. Tradi-
tionally, an inability to directly predict or model key properties - such as thermal stability, breakdown
strength, and energy density has been an impediment to the design of such polymers. To enhance the
experimentation and instinctive-driven approach to polymer discovery there has been recent progress
in developing a modern co-design approach. This review highlights the advancements in a synergistic
rational co-design approach for all-organic polymer dielectrics that combines artificial intelligence (AlI),
experimental synthesis, and electrical characterization. A particular focus is given to the identification of
polymer structural parameters that improve the capacitive energy storage performance. Important struc-
tural elements, also known as proxies, are recognized with the rational co-design approach. The central
constituents of Al and their influence on accelerating the discovery of new proxies, and polymers are pre-
sented in detail. Recent success and critical next steps in the field showcase the potential of the co-design
approach.

© 2025 Published by Elsevier Ltd.

1. Introduction

high-field performance of energy systems. Energy storage compo-
nents - electrostatic and electrochemical capacitors, batteries, and

Grid distribution networks are progressively facing more and
more challenges due to the increasing need for electric vehicle
(EV) charging stations, the growing adoption of renewable energy
sources, the requirement for effective energy storage solutions, and
the significant impacts of climate change [1]. The changing dynam-
ics of electricity sources, loads, and consumption patterns highlight
the imperative for improved scalability, distribution, and flexibility
in their efficient administration. The advancement of energy stor-
age technology is a crucial factor for the stability, consistency, and
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fuel cells are gaining increased attention. In comparison to energy
storage devices which utilize electrochemical reactions to store en-
ergy, dielectric capacitors, which store electrical energy through
an electrostatic field, are distinguished by their exceptional power
densities attributable to their swift charge-discharge capabilities
within brief time frames [2-4]. Polymer-based dielectrics overcome
the disadvantages of ceramic dielectrics by offering a compara-
tively higher breakdown strength, flexibility, ease of processing,
variable structural design, and a smoother failure mode [5,6]. Elec-
trostatic (dielectric) capacitors in particular offer high power den-
sity, high operating voltage, and lesser loss as compared to other
classes of energy storage components [7]. For applications involv-
ing extreme thermal and electrical conditions, all-organic polymer-
based electrostatic capacitors are vital in achieving high energy
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Nomenclature

Al Artificial intelligence

BNNS Boron nitride nano sheets

BOPP Biaxially oriented polypropylene

DFT Density functional theory

ECFP Extended connectivity fingerprint

Eat Atomization energy

Epg Dielectric breakdown field

€coh Cohesive energy density

Egap Bandgap

EV Electric vehicle

FVEs Free volume elements

GA Genetic algorithm

GNN Graph neural network

GPR Gaussian process regression

K Dielectric constant

KRR Kernel ridge regression

LLM Large language models

MD Machine data

MGI Material genome initiative

ML Machine learning

MLP Multilayer perceptron

NLP Neural language processing

PDTC-HDA Poly para-phenylene diisothiocyanate hexane
diamine

PDTC-HK511 Poly para-phenylene diisothiocyanate jef-
famine

PDTC-MDA Poly para-phenylene
diphenylmethanediamine

diisothiocyanate

PDTC-ODA Poly para-phenylene diisothiocyanate oxydi-
aniline

PDTC-PhDA  Poly para-phenylene diisothiocyanate phenyl-
methanediamine

PEEK Polyether ether ketone

PEI Polyetherimide

PEN Polyethylene naphthalate

PET Polyethylene terephthalate

PG Polymer genome

Pl Polyimide

PMDA Pyro metallic gianhydride

PNB-2Me5Cl  2-methyl-5-choro polynorbornene

PNB-3Cl4Me  3-chloro-4-methyl polynorbornene

PNB-2,5DM Dimethyl polynorbornene

POFNBs Polyoxafluoronorbornenes

PolyG2G Polymer graph-to-graph

PONB-2Me5Cl 2-methyl-5-chloro polyoxanorbornene

PVK Polyvinylkarbazole

ROAM Restricted orientation anisotropy method

RPD Probability distribution

SD-VAE Syntex directed variational autoencoder

SMILES Simplified molecular input line entry system

Tg Glass transition temperatures

Tm Melting temperature

Uy Energy density

&r Relative permittivity

&o Vacuum permittivity

Eelec Electronic component of the dielectric con-
stant

Eion Ionic component of the dielectric constant

@M Electron injection barrier

density, and optimum efficiency for harsh condition electrifica-
tions.
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For linear dielectrics, the induced polarization is proportional
to the total external and internal electric fields. For such dielec-
tric, the energy density (Uy) can be derived [3] and represented as
shown:

Uy = 1/2€,&.E? (1)

As seen from Eq. (1), the energy density varies with the square
of the applied electric field (E, often interpreted as the break-
down strength), and the dielectric constant (&, relative permittiv-
ity) varies linearly with the energy density. The charging and dis-
charging energy density along with the above-mentioned variables
play an important role in tuning the charge-discharge efficiency of
the polymer dielectrics [8].

For high-temperature applications, the electronic systems are
usually exposed to temperatures above 150 °C, thus dielectric poly-
mers should be stable and efficient for energy storage at such high
temperatures. Polyolefins commonly have a high bandgap and low
conduction loss which is preferred for high electric field applica-
tions [9]. However, these polymers cannot withstand high temper-
atures due to their low glass transition temperatures (Tg). Gen-
erally, the application temperatures for such polymer dielectrics
are usually <100 °C. For example, biaxially oriented polypropy-
lene (BOPP), which is a widely used polymer dielectric has a high
breakdown strength of ~700 MV m™! and small loss, but can be
operated efficiently to a maximum operating temperature of only
85 °C [10,11]. Such polymer dielectrics require an external cool-
ing system which boosts their cost and required maintenance lim-
iting their scope of application. Polymers with conjugated aro-
matic backbones having a high Tg have been reported for high-
temperature energy storage applications, but these polymers dis-
play a higher conduction loss due to their lower bandgap which
further leads to a drop in electric field endurance and an amplified
energy loss. Low thermal stability not only limits the maximum
operating temperature of all-organic polymer dielectrics but also
limits the maximum energy density of these dielectrics is the low
dielectric constant (K) of polymers [4]. Extensive research in im-
proving the dielectric constant involved adding fillers in the poly-
mer matrix. Although these fillers enhance the overall permittivity
of the polymer matrix by providing more polarizable sites, they
cause a significant deterioration in the breakdown strength as the
amount of the filler exceeds the percolation threshold [3]. The de-
terioration of the local electric field is mainly due to the big dif-
ference in dielectric constant between the filler and the polymer.
Generally, the dielectric constant of nanocomposites will have a
significant increase when the ratio of fillers is close to the perco-
lation threshold. This can lead to a current pathway and thus a re-
duction of breakdown strength. For example, fillers like BNNS have
been used to improve the breakdown strength and reduce conduc-
tion losses owing to their high band gap (5.5-5.8 eV) and excel-
lent thermal stability. However, it was seen that the breakdown
strength increased up to 10 % to 12 % BNNS loading followed by
a reduction of the breakdown strength as the % loading increased
[12,13].

Several previous studies have demonstrated the significance
of bandgap, dielectric constant, free volume, and high break-
down strength on polymer dielectric performance [14]. Decipher-
ing structural elements in the polymer backbone and their effect
on a particular dielectric property is fundamental for the discov-
ery of new polymer dielectrics. This article presents insights into
the polymer structural elements and discusses their dependence
on the dielectric properties for high-temperature and high-density
energy storage. Considering the mutual constraints between the
properties and the scope for extensive structural modification of
polymer chains, a co-design approach that combines experimen-
tal investigation and computational (Al-based) techniques is highly
valuable. Elements of artificial intelligence, machine learning, and
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Fig. 1. Polymer chain modifications using several proxies for optimal capacitive energy storage.

high-throughput computational screening of dielectric properties
are explored further which can accelerate the discovery of new
polymer dielectrics.

2. Rational Co-design strategy for all-organic polymer
dielectrics

Given the complexity involved in polymer structure design and
dielectric performance, a sophisticated rational approach is nec-
essary. In the pursuit of developing novel all-organic polymer di-
electrics, a primary objective is to devise a strategy for discov-
ery that aims to achieve polymers with specific properties op-
timized for capacitive energy storage. These properties are intri-
cately linked to various structural elements within the polymer
chain, referred to as proxies, through structure-property relation-
ships. Numerous proxies can be discerned from existing literature,
and polymer chain structures can be designed accordingly. An ex-
ample of polymer chain design is shown in Fig. 1 where different
proxies are highlighted. The impact of different proxies on the ca-
pacitive energy storage performance is further discussed in detail
(Section 3).

The conventional approach for polymer discovery requires syn-
thesizing the polymer experimentally and assessing its proper-
ties through experimental measurements. Based on these results,
adjustments may be made to some proxies, leading to the syn-
thesis of new polymers and subsequent experimental measure-
ments. This conventional method is time-consuming and resource-
intensive, particularly for all-organic polymer dielectrics, where
multiple structure-property relationships are involved, necessitat-
ing elaborate synthesis, processing, and characterization proce-
dures. To mitigate the drawbacks of the conventional method, the
discovery strategy can be enhanced through the integration of a
co-design methodology, combining computational techniques with
experimental measurements. A co-design methodology fosters a
symbiotic relationship between experimental and computational
approaches, wherein each complements the other. This facilitates
the acceleration of polymer discovery while reducing costs and
time expenditures. Fig. 2 highlights the major steps involved in all-

organic polymer dielectrics discovery. This approach proves advan-
tageous in uncovering novel proxies, thereby broadening the scope
for the discovery of new polymer dielectrics [15,16].

3. Structure-property insights from proxies for all-organic
polymer dielectrics

3.1. Thermal stability

The operating temperature requirements for dielectric capaci-
tors in various electronic systems are shown in Fig. 3. Capacitive
energy storage is crucial for space exploration, oil and gas opera-
tions, electric vehicles, commercial aircraft, geothermal and nuclear
power plants, as well as electrification systems that require stabil-
ity at high temperatures. The maximum operating temperatures of
several commodity polymers generally do not meet the required
range of operation and thus cooling systems are coupled with the
dielectric capacitor assembly to protect and operate the capacitors.
To meet the required demand at high temperatures it is indis-
pensable that the polymers should have inherent high-temperature
thermal stability [9].

The two main transition temperatures in polymers are the glass
transition temperature (Tg) and the melting temperature (Tm). For
amorphous polymers, the thermal stability is determined by Tg,
whereas for semi-crystalline polymers it is determined by Tm [17].
At temperature below Tg, the segmental motion of polymer chains
is terminated and there is a restricted bond rotation and chain im-
mobility causing the polymer to withhold the structure. As the
temperature increases above Tg the chains gain mobility with a
concurrent increase in free volume. In such a molten state there
is an increase in the leakage current due to a surge in charges
and dipolar relaxation which eventually results in a decline of
breakdown strength and a rise in polarization loss [18]. Introduc-
ing more amorphous segments such as rigid aromatics and bulky
groups helps in increasing Tg. Polymers with high crystallinity have
a low Tg which inhibits their performance at high temperatures.
Highly crystalline polymers are not preferred for high-temperature
dielectric applications. One of our pioneering studies on polyimides
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where pyromellitic dianhydride (PMDA) was reacted with several
short-chain diamines revealed that when heating above Tg the di-
electric loss increases rapidly [19]. Although the synthesized poly-
imides had a significantly large dielectric constant the Tg was con-
sidered a main proxy for failure at high temperatures. Thus, a
higher Tg of the polymer is a decisive factor for the performance
of dielectric polymer at high temperatures.

Other techniques used to enhance thermal stability are
crosslinking, introduction of high thermal conductivity fillers,
blends, and fabricating sandwiched polymer structures [3]. Al-
though these modifications increase the thermal stability of the
polymers, they continue to face several drawbacks at high tem-

peratures. For example, at high temperatures, crosslinking can re-
sult in restricted dipolar motions which results in a lowering of
the dielectric constant, and the addition of fillers can display a rise
in electrical conductivity which increases the leakage current [14].
At high voltages, the all-organic polymers with high thermal con-
ductivity can dissipate heat better and prevent the thermal break-
down process. Modifications that enhance the thermal conductiv-
ity of the polymer also support the thermal stability of polymers
with naturally high Tg, which is essential for maintaining thermal
stability [20,21].

Several reported high-temperature polymer dielectrics mainly
comprise amorphous aromatic chain units. These polymers contain
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conjugated  bonds which are central to the thermal stability of
the polymer as they help in the delocalization of electrons and de-
crease the energy of the molecular units [8]. In the case of dielec-
tric applications, this phenomenon of delocalization causes a draw-
back resulting in increased leakage current at higher electric fields.
Thus, many polymers with conjugated backbone have a higher Tg
but they tend to have lower bandgap due to increased conductiv-
ity at higher temperatures. Having a higher Tg is one of the many
conditions required for high-temperature polymer dielectric. Thus,
a rational co-design approach is a must when designing polymers
with high Tg without conceding the bandgap [14].

3.2. Breakdown strength

Dielectrics are divided primarily into organic and inorganic ma-
terials. Among the several requirements for all-organic polymer di-
electrics, the breakdown field strength is extremely important for
a material to be used in high-field dielectric applications. Organic
materials are preferred over inorganic materials due to their higher
flexibility and graceful breakdown strengths [22-25]. Dielectric
breakdown field (Epq4) is defined as the value of the strongest exter-
nal electric field a material can withstand before becoming electri-
cally conductive, leading to the breakdown of the material [26,27].

Polymer dielectric breakdown can be categorized into intrinsic
breakdown and extrinsic breakdown. The intrinsic breakdown pro-
cess is related to the electronic structure of pure dielectric materi-
als. The extrinsic breakdown process is related to the accumulation
of structural defects and charge carriers over a long time result-
ing from aging and field-induced material degradation [28]. The in-
terplay of thermal, electronic, and mechanical properties together
impacts the dielectric breakdown of a polymer. This has resulted
in a lack of complete understanding of the factors or mechanisms
leading to the breakdown of materials [29-32]. Apart from the
Artbauer theory of dielectric breakdown, it has also been stated
that as high-density current is applied breakdown occurs when
the polymer rapidly loses its ability to resist the passage of cur-
rent through it [33].

Given the complexity of the dielectric breakdown mechanism,
it is a difficult task to evaluate structural design for polymers with
high breakdown strength. Our efforts in the field have revealed the
importance of various proxies on which the breakdown strength of
polymer dielectrics depends. An innovative approach was further
adopted in screening potential polymers that can have high break-
down strength Ep4. As computing the Epq is demanding we inves-
tigated other interdependent properties and aimed to find corre-
lations that can enhance the E,q It was found that the Epq of the
polymer when interfacing with a metal electrode correlates with

the bandgap (Egap) and the electron injection barrier (¢e?) at the
interface, Fig. 4a shows the direct proportionality of the two prox-
ies with the breakdown strength [34]. Using such correlations and
computational methods to validate the proxies we were able to
screen 990 previously made polymers and discover 53 potential
polymers which can exhibit high Epy (Fig. 4b).

An overview of our computational and experimental studies ex-
poses the dependence of three proxies namely, bandgap, charge
injection barrier, and cohesive energy density. These proxies are
of primary importance in enhancing the breakdown strength of
polymers. Dielectric breakdown mechanisms are intricate and pri-
marily determined by factors such as material composition, elec-
trical conductivity, thermal conductivity, film thickness, operating
temperature, and electrical stress conditions [35]. Not limited to
these proxies other parameters can affect the breakdown strength
of polymers. For instance, the gradual decline in capacitive storage
performance of polymer dielectrics at high temperatures is linked
to the rise in leakage current caused by thermal and electric fields
[36-39]. The rise in conduction as the electrical resistivity of poly-
mers decreases with applied field and temperature is well known
[39]. Structural modification such as introducing a local rotation
in the polymer backbone is a useful proxy to mitigate conduction
loss and increase the chain flexibility. The improved chain flexi-
bility improves the bandgap and prohibits localized defect states.
Polymers with inherently large bandgaps are more likely to exhibit
higher breakdown strength and lower conduction loss.

To explore the impact of the rotational barrier on the conduc-
tion loss, we modified the polyetherimide (PEI) with structural de-
fects (paddle-wheel effect) (Fig. 5a and b) by introducing a small
amount of p-phenylenediamine which has a lower rotational en-
ergy barrier around the N (imide) - C (aromatic) bond for the
polymer as compared to the conventional m-phenylenediamine
which was confirmed using comparative results [40,41] as shown
in Fig. 5¢c. The introduction of 5 % p-phenylenediamine (5p-PEI) in-
creased the bandgap of modified PEI to 3.32 eV compared to the
bandgap of PEI which was 3.24 eV. PEI is one of the outstand-
ing commercial polymers which has a high Tg. However, at ele-
vated temperatures, it displays a rise in electric conduction ham-
pering the energy storage performance at high temperatures. A
minor modification in polymer structure design significantly af-
fected the high-temperature energy storage performance without
majorly affecting the Tg of the polymer. Modified PEI due to its
enhanced flexibility displayed a better charge-discharge efficiency
and repressed conduction loss at high temperatures as shown in
Fig. 5d. The maximum electric fields for 5p-PEI were statistically
higher than PEI as shown in Fig. 5e indicating a higher breakdown
strength.
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3.3. Dielectric polarizations

Polarization can be expressed as the sum of all the dipole mo-
ments per unit volume. Dipole moments are essential for the di-
electric performance of the polymers. Polarization (P) can be re-
lated to dielectric permittivity (¢;) and the applied electric field (E)
according to Eq. (2) [42]. Dielectric permittivity (&) is a frequency-
reliant complex number that accounts for the developed polariza-
tions in an insulator in response to an external electric field. The
real part of ¢; is related to the energy storage capability and the
imaginary part determines the dielectric loss [43]. In an applied
electric field, the more the polarizations developed in the polymer
more the dielectric constant. Also, from Eq. (1) the dielectric per-
mittivity (dielectric constant) is directly proportional to the energy
density (Uy) of the capacitor. Hence, polarizations, or a high di-
electric constant are ideal for the high efficiency and high energy
density performance of the capacitor.

P = Eeo(er— 1) (2)

Depending on the source of dipoles, the polarizations can be
distinguished into three types - electronic, atomic, and dipolar
polarization. All these polarizations depend on the frequency of
the electric field and influence the total permittivity. As shown in
Fig. 6, the electronic and atomic polarizations occur at a higher fre-
quency, as these involve displacement of electrons and alterations
in atomic positions respectively which requires higher energy. At
lower frequencies (operating frequencies for dielectric capacitors)
the dipolar polarizations, which are a result of dipolar rearrange-
ments with the electric field, have a major effect on the capac-
itor performance. The relaxation of these polarizations results in
dielectric loss which leads to energy dissipation over the charg-
ing and discharging cycles. The polarization losses due to electronic
and atomic polarization are insignificant in the range of operation.

ues and error bars denote the standard deviation) [40,41]. Copyright 2020, and 2022,
and American Chemical Society.
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Fig. 6. Schematic of the real and imaginary parts of the orientationally averaged
dielectric permittivity [43]. Copyright 2016, Reproduced with permission from Else-
vier Science Ltd.

Whereas the loss due to dipolar relaxations plays a major role in
capacitive energy storage.

High temperature and high electric fields have an inverse ef-
fect on the dipole movements. The high temperature increases the
thermal motions which hinder the alignment of the dipoles in re-
sponse to the external field and eventually lowers the polarization.
Therefore, the polymers should have a constant dielectric constant
over a range of temperatures, which is generally not the case for
low Tg polymers as the dielectric constant gets altered as the tem-
perature bumps above the Tg. Several tactics to improve dielectric
polarizations such as including more dipoles in the polymer back-
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bone, insertion of high ¢, fillings into the polymer matrix, and en-
hancing the flexibility of the dipoles have been studied over the
past. As many of these alterations increase the dielectric loss care
must be taken in adjusting the degree of these modifications. For
example, when the amount of the conducting fillers is near the
percolation threshold the dielectric losses due to conduction in-
crease drastically. Similarly, the introduction of excess dipoles can
lead to long-range dipolar interaction which can further result in
tragic dielectric loss at higher temperatures.

We initially investigated to explore the dielectric perfor-
mance of polymers by enhancing the dielectric constant. The
structure-property relationship was developed for polyurea and
polyurethane thin films with dielectric constant against the dielec-
tric loss [44]. It was found that the dielectric constant increases
and dielectric loss decreases as the number of carbons between
polarizable function groups decreases. This was supported by the
data obtained by the high throughput density functional theory
(DFT) calculations. In a subsequent study, the influence of differ-
ent proxies including dielectric constant and bandgap on capacitive
energy storage were examined [45]. DFT calculations were used to
perform an initial screening and down selection of polymer struc-
tures. Through this rational co-design, polyimides were determined
to be an important class material for high dielectric constant and
low loss for energy storage applications. One of the rationally co-
designed polyimides was able to achieve the highest dielectric con-
stant 7.8 with a potential energy density of ~15J/cm3 This study
established the importance of the increased dipole volume from
the ether linkage as well as the longer conjugation length when
a carbonyl spacer was inserted between the benzene ring on the
dielectric constant.

With the advancement of computational and experimental
analysis to uncover the relationship between the dielectric con-
stant and bandgap it was found that the electronic component of
the dielectric constant (ge1ec) had an inverse relationship with the
Eg. Whereas the ionic component of the dielectric constant (&jq,)
and the total non-electronic component has no relation with Eg
(Fig. 7a). This further motivated us to develop metal-containing
polymers via which &;,, can be enhanced without sacrificing the
Eg. The validity of the computational calculations was confirmed
with experimental validations, Fig. 7b shows measured and com-
puted similar results. Further exploration of organometallic poly-
mer dielectrics which were predicted to have a higher Eg and high
¢ (Fig. 7c) led us to develop several metal-containing polymers that
had high dielectric constant between 5 and 8 and which also main-
tained a high bandgap Eg > 6eV [46-57].

For commercial dielectric polymers, it is observed that the di-
electric constant and the bandgap follow an inverse relationship
(Fig. 7f). As both these parameters are essential for efficient di-
electric performance, a cautious approach is needed when increas-
ing the dielectric constant without affecting the bandgap [14].
The complex interdependence of these parameters can be con-
fronted using a rational co-design approach where the design of
the polymer structure restricts the dipolar relaxation loss and pro-
motes unrestricted rotation of dipoles [14]. A class of rationally co-
designed polyoxafluoronorbornenes (POFNBs) breaks the inverse
relation between the dielectric constant and bandgap. The poly-
mer design elements in POFNBs promote strong dipolar relaxation
without compromising the bandgap (Fig. 7d, e, and f) [58]. The
correlation between the Tg, bandgap, and the dielectric constant
is difficult to comprehend when designing polymers. More impor-
tantly, the discovery of new proxies like the free volume element,
and the paddle-wheel effect, increases the design complications.
In such situations, a co-design approach where an Al-based infor-
matics approach can assist the experimental observations would
provide key insights into improving and augmenting the polymer
design strategy.

Progress in Polymer Science 161 (2025) 101931
3.4. Free volume elements

Free volume in polymers is primarily responsible for several
macroscopic properties such as thermal stability, viscosity, gas per-
meability, and transport properties. It also affects the dielectric
constant [61] and the Tg of the polymer. At temperatures below
Tg, the polymer chain movement is restricted, making the polymer
chains randomly pack with minimal segmental motion. This ineffi-
cient packing leaves multiple vacancies of unoccupied space which
have different shapes and sizes. These pockets with a radius on the
angstrom scale are referred to as the free volume elements (FVEs)
[62-65].

FVEs can be used to determine and explain the motion of liq-
uids and solids. They are only a portion of the total percent of
the unoccupied volume of a polymer and partially determine the
structural heterogeneity of the polymeric materials. Free-volume
elements have potentially been proven to influence the electri-
cal properties of all-organic polymer dielectrics [66]. As temper-
ature increases, the polymer experiences different physical confor-
mations due to mobility because of the increase in the free vol-
ume. Free volume in a polymer is observed to a greater extent
on the polymer chain end than in the units within the chain [67]
as the end chains have a longer intermolecular distance with the
neighboring chain ends. Free volume also has been shown to have
a direct effect on conduction, with various studies and theoretical
models predicting increased electron mobility through free space
[68-71].

Based on this ideology, recent research was done to compare
cyclic polystyrene films compared to their linear chain melt [72].
The authors demonstrated that cyclic polystyrene showed an en-
hanced dielectric strength and capacitive energy density compared
to its linear chain melt which is attributed to the enhanced pack-
ing of cyclic polymers due to lack of free chain-ends. Consequently,
the void spaces created due to free volume elements in polymers
give room for the acceleration of electrons at high fields leading
to high dielectric breakdown as demonstrated by Artbauer in the
free volume theory. The work confirmed that polymer topology can
substantially influence the capacitive properties of all-organic poly-
mer films. A recent collaborative work on free-volume elements
in polyetherimide polymers was conducted [67] to show the re-
lationship between the free-volume elements and the breakdown
strength. This was achieved by keeping molecular weight, and
glass transition temperature constant and only changing the end-
capping groups (Fig. 8a). Substituting the end groups is a better
strategy than any other structural modification for altering the dis-
tribution of free-volume elements. The measurement of free vol-
ume elements radius probability distribution curves was done us-
ing an ultrafast infrared laser technique known as the Restricted
Orientation Anisotropy Method (ROAM). The observations indicate
that large FVEs lower the breakdown strength of the polymer lead-
ing to polymer breakdown at lower electric fields when FVE in-
creases. The results emphasize the importance of chain packing
and restricted free rotations of molecules in space which is often
neglected when designing dielectric polymers. Excellent results are
achieved when the probability for large FVEs is low as displayed in
Fig. 8b. The Gaussian line shape is an indication of low FVEs and
correspondingly high Epyq This study motivates researchers to con-
sider the effect of voids on dielectric performance as space itself
can play a major role in conduction loss and dielectric loss.

4. Accelerated polymer discovery with rational Co-design

While commercial high-temperature all-organic polymer di-
electrics offer enhanced thermal stability, their aromatic struc-
tures reduce the bandgap, leading to high conduction loss and low
breakdown strength. Previous studies have demonstrated the sig-
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nificance of bandgap in polymer dielectric performance. Further-
more, introducing rigidity and thermally conductive fillers does not
significantly enhance capacitive energy storage. Polymer structure
modifications should yield adequate dipolar relaxation to enhance
the dielectric constant without compromising thermal stability or
the polymer’s bandgap [14].

The interdependence of Tg, &, and Eg on the breakdown
strength (E,) and the energy density (Uy) of polymer dielectric can
be explained using the trends shown in Fig. 9a, and b [4]. Both E,,
and Uy demonstrate comparable trends at both room temperatures
and high temperatures, but a contrasting trend is noticed in the
case of g. The fall in the energy density and breakdown strength
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for high Tg polymers at high temperatures underscores the chal-
lenge of avoiding conduction losses which are due to the presence
of the inherent aromatic structure of these polymers. Thus, com-
paring Fig. 9a and b one gets an idea of how a high operating
temperature can alter the dielectric performance of a polymer. This
motivates the search for modern rational co-design strategies that
can develop polymer structures without compromising all the es-
sential parameters that are responsible for optimum performance.

An example of an effective rational co-design strategy is illus-

trated by the development of a unique class of polyolefins known
as polyoxafluoronorbornenes (POFNBs). These polymers have a
structure comprising flexible and rigid bicyclic chemical compo-
nents that maintain a high Tg and high bandgap (Fig. 10) [11].
The dipolar relaxations are preserved, resulting in a favorable di-
electric constant that can be adjusted through the incorporation
of different functional groups (Fig. 10c). These polyolefins exhibit
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Table 1

Comparison of experimental glass transition temperature (Tg), dielectric constant (K), and
bandgap (Eg) of commercial polymer dielectrics and rationally designed polymer dielectrics
for capacitive energy storage.

Polymers Tg (°C) K (r.t 1 kHz) Eg (eV) Ref
Commercial PET 75 33 39 [46,73]
Polymer BOPP -5 2.2 5.9 [46,73]
Dielectrics PEI 217 2.9 33 [42,74]
Pl 360 3 2.6 [42,74]
PEEK 149 3 35 [42,74]
PEN 120 3.2 3.6 [46,73]
Rationally PONB-2Me5Cl 232 3.29 4.39 [75]
Designed PNB-2Me5Cl 243 3.06 4.32 [75]
Polymer PNB-3Cl4Me 220 2.9 4.27 [75]
Dielectrics PNB-2,5DM 232 3.14 4,34 [75]
0-POFNB 245 2.90 4.92 [60]
m-POFNB 178 3.25 4.84 [60]
p-POFNB 220 2.80 4.45 [60]
PDTC-ODA N/O 4.52 3.22 [54]
PDTC-MDA N/O 4.08 3.16 [54]
PDTC-PhDA N/O 4.89 3.07 [54]
PDTC-HDA 139 3.67 3.53 [54]
PDTC-HK511 92 6.09 3.51 [54]

a high discharge density, outperforming several commercial all-
organic polymer dielectrics. Additionally, they have also demon-
strated low conduction loss at elevated temperatures. Among the
various POFNBs, ortho-POFNB stands out with the highest Tg of
244 °C (Fig. 10b) and an energy density of 6.5 J/cm3 at 200 °C
(Fig. 10c). The inherent flexibility of the polymer chain proves cru-
cial in dissipating loss and maintaining stability at high tempera-
tures, providing greater rotational freedom for the polymer chain.
The effectiveness of the rational co-design strategy is demonstrated
in Fig. 10, showcasing experimental results of various POFNBs at
elevated temperatures [60]. A comparative property analysis of
commercial polymer dielectrics and selected rationally co-designed
polymers is shown in Table 1. The selected polymers are from the

class of rational-designed functional polynorbornenes that show
enhanced thermal stability and polythioureas with high dielectric
constant. It can be observed that the newly designed polymers
break the mutual constraints between the properties discussed in
previous sections.

Addressing the interdependence of several proxies and under-
standing their influence on dielectric properties requires a system-
atic exploration of polymer space [3,14]. For polymer dielectrics,
DFT has proven to be reliable and accurate in predicting several
electronic properties and further assisting in the development of
several new polymer structures. Fig. 11 shows a few rationally
co-designed polymers using DFT which outperform BOPP. How-
ever, due to the computational overhead of DFT, only a limited
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number of polymer chemistries and topologies can be explored.
Also, Tg, and therefore thermal stability, cannot be computed us-
ing DFT. This is why, for high-temperature dielectric design, Al and
ML techniques have been pursued, as they can estimate the Tg by
training on large experimental data sets.

5. Elements of artificial intelligence (AI) for high-temperature
polymer dielectric co-design

Within the vast expanse of chemical possibilities for polymers,
a wide variety of high-performance dielectrics likely await discov-
ery. Well-trained and calibrated artificial intelligence (Al), capable
of handling large numbers that challenge human imagination, can
help converge on extraordinary or “outlier” materials rapidly [76].
While the Al methods may come in different flavors, most share
the common elements listed in Fig. 12: [77] data, representation
(i.e., fingerprinting), prediction, and design. These elements will be
discussed one by one in the following sections. Table 2 classifies

1

the primary computational methods that have influenced the de-
sign of polymer dielectrics, with a particular emphasis on methods
related to artificial intelligence.

5.1. Data

The starting point of any machine learning model is data. In
the context of polymer dielectrics, an individual data point takes
the form of the tuple [Polymer, Property]—where "Property“ cor-
responds to one of the proxy properties identified in Section 3.
This type of data can be acquired from various sources, including
handbooks, online repositories, and published journal articles (see
Table 2 for examples).

Experimental data extracted from several scientific resources
forms a reliable basis of information as it has already been peer-
reviewed by the scientific community [78-80]. Several of these
data sources have been digitalized enabling users to access the
data over different online platforms [81,82]. For example, one of
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Table 2
Notable data sources and methods for Al-based design of polymer dielectrics.
Name Category Description Web Source
Prediction of polymer Experimental Handbook of polymer properties including
properties, CRC Press [88] data set dielectric constant and glass-transition
temperature
Polymer Data Handbook, Experimental Handbook of polymer properties including
Oxford University Press data set dielectric constant
[89]
PoLyInfo [80] Experimental ~500k point database of polymer properties https://polymers.nims.go.jp
data set including glass transition temperature,
thermal decomposition temperature, melting
temperature, and thermal conductivity
Khazana [84] Computational Database of DFT-computed properties https://khazana.gatech.edu
data set including dielectric constant and band gap
RandonPy [86] Computational Database of MD-computed properties https://github.com/RadonPy/
data set including thermal conductivity and dielectric RadonPy
constant
PSP [90] Enabling A tool to generate the 3D structure of https://github.com/
technology polymers from SMILES strings at various Ramprasad-Group/PSP
scales (oligomers, loops, crystals, amorphous
structures, etc.), thereby expediting
high-throughput MD data generation.
ECFP [91] Representation An algorithm for solving molecular https://github.com/rdkit/rdkit
isomorphism has since been adapted into a
polymer representation. Not invariant to
addition, subtraction, and translation of
polymer repeat units.
PG [92] Representation A hierarchical algorithm for representing https://polymergenome.org/
polymers. Invariant to addition, subtraction,
and translation.
KRR General ML An algorithm that has been used to develop
algorithm structure-property models. Limited capacity
to model non-linear relationships.
GPR General ML An algorithm that has been used to develop
algorithm structure-property models. Can model
non-linear relationships. Scales poorly as
training data grows.
polyGNN [93] Representation, A graph neural network-based algorithm for https://github.com/
polymer- representing polymers as graphs. Invariant to Ramprasad-Group/polygnn
specific ML addition, subtraction, and translation.
algorithm polyGNN has also been used to develop
structure-property models that scale favorably
as training data grows.
polyBERT [94] Representation, A Transformer-based algorithm for https://github.com/
polymer- representing polymers as a language. Ramprasad-Group/polyBERT
specific ML polyBERT has also been used to develop
algorithm structure-property models that scale favorably
as training data grows.
Multitask learning [95,96] Enabling A concept that improves structure-property
technology model accuracy, especially in data-scarce
situations.
Genetic Algorithm [97,98] General ML An algorithm that has been used to generate https://github.com/
algorithm polymer dielectric chemical structures. Ramprasad-Group/polyga
SD-VAE [99] General ML A generative algorithm that has been used to
algorithm generate polymer dielectric chemical
structures.
polyG2G [100] Polymer- A generative algorithm that casts chemical
specific ML structure generation as a translation problem
algorithm over graphs. Has been used to generate

polymer dielectrics.

the pioneering databases “PoLyInfo” has a compilation of several
hundreds of polymer structures and properties that can be used
for a variety of applications [83]. Given the possible variations in
different polymer structures and the vastness of available scientific
data, a manual approach to data extraction from literature is usu-
ally a strenuous task.

Computations, based on first-principle theory and classical
molecular dynamics techniques, offer potential prospects for the
automated generation of polymer datasets (albeit at lower fidelity
compared to experimental data) [84]. Relatively large computa-
tional data sets include Khazana [84,85]which contains polymer
band gap and dielectric constant data from DFT calculations, and
RadonPy, [86] which contains data on dielectrics constant and a
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handful of other properties from MD simulations of various poly-
mers.

MD simulations require an initial 3D atomic structure, and the
structure that is chosen can have a significant impact on the tra-
jectory of the simulations and therefore on the calculated materi-
als properties. Traditionally, the creation of this structure has been
a manual step and an impediment to scaling up simulation pro-
tocols to many different polymers. To address this problem, PSP
was developed [85]. The primary input to PSP is the SMILES string
of the polymer repeat unit. Optional inputs include polymer chain
length, density, size of simulation box for amorphous models, etc.
The tool then uses this information, and geometry optimization
routines, to generate 3D structures of and loop oligomers, infinite
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polymer chains, polymer crystal structures, and polymer amor-
phous structures. Adoption of this tool has accelerated the devel-
opment of datasets for gas transport in polymers [87], and may be
used in the future to generate data relevant to high-temperature
dielectrics.

5.2. Polymer representations

After compiling the data set, the next step is to represent
the key chemical aspects of each polymer in a machine-ingestible
manner. Modern approaches to representing (i.e., fingerprinting)
polymers rely on the SMILES language [101], which is used to
represent 2D chemical structures as text. The string of text cor-
responding to one structure is a so-called “SMILES string®“. An-
other key development has been the RDKit package [102], which,
via a SMILES string, can generate a 2D mathematical graph, with
atoms as nodes and bonds as edges, for any given molecule. The
representation of a 2D chemical structure as a graph allows for
the calculation of certain chemical features to be automated and
completed efficiently. One such group of features is contained in
the Extended-Connectivity Fingerprint (ECFP) [91,103]. Initially de-
veloped to address the mathematical challenge of molecular iso-
morphism (the task of identifying instances where two molecules,
with different atom numberings, are the same), ECFP accurately
identifies unique chemical structures. Subsequently, ECFP has been
used as a fingerprint for training polymer structure-property mod-
els. However, the ECFP, when applied to graphs of polymer repeat
units, is not invariant to relevant transformations such as transla-
tion, addition, and subtraction. The process of translation involves
shifting the periodicity window, leading to equivalent periodic re-
peat units, such as (-OCC-), (-COC-), and (-CCO-) in polyethylene
glycol. Addition refers to extending a repeat unit by incorporating
one or more minimal repeat units, exemplified by (-COCO-) and
(-COCOCO-). Subtraction is the opposite, where a repeat unit is
reduced by removing minimal repeat units.

Over the past decade, a successful fingerprinting approach has
been developed as part of the Polymer Genome (PG) project [92].
Importantly, the fingerprint generated by this approach is invari-
ant to translation, addition, and subtraction. The input to the fin-
gerprint algorithm is the SMILES string corresponding to a poly-
mer’s repeat unit. The algorithm is characterized by a key fea-
ture: hierarchical representation, organized across physical length
scales (see Fig. 13). At the smallest length scale, the atomic features
of a polymer are considered. Specifically, we check the frequency
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of various small substructures, known as atomic triples. Moving
up a rung, the block-level features of a polymer are considered.
This corresponds to checking the frequency of large substructures
within a polymer. Finally, at the largest length scale, chain-level
features—spanning the entire polymer repeat unit—are computed.
Some example chain-level features include the distance between
rings, side-chain length, and the number of aromatic rings. The
PG approach works well because it encapsulates chemical features
supported by decades of science and natural intelligence. For ex-
ample, side-chain length, one of the features in the PG fingerprint,
is known to impact several properties, including glass-transition
temperature.

5.3. Structure-Property prediction models

Once the data set has been compiled and fingerprinted, a
structure-property prediction model may be trained. During the
training process, a set of relationships is learned between the fin-
gerprint components and the properties are interest, such that the
relationships can best fit the fingerprinted data set. This set of
learned relationships is the structure-property model and, once ob-
tained, may be used to predict the properties of known and un-
known structures.

Our initial work [104] in this area focused on the prediction
of five properties (atomization energy Ea, band gap Eg, and the
electronic, ionic, and total dielectric constants) using the kernel
ridge regression (KRR) machine learning algorithm and the atomic-
level components of the PG fingerprint. In the intervening time,
additional layers of sophistication have been added to model the
aforementioned five properties and more (e.g., Tg, electron injec-
tion barrier, etc.). The advanced due to the curation of larger data
sets, [93-96,105] advancements beyond KRR (Gaussian Process Re-
gression, [106-108] neural networks, [93,95,96,98], etc.), multi-
task learning, [96] and improved fingerprinting techniques [93,94]
(many of the advanced models are currently deployed at https:
//polymergenome.org/).

While KRR is a useful method, it is only able to learn linear re-
lationships between fingerprints and properties. GPR, on the other
hand, can pick up nonlinear relationships and was employed in
several works for this reason. The accuracy of models trained using
either method suffers when data is scarce or of poor quality. To
mitigate this issue, we have utilized multitask learning, wherein
instead of training one model per property, a singular model is
trained to learn multiple properties simultaneously. By training a
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a PolyGNN — A graph neural network for polymers
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Fig. 14. a A graph neural network (termed polyGNN) for polymers. The starting point is the repeat unit, which is then passed into the polyGNN encoder. The encoder
generates initial features for each atom and bond in the graph. These atom and bond features are passed to the polyGNN Message Passing Block, which updates the atom
features using a set of MLPs. The updated atom features are averaged together, yielding the polymer features. These features are input, along with selector vectors, into
the polyGNN Estimator (another MLP) which yields the property prediction [93]. Copyright 2023, Reproduced with permission from American Chemical Society. b polyBERT
is designed to process Polymer Simplified Molecular-Input Line-Entry System (PSMILES) strings. It performs several key steps, including canonicalization, tokenization, and
masking (steps 1-3) of PSMILES strings, before passing them into the DeBERTa [113] model for further processing (steps 4-6). The architecture includes 12 Transformer
encoders, each equipped with 12 attention heads. To predict masked tokens, a final dense layer with a softmax activation function is employed. Additionally, polyBERT
generates fingerprints by averaging over the token dimension (sentence average) of the last Transformer encoder, to create meaningful representations for downstream

applications [94]. Copyright 2023, Adapted with permission from Springer Nature.

single model to simultaneously learn a group of target properties
at once, the risk of generating overfitted predictions for any one
specific target property is reduced [109,110]. As a result, the accu-
racy of each property is improved. For instance, for 24 out of 34
polymer properties (~71 %), models leveraging multitask learning
outperformed their single task counterparts [93].

An important aspect of multitask involves carefully ensuring
that all properties selected for co-learning are interrelated [96].
This selection is a heuristic process that relies on materials do-
main expertise. Failing to establish such links may result in learn-
ing spurious correlations, thereby impairing the model’s ability to
generalize effectively. A challenge with multitask learning is that
the number of training data points n can be quite large. In these
cases, GPR is an inefficient choice, as it requires a n x n matrix in-
version during training. Neural networks offer improved efficiency.

Over the past few decades, huge amounts of research and in-
vestment have gone into producing ever-more-performant neural
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network architectures. The most basic neural network is a multi-
layer perceptron (MLP), which takes as input a fixed-length vector
(e.g., the PG fingerprint, ECFP, etc.). More advanced architectures
include the graph neural network (GNN) for processing graph data
[111] and the Transformer [112] for processing text. As mentioned
earlier, polymers may be represented using either data type and
therefore both the GNN and the Transformer architectures may be
used to produce polymer structure-property models. In these mod-
els, unlike with the MLP, there is no need to calculate the fin-
gerprint components before training, reducing the computational
overhead. In our work (Fig. 14), we have found that both GNN and
Transformer-based polymer prediction algorithms are up to two or-
ders of magnitude faster than MLP-based approaches with com-
parable or better model accuracy [93,94]. The enhanced computa-
tional efficiency of GNN and Transformer architectures is expected
to drive their broader adoption, unlocking the ability to screen ex-
tremely large polymer libraries at scale.
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5.4. Structure generation

The space of known polymers is one such library. In our recent
work, [114] starting from a list of 13,000 known polymers, we used
an informatics-based approach to identify promising dielectrics.
The space of polymers in our data set, displayed in Fig. 15a, spans
over 18 polymer families, including some that have not previously
been tested for dielectric properties. Promising dielectrics should
exhibit high Ty and high E;. While these properties are uncom-
mon for commercial polymer dielectrics (stars in Fig. 15b), our
structure-property models reveal interesting candidates (dots in
Fig. 15b) that are known polymers but have not yet been commer-
cialized as dielectrics.

To focus on the most promising of these candidates, a four-
stage approach is used, detailed in Fig. 15c. In the first stage, af-
ter models are trained for five properties (glass transition temper-
ature, band gap, dielectric constant at 100 Hz, electron injection
barrier for aluminum electrode, and cohesive energy density - Tg,
Eg, €100 Hz» @eAl, and CED), we keep the 196 structures with pre-
dicted Tg > 450 K, E > 4 eV, €199 nz > 3, peAl > 2.5 eV, and CED
< 130cal/cm3. For these 196 structures, we compute the Eg us-
ing DFT, keeping the 136 structures with computed Eg > 4 eV. In
the third stage, we eliminate structures with undesirable, as de-
termined by polymer chemists, functional groups (e.g., OH), leav-
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ing 101 candidates. Finally, in the fourth stage, a handful of candi-
dates are synthesized and characterized in the lab. Among these,
we identified polyvinylcarbazole (PVK) and discovered that it has
a relatively high Ebd of 476 kV/mm at 100 °C, thus making it a
promising candidate for applications requiring high temperature,
high energy density capacitors.

The aforementioned 13,000 known polymers represent a speck
in the universe of possible polymers. Several methods have been
developed and used to chart these unknown regions. A polymer
repeat unit may be viewed as a sequence of connected chemical
fragments (e.g., NH, CO, CS, etc.). By identifying suitable fragments
and combining them, a list of candidate polymers can be enumer-
ated. Following this approach, we identified polymers with excep-
tional predicted band gap and dielectric constant (see "New poly-
mers” in Fig. 16) [42]. These “first-generation” structures were used
as starting points to identify promising polymer families. We syn-
thesized a set of “second-generation” polymers within these fami-
lies, and found a few (see Fig. 11) with unprecedented energy den-
sities, up to 16 J/cm3 at room temperature.

Rather than generating polymers from all possible fragment
combinations, another approach is to use an optimization algo-
rithm to navigate and selectively screen the space. One optimiza-
tion algorithm that we have used is the genetic algorithm (GA)
[97,98], described, for polymers, in Fig. 17a. In this evolution-
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[98]. Copyright 2021, Reproduced with permission from Elsevier Science Ltd.

inspired scheme, the starting point is a set of chemical fragments,
analogous to the set of base pairs found in DNA. An initial pop-
ulation of “parent” polymers is created by a random combina-
tion of the fragments. A fitness function is used to select the
most fit parents. Crossover and mutation (see Fig. 17b) of the par-
ents’ chemical fragments produce “offspring polymers”. These off-
spring serve as parents for the next generation. This iterative pro-
cess continues until the goal (high-performance dielectrics in this
case) has been met. In this work, structure-property models are
leveraged to assess fitness in each iteration of the optimization
process.
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This GA has been used to produce polymers with high predicted
Eg, high predicted Tg, and beyond (see Figs. 17c and 18). Of particu-
lar interest are the polymers listed in Fig. 18, which were screened
based on both predicted properties and synthesizability. Each poly-
mer is predicted to display an Eg > 5 eV, a dielectric constant
at 100 Hz € > 4, a T; > 500 K, a cohesive energy density e.,, (
70 cal cm~3, and an electron injection barrier with Al electrode ¢e
) 3 eV. In addition, Fig. 18 lists potential monomers and a synthe-
sizability score for each polymer. The monomers and scores were
generated using a retrosynthesis tool developed by us [115]. Using
the tool, out of the large number of generated polymers with good
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Fig. 18. Polymers derived using a genetic algorithm for achieving the optimal values for intended proxies [97]. Copyright 2021, Reproduced with permission from Springer

Nature.

predicted properties, the ones with available monomers were effi-
ciently identified.

Another optimization algorithm useful for polymer design is
gradient descent, which is used to train generative neural networks
capable of design. A benefit of these approaches is that, in prin-
ciple, structure-property models are not required. In practice, we
find that incorporating structure-property models into the design
process improves performance, although the models need not be
used iteratively (as was required with the GA). The first approach
we have explored is the Syntax-Directed Variational Autoencoder
(SD-VAE) [99,116]. A VAE is a neural network that learns a map-
ping between a discrete input sequence (i.e., a polymer SMILES
string in this case) and a continuous “latent” space. The VAE con-
sists of an Encoder, to learn the input to latent mapping, and
a Decoder, to learn the latent to input mapping. Thus, by sam-
pling the latent space and then using the Decoder, SMILES strings
corresponding to new polymers may be generated. Notably, the
VAE is an unsupervised learning method that only requires poly-
mer SMILES strings for training, without any associated property
labels.

SMILES strings have syntactical and semantic rules that must
be followed for the string to represent a polymer. These rules are
incorporated into the VAE using grammar parse trees and stochas-
tic lazy attributes, details of which can be found in Ref. [99]. To
locate new polymers with high E; and T, we sampled points in
the latent space that lie on straight lines between the latent space
vectors of known polymers with high Eg and Tg. The samples were
screened using Eg and Tg structure-property models. A handful of
the screened candidates are displayed in Fig. 19.

Another generative neural network-based approach for polymer
design has been developed by us. The algorithm is called Poly-
mer Graph-to-Graph translation (polyG2G) [100]. In the SD-VAE
approach, the Decoder was trained to reproduce the sequence fed
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into the decoder. Here, the Decoder is trained to produce not the
same sequence, but a closely-related sequence. Specifically, the
model is trained to translate the input sequence, which represents
a polymer with low dielectric performance, into a chemically sim-
ilar polymer with much better dielectric performance.

The training methodology for the polyG2G system involves sev-
eral intricate steps, as illustrated in Fig. 20 (steps A-]). At a high
level, the polyG2G process starts by mapping a polymer to both a
junction tree (JT) and graph representation. These representations
are encoded into latent vectors, concatenated, and sampled to pro-
duce translated Jts and graphs. These are then decoded into new
polymer candidates by determining the constituent atoms, rings,
and chemical bonds. During training, the objective is to generate
a graph sufficiently similar to the target graph, with the training
loss measuring the success of this objective. During inference, the
trained model performs the same steps but focuses on generating
new polymers.

Once trained, the polyG2G model was used to design polymers
with Eg > 4 eV, ¢ > 3 eV, and Ty > 450 K. Our analysis identified
3556 unique polymers (0.45 % of the total) that met our prede-
fined objectives. In contrast, only 8 out of 13,014 (0.061 % of the
total) polymers from the dataset used to train polyG2G satisfied
our objectives. This stark difference demonstrates that polyG2G is
not only capable of generating a large number of high-performing
designs but also that these designs "hit" the target objectives an
order of magnitude more frequently than the space of synthesized
polymers. In other words, polyG2G can effectively learn targeted
design rules specifically aimed at producing high dielectric break-
down strength polymers.

To further refine our search, we subjected 20 of the 3556 poly-
mers to density functional theory (DFT) computations to calculate
their bandgap and electron injection barrier. These 20 candidates
were specifically chosen from the larger pool as they exhibited the
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highest fitness score F, as defined in Equation 4.

F=T; xEg x e x Ryt xU (3)
Where Tg, Eg, ¢ are the ML property predictions of a given poly-
mer, Ry is the ratio between the number of atoms in the main
chain per repeat unit and the total number of atoms per repeat
unit, and U is the uniqueness of the polymer.

After subjecting these 20 candidates to DFT computations, 10
polymers exhibited computed properties that surpassed our prede-
fined objectives, indicating their resistance to large electric fields.
These top-performing candidates are presented in Table 3.

6. Critical next steps
6.1. Beyond homopolymers

Homopolymers possess structural simplicity; they can be de-
scribed by a single repeating unit. However, neat copolymers and
polymer blends, which are structurally stochastic, are much more
common in everyday life. Polymer composites, in which the poly-
mer (homo-, co-, and/or blend) matrix forms the primary contin-
uous phase, are even more common. In the context of dielectrics,
each polymeric material class has its merit [117]. However, to date,
most work in polymer informatics has focused on homopolymers.
Limited work has been done on copolymers [118-124], blends
[109,125-127], and polymer composites [128]. These efforts have
elucidated techniques for representing complex polymer systems.
These techniques now need to be applied to model properties rel-
evant to dielectric design. For example, while models [95] exist
for the glass-transition temperature of complex polymer systems,
there are not yet curated data sets or models for the dielectric con-
stant and band gap of complex polymer systems.
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6.2. Synthesis and processing

As detailed in prior sections, a handful of methods have been
developed for designing or enumerating novel polymer repeat
units. In these methods, the repeat units are produced atom-by-
atom or by combining molecular fragments. However, ranking such
repeat units in terms of their synthesizability remains a highly
nontrivial task. For example, a polymer with repeating unit —-Ng1-
Ngro— having a nitrogen backbone with Ry, and R,, being sub-
stituent functional groups might have a high Tg, and dielectric con-
stant theoretically, but the synthesis of such polymer is challeng-
ing, especially on an industrial scale.

A promising alternative approach [75,129,130] is to start with a
library of synthesizable small molecules, and then digitally trans-
form them into repeat units using a set of well-known polymer-
ization reactions. This way, some aspects (e.g., the monomers and
the reaction type) of the polymer synthesis are known a priori for
each repeat unit.

Computational assessment of polymer synthesis or processing
parameters will also be critical. To date, in the context of poly-
mer dielectrics, computations have mainly been used to predict the
properties (e.g., Tg, band gap, dielectric constant) of polymers in
the solid state (e.g., dielectric films). Limited work exists on com-
putations for dielectric polymers in other states (e.g., in solution
or melt), however, there is a tremendous opportunity to accelerate
dielectric design by looking beyond the solid state.

For instance, prior work has focused on predicting the compat-
ibility of polymers in a variety of solvents [131-134]. These mod-
els may be extended to future studies of dielectric polymers. The
models can accelerate the choice of solvent (and minimize solvent
waste) for a given polymer dielectric during chemical synthesis or
even help design new polymers that are compatible with targeted
(e.g., green) solvents.
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Table 3

Structures and properties of 10 novel, high-value, targets discovered by
polyG2G. Band gaps (Eg) and electron injection barriers (¢e) are DFT estimates.
Glass-transition temperatures (Tg) are ML estimates [100]. Copyright 2021, Re-
produced with permission from the American Chemical Society.

Structure Properties
Ey, DFT (eV) ¢, DFT (eV) Ty, ML (K)
0 6.04 3.13 549
HO‘{
$ 6.52 3.05 520
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% 6.07 3.12 511
S 6.14 3.08 495
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f Et
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Compared to polymers in solution, the body of informatics
work on polymers in melt is limited and has mainly focused on
modeling the polymer melting temperature [93,135]. Other models
exist for properties such as melt quality [136] and melt instabil-
ity, [137] but the models were trained on just a handful of poly-
mer chemistries and therefore do not generalize to new polymeric
materials. Future work focused on creating general-purpose mod-
els for polymer melt properties is needed.

6.3. Data collection

Many of the critical next steps identified above depend on the
presence of yet-to-be-developed data sets. There are two pathways.
The first is to curate data that already exists, albeit among several
disparate sources, into one place. Advancements (e.g., the Trans-
former [112], ChatGPT [138], BERT [139]) in the field of Natural
Language Processing have led to the creation of Large Language
Models (LLMs) that can reliably perform complex natural language
tasks. These tasks include sentiment analysis [140], machine trans-
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lation [141], and spam detection [142]. LLMs have also been used
to mine literature data on polymeric materials from published ab-
stracts [143]. Expansion of this capability to more abstracts, full-
text, tables, and graphs is a promising direction for obtaining nec-
essary, dielectric-relevant, data.

The other data-collection pathway is generating new data,
which may be done using high-throughput simulations (e.g., MD
or DFT). Such data is unlikely to replace ground-truth experimen-
tal data in terms of fidelity. However, using the multi-task learning
schemes described in previous sections, the simulation data may
be used as a complement to improve models that are only trained
on experimental data.

6.4. Physics-informed machine learning

While low barriers exist to curating and generating large data
sets for some properties (e.g., by NLP or simulation), there are
other properties for which data is scarce. In these scenarios, physi-
cal or empirical equations may be used to decrease an ML model’s
dependency on data. For instance, an Arrhenius relationship was
incorporated into a deep neural network model for the prediction
of lithium-ion conductivity in polymer electrolytes [144]. By incor-
porating physics (in the form of the Arrhenius relationship), the
model produced smooth and meaningful predictions of conductiv-
ity as a function of temperature, despite only a limited amount of
temperature variation in the training data.

Likewise, there exist well-known relationships for important
dielectric properties, such as the Fox Equation, [145] for glass-
transition temperature. Future work that incorporates the time-
tested wisdom of these equations will improve the generaliz-
ability and reliability—especially in low-data situations—of next-
generation ML models for dielectric design.

7. Challenges and future directions

Structural modifications for improving the capacitive energy
storage can simultaneously influence a variety of other polymer
properties. While it is important to improve the thermal stabil-
ity (Tg) to avoid thermal degradation, increasing Tg can introduce
challenges in polymer processing, such as increased film brittleness
and internal stress [3]. Similarly, enhanced dielectric polarization
to improve the energy density may inadvertently elevate dielectric
loss, which can degrade performance efficiency over multiple oper-
ation cycles [146-148]. Excessive dielectric loss is particularly con-
cerning for large-scale applications of capacitor films, where even
a small increase in loss can result in significant heating of the elec-
trical assembly due to the large surface area of the film. The intro-
duction of polar groups for enhancing the dielectric constant can
decrease the moisture resistance of the polymer film if the func-
tional groups are hydrophilic. The presence of unwanted moisture
can lead to an unstable dielectric constant, which is not desired
for capacitive energy storage leading to early dielectric breakdown.
Several such structural modifications can also affect the polymer-
solvent interactions, film morphology, mechanical properties, etc.
Also, the mechanism of dielectric breakdown and the direct effect
of thermal conductivity on capacitive energy storage performance
is not fully understood [149].

Properties such as Tg, dielectric loss, mechanical strength, and
thermal and electrical breakdown are inherently complex and
multi-variable, depending on the polymer morphology, multi-scale
geometric architectures, defects of different sizes, etc. Al-based
tools that offer economical screening of existing polymers, and
build on to discover new polymers can be instrumental in un-
derstanding these properties across multiple variables [150]. Well-
trained and calibrated artificial intelligence (AlI) models, can be
used to compute the calculation of large numbers that are difficult
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to manually comprehend, and unravel the mutual interdependence
of various structure-property relations.

8. Conclusion

The co-design approach has the potential to accelerate the
research and develop technologies that can moderate the rising
energy-storage demand. Machine learning techniques can signif-
icantly reduce the time required to develop new polymers and
to elucidate the interdependencies of various parameters follow-
ing structural modifications. For instance, through initiatives like
the Material Genome Initiative (MGI), the time required to develop
new materials could be cut by more than half compared to con-
ventional methods [151].

In conclusion, it is important to highlight the promising poten-
tial of a systematic method for the discovery of new polymer di-
electrics. Recent achievements in the field of computer engineer-
ing and material science demonstrate that innovative collaborative
methods integrating computation, synthesis, and characterization
can lead to significant progress [152-157]. The co-design approach
enables us to move ahead of the traditional trial-and-error and
instinct-based methods that have been used so far.
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