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A physics-enforced neural network to
predict polymer melt viscosity
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Achieving superior polymeric components through additive manufacturing (AM) relies on precise
control of rheology. One rheological property particularly relevant to AM is melt viscosity (η). η is
influenced by polymer chemistry, molecular weight (Mw), polydispersity, shear rate ( ̇γ), and
temperature (T). The relationship of η with Mw, ̇γ, and T is captured by parameterized equations.
Several physical experiments are required to fit the parameters, so predicting η of new polymer
materials in unexplored physical domains is laborious. Here, we develop a Physics-Enforced Neural
Network (PENN) model that predicts the empirical parameters and encodes the parametrized
equations to calculate η as a function of polymer chemistry, Mw, polydispersity, ̇γ, and T. We
benchmark our PENNagainst physics-unawareArtificial Neural Network (ANN) andGaussianProcess
Regression (GPR) models. We demonstrate that the PENN offers superior values of η when
extrapolating to unseen values of Mw, ̇γ, and T for sparsely seen polymers.

Additive Manufacturing (AM) enables the rapid creation of metal or
polymer parts with previously unimaginable features and topologies and is
therefore poised to disrupt a variety of industries1,2. For polymers, achieving
desired properties in the final component is determined by the appropriate
choices of material chemistries with suitable rheological properties, as well
as conditions adopted during the AM process such as temperature, extru-
sion rates, etc. At present, a limited palette of chemistries, properties, and
conditions is utilized, generally guided by experience, intuition, and
empiricism.

In this contribution, we adopt an informatics approach relevant toAM
across the chemical and process condition space, to predict one critical
rheological property of polymers, namely, the melt viscosity η. Informatics
approaches have made major inroads in recent years within materials
research3–5, leading to accelerated means for property predictions and
providing guidance for the design of newmaterials6–10. These methods start
with availablematerials data onproperties of interest. Thematerials are then
represented numerically to capture and encode their essential features in a
machine-readable format. The numerical representations, or fingerprints,
are then mapped to available property data using machine learning (ML)
algorithms, ultimately producing predictive models for the property
considered6,11–15. Within the AM space, similar methods have been used for
final component property prediction16, process monitoring17, geometric
configuration18, composition optimization19, and optimization of printing
parameters (albeit mainly for powder-bed AM1,18, but not as much for
polymermelt extrusionAM2). ExtrusionAMrelies on the precise control of
polymer melts, which currently requires data from extensive rheological

experiments for each new chemistry. This is a bottleneck in the ink devel-
opment process2. Therefore, predictive capabilities for rheological proper-
ties, such as η, are useful to reduce the number of physical experiments
aimed at optimization and design.

Melt viscosity of polymers, beyond being a critical property, is attrac-
tive to model with ML because there is a reasonable amount of related
literature data, although with limited chemical diversity compared to other
polymer property datasets5,12,15,20,21. Additionally, there are known physical
equations (albeit with empirical parameters) that describe the dependence
of η on its governing conditions: temperature (T), averagemolecular weight
(Mw), and shear rate ( _γ) (Fig. 1A). For instance, it is known that η increases
with increasing Mw (via piece-wise power law dependencies), decreases
(non-linearly) with increasing _γ, and decreases (exponentially) with
increasing T. Explicit functional forms and additional background on the
behaviors are provided in the Methods section. Molecular weight dis-
tributions, quantified by the polydispersity index (PDI), are also known to
affect melt viscosity22–24. With this situation in mind, previous works have
also addressed the modeling of η using ML25–28. While promising, the
majority of these works have focused on specific scenario or are shown to
predict unphysical results, making them difficult to apply.

In the present work, we create a physics-enforced neural network
(PENN) framework that produces a predictive model of polymer melt
viscosity which explicitly encodes the known physical equations while also
learning the empirical parameters for new chemistries directly from avail-
able data. Physics-informed ML frameworks have shown great promise
recently inmany application spaces, including atomicmodeling, chemistry-
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informed materials property prediction, and Physics Informed Neural
Networks (PINNs) that solve partial differential equations29–33. Our PENN
for polymer melt viscosity prediction involves a Multi-Layer Perceptron
(MLP) that takes as input the polymer chemistry (fingerprinted using our
PolymerGenomeapproach6) alongwith thePDI of the sample, andpredicts
the empirical parameters as a latent vector (listed in Table 1), used to
estimate η as a function of T, Mw, and _γ. A computational graph then
encodes the dependence of Mw, _γ, and T on η (see Fig. 1A) using the
equations described in theMethods section. The entire framework (Fig. 1B)
is trained on our dataset (elaborated in the Dataset section). The detailed
architecture of this framework is described in the Methods section.

We find that this strategy is critical to obtain results that are physically
meaningful in extrapolative regimes (e.g., ranges of T,Mw and _γwhere there
is no training data for chemistries similar to the queried new polymer). This
ability is vital given our benchmarking dataset’s sparsity, containing only 93
unique repeat units, although the total number of datapoints is 1903
(including T,Mw, _γ, and composition variations. As baselines to assess this
PENN, we trained artificial neural network (ANN) and Gaussian process
regression (GPR) models without any physics encoded. We find that the
PENNmodel is more useful in obtaining credible extrapolative predictions.

Our results indicate that informatics-based data-driven and physics-
enforced (when possible) strategies can aid and accelerate extrusion AM
innovations in sparse data situations.

Results
Dataset
Melt viscosity data was collected from the PolyInfo repository34 and from
the literature cited by PolyInfo. Cited literature data was extracted from
tables and figures with the help of the WebPlotDigitizer tool35. The final
dataset shown in Fig. 2 includes a total of 1903 datapoints composed of 1326
homopolymer datapoints, 446 co-polymer datapoints, and 113 miscible
polymerblenddatapoints.Thedataset spans a total of 93unique repeat units
with variations inMw, _γ,T, andPDI. For datapointswithout a recordedPDI,
we impute 2.06, the median PDI of the dataset. Due to inconsistencies with
the reporting of polymer structures such as branching and crosslinking for a
wide variety of chemistries, the dataset only includes linear polymers.

We found that η at lowMwwere underrepresented when compared to
ηmeasurements at highMw. Using the zero-shear viscosity (η0) relationship
withMw (Fig. 1A), we added126 datapoints at lowMw (included in the 1903
datapoints). This was achieved by identifying polymer chemistries with
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Fig. 1 | The melt viscosity (η) physical trends, learning problems, and machine-
learning workflow. ADepictions of the functions used to describe the behavior of η
with respect to temperature (T), molecular weight (Mw), and shear rate ( _γ). The
functions are parametrized by empirical parameters with physical significance,
elaborated in Table 1 and in the Methods section. The η dependence onMw is given
by log ηMw

(Eq. (8) in the Methods section). Empirical parameters define the slopes
of the relationship at low Mw (α1) and high Mw (α2), the critical molecular weight
(Mcr), the y-intercept of ηMw

(k1), and the rate of transition from low to high Mw

regions (βMw
). The η dependence on T andMw is given by log η0ðT;MwÞ (Eq. (5) in

the Methods section), and is parameterized by reference temperature (Tr) and
empirical fitting parameters (C1 and C2). The effects of C1 and C2 are visualized by
comparing the trends with different sampled values. The η dependence on _γ is given

by log ηðT;Mw; _γÞ (Eq. (4) in theMethods section). The relevant parameters include
shear thinning slope (n), the critical shear rate ( _γcr), and the rate of transition from η0
to shear thinning (β _γ). B The Physics-Enforced Neural Network (PENN) archi-
tecture starts with an input containing the polymer fingerprint and the PDI. AMulti-
Layer Perceptron (MLP) uses the concatenated input to predict the empirical
parameters. Next, the computational graph uses the predicted empirical parameters
to calculate η, via the encoded log ηMw

, log η0ðT;MwÞ, and log ηðT;Mw; _γÞ functions.
The physical condition variables logMw , log _γ and T are input to their respective
functions. C Physics unaware Artificial Neural Network (ANN) and a Gaussian
Process Regression (GPR) are baselines to comparewith the PENNmodel. The input
features to the ANN and GPR models are the concatenated polymer fingerprint, T,
Mw, _γ, and PDI.
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more than five η0 datapoints at highMw and a recordedMcr
36. Equation (6)

(Methods Section) was fit to each chemistry and extrapolated to estimate η
values at lowMw.

Because the viscosity values span several orders of magnitude (Fig. 2),
we use the Order of Magnitude Error (OME) to assess MLmodel accuracy.
OME is calculated by taking theMeanAbsolute Error of the logarithmically
scaled η values. Models with lower OME exhibit more accurate predictions.

Overall assessment of physical intuition with sparse chemical
knowledge
An important future use case of our ML models is to estimate the melt
viscosity in new physical regimes, given a small amount of knowledge of a
given polymer andother chemistries. For example, given a fewcostly tests of
a new polymer at a fewmolecular weights, one should be able to predict the
viscosity at remaining molecular weights, and, likewise, across different

shear rates and temperatures. Figure 2E depicts how this ability was tested
through a unique splitting of data into test/train sets across the chemical and
physical regimes. First, the monomers were split into train (90%) and test
(10%) sets.Within the testmonomers, themedian of the distributions of the
testmonomerswith respect to a variable in thephysical spacewas calculated.
The median was used to split all datapoints containing that monomer: half
for a final test split, and the other half for training. The upper or lower half
going to testingwas randomly chosen.This approach ensures that all the test
data focuses on predicting in new physical regimes given a sparse amount of
monomer data. This process was repeated three times for each ofMw, _γ, and
T to ensure that diverse tests were used for evaluation.

Figure 3 shows the combined results of three trials for splits across all
three physical variables. Supplementary Fig. 1 showsparity plots that specify
the results from each trial. The GPR, ANN, and PENN predictions have
acceptable OMEs, indicating that all three can capture some chemical

Table 1 | Definitions of empirical parameters predicted by the Physics Enforced Neural Network (PENN)

Parameter Physical representation Relevant equation(s)

C1 Empirical Parameter for the η–T relationship 5

C2 Empirical Parameter for the η–T relationship 5

Tr Reference temperature for the η–T 5

Mcr Critical Mw, associated with the onset of polymer chain entanglement 6–8

α1 Slope of zero-shear viscosity (η0) vs. Mw when Mw < Mcr (approximately 1) 6–8

α2 Slope of η0 vs. Mw whenMw > Mcr (approximately 3.4) 6–8

βMw
Measure of transition from α1 to α2 at Mcr 8

k1 η0 whenM = 0 and T = Tr 6–8

̇γcr Critical Shear Rate when T = Tr, associated with the onset of shear-thinning 2–4

n Slope of shear thinning (typically 0.2-0.8 for polymer melts) 2–4

β ̇γ Measure of transition from zero-shear to shear-thinning 4

Their relevance to temperature (T), molecular weight (Mw), and shear rate ( ̇γ) when calculating melt viscosity (η) is also provided. The relevant equations in the Methods section are provided for each
parameter.

Fig. 2 | Visualizations of the dataset with respect to physical variables. The joint
distributions of (A) molecular weight (Mw), (B) shear rate ( _γ), (C) temperature (T),
and (D) polydispersity index (PDI) with respect to melt viscosity (η) are presented.
The single distributions for the physical conditions are given on the top axes and the

distribution of η is given on the right-most axis. Each subplot contains all 1903
datapoints from the dataset. (A–C) have highlighted samples in red that exemplify
the dependencies depicted in Fig. 1A. EVisual depiction of train-test splitting across
chemical space and physical spaces for N monomers in the dataset.
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information and physical trends. The PENN results in a distinct decrease in
OME(an averageof 35.97% improvement), andan increase inR2 (up to 79%
for the _γ split) from the ANN. The PENN also outperforms the GPR for the
Mw andT splits, but theGPR ismore accurate on the test set for _γ. In further
analysis, we show how the physical viability of these predictions is scruti-
nized beyond the high-level trends of the parity plot.

Distribution of predicted empirical parameters
Despite the high overall performance of all three models, only the PENN
model canproducephysically credible predictions in regimeswith restricted
and sparse data. A comparison of the GPR, ANN, PENN models in esti-
mating crucial empirical parameters (found in Table 1) from sparse data in
the held-out set is detailed in Fig. 4.

To establish a benchmark for comparing the threemodels, we obtained
ground truth values of the parameters from the dataset. We did this by
identifying subsets of our dataset involving the same polymer with

measuredηof severalT,Mw, or _γ. If a subset contained at leastfivepoints,we
fitted the corresponding equation (Eqs. (5), (6), or (2)) to obtain empirical
parameters. The distributions of these ground truth parameter values are
shown in the first row of Fig. 4. There are a limited number of ground truth
values because a small number of datapoints satisfy the above conditions.
Nevertheless, this small sample set allowedus tomakea few inferences about
expected viscosity trends. The ground truth values of α1 and α2 are close to
the theoretical values of 1 and 3.4, respectively37 (background provided in
Methods). α2 values were occasionally less than the expected 3.4, possibly
due to outliers or errors in fitting a small number of datapoints. The fitted
logMcr values fell within a range of 10

2.5− 105 g/mol. For shear parameters,
the majority of samples are found to have n in a range of 0.2− 0.8, which is
typical for polymermelts38. The obtained _γcr values were found in the range
of 10−3− 104 1/s. ThefittedTr values aremostly in a range ofTr<250K. This
is low when compared to Tg values found in thermal property datasets12. In
our dataset, the datapoints that could be fitted to the η-T relationship were
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Fig. 3 | Parity plots for unseen viscosity samples. Parity plots are used to assess the
models' overall predictive capabilities in new physical regimes based on the physical
variable split for molecular weight (Mw), shear rate ( _γ), and temperature T. Results
are compared between Gaussian Process Regression (GPR), Artificial Neural Net-
work (ANN), and Physics Enforced Neural Network (PENN) models. Each plot
compares experimental values for melt viscosity (η) to the predicted η across 3

unique test-train splits for each physical variable. The top row (A–C) contains GPR
results for (A) the Mw split, (B) the _γ split (C) the T split. The middle row (D–F)
contains ANN results for (D) theMw split, (E) the _γ split (F) the T split. The bottom
row (G–I) contains PENN results for (G) theMw split, (H) the _γ split I) the T split.
The dotted black lines represent perfect predictions. The coefficient of determina-
tion (R2) and Order of Magnitude Error (OME) are reported over these test sets.
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observed at T < 475K, so low Tr values could be overrepresented in the
ground truth. The C1 parameter average was 11.8 and the C2 parameter
average was 159.42 K. This analysis of the ground truth data suggests the
desired parameter values our models should predict.

We used two different methods to obtain parameter estimations from
the models: one method is unique to the PENN model, and another
approach for the purely data-driven ANN and GPR. The PENN model
automatically predicts each of the empirical parameters (see Fig. 1B), which
are used in the computational graph to predictη. TheANNandGPRdonot
directly predict the parameters, so we used a fixed extrapolation procedure.
The procedure involved selecting an unseen data point and varying a
physical variable (one ofMw, _γ, and T) within a predetermined range while
holding the other two constant. The ranges for each variable encompass
similar orders of magnitude as those present in the training dataset (Fig. 2).
ForMw extrapolation, a rangeof 10

2−107 g/molwasused to encompass low
andhighMw. For shear rate extrapolation, a range of 10

−5− 106 1/swas used
to model behaviors in zero-shear and shear-thinning regimes. For tem-
perature extrapolation, ranges of ± 20 K from the original data point’s
temperature were used to stay within the boundary constraints of Eq. (5).
Using this procedure, sets of predictions were made on every unseen
datapoint and fit using Eqs. (5), (6), or (2), yielding estimated values of the
empirical parameters.

In Fig. 4, we show the feasibility of the models’ empirical parameter
predictions evaluated against the ground truth values and accepted values
(elaborated in the Methods section). For parameters where a theoretical
value is well-defined, the Root Mean Square Error (RMSE) of the predic-
tions’ deviation from this value is calculated. The parameter prediction
distribution is also compared to the ground truth distribution through a
discrete Kullback-Leibler (KL) divergence,

KLðP k QÞ ¼
X
i

PðiÞ log PðiÞ
QðiÞ

� �
:

Intuitively, the KL divergence is a measure of how one probability dis-
tributionPdeviates froma referencedistributionQover a set of intervals i. A

lower divergence indicates that the predicted parameter distribution is
closer to the ground truth. The KL divergence was calculated by finding the
entropy between the discretized probability distributions of the ground
truth and the ML prediction.

From Fig. 4, it can be seen that GPR struggles to predict expected
parameter values. TheGPRpredictions forα1 deviate from1 by anRMSEof
1.26. For some polymers, GPR predicts α1 ≤ 0. The GPR predictions for α2
deviate from 3.4 by an RMSE of 2.87, and are significantly lower than the
ground truth values in the dataset. Most predicted values for logMcr are
within the same range as the ground truth, but the proper low and high
entanglement behavior is not captured which decreases the credibility of
thesefittings. For the shear thinning parametern, some values fallwithin the
expected range of 0.2 − 0.838 for polymer melts, but others are closer to 0,
indicating that the expected shear thinning behavior is not always predicted.
The predicted _γcr distribution is lower than the ground truth, indicating that
the GPR forecasts the onset of shear-thinning at a significantly lower _γ than
observed (if shear thinning is predicted at all). On temperature dependence,
some Tr values are predicted higher than what is seen in the dataset.

The ANN’s failure to capture correct physical trends is also evident in
the distributions of its fitted parameters. The RMSEs for the ANN’s esti-
mated α1 and α2 values are 1.31 and 2.79, respectively. ANN overestimates
α1 and underestimates α2 and therefore does not capture the effects of high
Mw chain entanglement. The ANNpredictions estimate a low n for a subset
of polymers, which goes against the definition of shear thinning. The pre-
dicted _γcr values are lower than theground truthdistribution, indicating that
the ANN struggles to capture the shear-thinning transition region from the
dataset. TheANNpredictions for theT trend are closest to the ground truth
in comparison to its trends of the other variables, because T is a smoother,
exponential function (Fig. 1A), enabling an easier average fitting.

The PENN outperforms the ANN in estimating feasible empirical
parameters as depicted by lower KL Divergence values in the last row of
Fig. 4. The RMSEs of the predicted α1 and α2 values are 0.05 and 0.17, which
are substantially smaller than that of the ANN. Moreover, all the predicted
values of logMcr are within the ground truth range of 2.5− 5. The PENN
model can also learn the correct shear thinning phenomenon by predicting

Fig. 4 | Comparisons of empirical parameter predictions of different models.
Normalized distributions of empirical parameter values found in the dataset
(Ground Truth) are compared to parameter values predicted by Gaussian Process
Regression (GPR), Artificial Neural Network (ANN) and Physics Enforced Neural
Network (PENN)models. Each column compares a different parameter for themelt
viscosity (η) relationship with molecular weight (Mw), shear rate ( _γ), and tem-
perature (T). The examined parameters include: (A) α1, the slope of zero-shear
viscosity (η0) vs.Mw correlation at lowMw (accepted value of 1 depicted by the red
dashed line) (B) α2, the slope of η0 vs.Mw at highMw (accepted value of 3.4 depicted

by the red dashed line), (C) critical molecular weight (Mcr), (D) n, the rate of shear
thinning (accepted range of 0.2–0.8 depicted by the dashed red lines), (E) critical
shear rate ( _γcr), (F) reference temperature (Tr) of a polymer. (G, H) show dis-
tributions for the C1 and C2 fitting parameters for the η-T trend. The ground truth
distributions represent 41 samples forMw parameters, 33 samples for _γ parameters,
and 22 samples for T parameters. The Kullback–Leibler (KL) divergence of the
model estimation distributions from the ground truth is given in the top left of each
histogram. The lowest KL divergence among the three models is bolded for each
parameter.
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n values between 0.2− 0.838 and a _γcr distribution that mirrors the dataset.
The PENN’s predicted range of Tr is closest to the ground truth. For the C1

parameter, the PENNpredicted distribution is closest to the proposed value
of C1 = 7.60 (detailed in the Methods section), also having the lowest
divergence from the ground truth. For C2 predictions, although the KL
Divergence of the PENN is lower than the ANN, the PENN is confined to
much lower values of C2, and has an average much lower than some
experimentally derived values, such as C2 = 227.3 K39.

Overall, the average KL divergence across all parameter distributions
for the GPR, ANN, and PENN are 14.59, 22.24, and 1.74, respectively. The
overall distributions of empirical parameters points to the PENN having

greater capabilities for producing physically correct results, than a purely
data-driven model.

Performance in extrapolative regimes
In Table 2, we summarized the performance of predicted η profiles over
wide ranges of Mw (256 extrapolations), _γ (71 extrapolations), and T (127
extrapolations) for all three models considered. We define a successful
extrapolation as a model that is able to predict the correct trends while
maintaining accuracy over the train and test points. In this study, a pre-
diction is considered accurate for an experimental point if the experimental
data falls reasonably within the predicted uncertainty bounds. However, in
practice the required precisionmay vary depending on the specific practical
use case. Overall, the PENN successfully predicts 80.4% of Mw extrapola-
tions, 49.2% of _γ extrapolations, and 54.1% of T extrapolations. The ANN
rarely achieves correct physical trends forMwor _γ extrapolations in the span
of the dataset and only predicts successful profiles for 17.2% of T extra-
polations. TheGPRmodel also exhibits a low performance in extrapolation.
There are several instances (given in the brackets inTable 2)where theANN
and GPR successfully fit the data points but fail to extrapolate correctly
beyond the dataset. This underscores the need for information beyond
experimental data to enable extrapolation to new physical regimes.

Figure 5 shows a few examples of the extrapolation results summarized
in Table 2. A much larger set of examples of both successful and unsuc-
cessful extrapolations by the PENN compared to the GPR and the ANNare
provided in Supplementary Figs. 2–7. Figure 5A–C shows examples of the

Table 2 | Extrapolative predictive performance of the PENN,
ANN, and GPR models along the unseen molecular weight
(Mw), shear rate ( ̇γ), and temperature T regimes

Model Mw ̇γ T

PENN 80.4% 49.2% 54.1%

ANN 4.30% [64.4%] 4.22% [19.7%] 17.2% [19.5%]

GPR 0.0% [68.0%] 7.04% [40.8%] 7.03% [28.1%]

The values within brackets for the ANN andGPR show the percentages of extrapolations where the
unseen datawas predicted correctly, but the extrapolated trend beyond available data regimeswas
physically incorrect.

ANNGPR ENN Train Datapoints Unseen Datapoints

(K)

(K)

(C)

(F)

(A)

(D)

(B)

(E)

Fig. 5 | Example extrapolations of melt viscosity for different physical variables.
Examples of successful (A–C) and unsuccessful (D–F) melt viscosity (η) and zero-
shearmelt viscosity (η0) predictions overwide ranges ofmolecularweight (Mw), shear
rate ( _γ), temperature (T) by the Physics Enforced Neural Network (PENN) models.
The extrapolated predictions are compared to those by Gaussian Process Regression
(GPR) and Artificial Neural Network (ANN) models given the same training
information. A is a good η0-Mw extrapolation for [*]CCCCCCCCCCOC(=O)
CCCCC(=O)O[*] at T = 382.15 K. B is a good η- _γ extrapolation for a copolymer of
[*]CC([*])CC(C)C and [*]CC([*])CCCCCCCC (0.968:0.032) (Mw = 290000 g/mol,

PDI = 7.8) at T = 543.15 K. C is a good η–T extrapolation for [*]CCOCCOC-
COC(=O)CCCCCCCCC(=O)O[*] (Mw = 2000 g/mol, _γ = 60 1/s). D is an unsuc-
cessful η0-Mw extrapolation for [*]C=CCC[*] at T = 490.15 K, with possible
mispredictions ofMcr and k1. E is an unsuccessful η- _γ extrapolation for a copolymer
of [*]C[*] and [*]CC([*])OC(C) (0.72:0.28) (Mw = 60000 g/mol), with possible
misprediction of _̂γcr and η0. F is an unsuccessful η–T extrapolation for [*]CC(O)
COc1ccc(C(C)(C)c2ccc(O[*])cc2)cc1 (Mw = 1696 g/mol, _γ = 0.0 1/s) with a possible
misprediction of Tr.
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PENNcorrectly extrapolating η given a small amount of information about
a monomer in another part of the physical regime in unseen regimes. The
ANN and GPR models are uncertain in these unseen regimes, resulting in
large confidence intervals. In Fig. 5A, the PENNmodel accurately predicts
the region near Mcr where the η-Mw relationship transitions from unen-
tangled to entangled, and can therefore accurately predict η values at high
Mw, despite not having seen any data in this region. The errors for the ANN
andGPR in Fig. 5A are low, within approximately an order ofmagnitude of
error. However, the ANN predictions have a near-constant slope around
Mcr (implyingα1≈α2) and are inconsistentwith the effects of polymer chain
entanglements at highMw. The GPRmodel also fails to predict a higher α2
slope. In Fig. 5B, only the PENN model predicts a zero-shear and shear-
thinning region when predicting the η- _γ relationship of the given copoly-
mer. The GPR model fits the training points but mispredicted shear-
thinning at high shear rates. The ANN model predicts a decreasing rela-
tionship consistent with shear-thinning but doesn’t predict the zero-shear
region. This could be an example of spectral bias within neural networks,
which describes howANNs prioritize global or “low frequency” patterns in
data over local or “high frequency” patterns40. The general decreasing trend
of η- _γ is “low frequency” and is captured by the ANN. In contrast, the
transition regions are of a “higher frequency” and are not captured by the
ANN. InFig. 5C, thePENNmodel predicts the correctη-T relationship. The
ANN model also predicts an exponential relationship but with a higher
inaccuracy. The GPR model fits both the training and unseen datapoints,
but predicts an unphysical trend beyond this. Overall, the PENN model
makes predictions that follow the expected behaviors (Fig. 1A) of poly-
mer melts.

Correctly extrapolated samples by the PENN model, such as the
ones in Fig. 5A–Cmake up 67.5% of the extrapolated test cases, which is a
significant improvement relative to both the ANN and GPR. The PENN
model also has room for improvement, especially when applied to
datasets with low chemical diversity. Overfitting to a small set of che-
mistries in training can lead to the inaccurate prediction of parameters
when making predictions for unseen chemistries. This behavior is
demonstrated in Fig. 5D–F, where the PENN predicts a plausible rheo-
logical trend but incorrect values for unseen polymers. However, the
PENNmodel introduces a layer of interpretability unavailable to physics-
unaware models. Based on the predictions we can reasonably infer which
parameters were over- or under-estimated. In Fig. 5D, the PENN model
predicts near-correct α1 and α2 slopes, but the predictedMcr and k1 values
are underestimated. Figure 5E depicts how an underestimated η0 (caused
by inaccuracies in predictedMcr, α1, α2 and/or k1) can cause inaccurate η
predictions for all other _γ values.We also see this phenomenon in Fig. 5F,
where Tr is likely underestimated. The propagating error causes the
PENNmodel to predict an inaccurate trend across the entire spectrum of
T. Despite these errors, the pinpointing of the PENN’s weak spots can be
used to add targeted training data to improve the model. This level of
interpretation is unique to the PENN and cannot be done for the GPR
and ANN.

These examples of extrapolations provide insights into the applicability
of PENNversus pure data-drivenmethodswhenusing datasets that contain
limited chemistries. The equations used in the PENN are based on
assumptions and generalizations, and may not account for all physical
nuances. These must be considered when applying PENNs to future
material design and process optimization problems.

Discussion
In this study, we introduce a Physics Enforced Neural Network (PENN), a
strategy that combines data-driven techniques with established empirical
equations, to predict themelt viscosity of polymermeltswith better physics-
guided generalization and extrapolation. The PENN makes predictions
across many chemical compositions and relevant physical parameters,
including molecular weight, shear rate, temperature, and polydispersity
index. We compared our PENN approach against the purely data-driven,
physics-unaware, Artificial Neural Network and Gaussian Process

Regression. In extrapolative regimes, our PENN model outperforms the
physics-unaware counterparts and offers an elevated level of interpretability
and generalizability. To enhance generalizability across chemistries, future
work could increase the chemical space in the dataset through new
experiments, molecular dynamics simulations, and/ormore aggressive data
acquisition from literature.

Thisworkhasprofound implications for additivemanufacturing (AM)
and materials informatics. The PENN model’s capability to guide the
rheological control of diverse polymer resins accelerates the development of
new printing materials, thereby expanding AM’s utility. Our methodology
offers a blueprint for modeling other properties governed by empirical
equations. The initial success of the PENNarchitecture formelt viscosity is a
powerful demonstration of how data-driven insights combined with
established knowledge can propel us into a new era of rapid advancements
in materials science and engineering.

Methods
Fingerprinting and feature engineering
The chemical attributes of a polymer are represented by a unique finger-
printing scheme. The fingerprints (FPs) contain features derived from
atomic-level, block-level, chain-level, and morphological descriptors of a
polymer as described at length earlier6. The dataset contains homo- and co-
polymers, and miscible polymer blends. Co-polymers and blends contain
multiple repeating units, eachwith a separate FP. For co-polymers, the FPof
each unit was aggregated to a single copolymer FP using a weighted average
(withweight equal to composition percentage)12. Similar to previouswork12,
all co-polymerswere treated as random.Formisciblepolymerblends, theFP
of each unit was aggregated to a single FP using a weighted harmonic
average (with the weight equal to composition percentage)20. For blends
containing units with differentMw and/or PDI, the weighted average over
each unit was used.

Enforced polymer physics trends
In this section, we detail the physics-based correlations included within the
Physics Enforced Neural Network (PENN).

We enforce dependencies of η on temperature (T), molecular weight
(Mw), and shear rate ( _γ) through ηðMw;T; _γÞ, which we derive below.

Preamble: smoothing of piecewise functions. When going from one
function g(a, b) in a low regime (a < b) to another function h(a, b) in a
high regime (a > b), we can use the smoothened Heaviside step func-
tion,

Hβ ¼
1

1þ expð�βxÞ ; ð1Þ

where β is a tunable rate of transition.
A function f(a, b) that transitions from g(a, b) to h(a, b) is given by

f ða; bÞ ¼ gða; bÞ×Hβðb� aÞ þ hða; bÞ×Hβða� bÞ

η dependence on _γ, T, and Mw. The η dependence on _γ follows the
physics of shear-thinning fluids41–43. In these fluids, at low _γ, there is not
enough force between chains to break entanglements and cause move-
ment, so η remains constant at η0. At a critical shear rate, _γcr , the shear
force is high enough to cause chain alignment, making chain diffusion
easier. Beyond _γcr , η decreases according to a shear-thinning linear power
law41. This trend can be represented by a function (Equation (2)) across
both the zero-shear and shear thinning regimes41,44–46,

ηðMw;T; _γÞ ¼ η0ðMw ;TÞ

1þ _γ
_γcr

� �1�n

log η ¼ log η0ðMw;TÞ þ ðn� 1Þ log 1þ _γ
_γcr

� � ð2Þ
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where the parameter n describes the sensitivity to shearing47. For shear-
thinning fluids, n < 1. Formost polymermelts, n is empirically known to be
in the range 0.2–0.838.

Equation (2) is unfavorable to use directly because _γ spans several
orders of magnitude, so log _γ must be used as an input. Eq. (2) cannot be
adapted to use log _γ as an input (due to the+1 in the denominator), so we
depict the relationship across the low _γ and high _γ regimes as a piecewise
function on the log-scale,

log η ¼
log η0 if _γ << _γcr

log η0 þ ðn� 1Þ log _γ
_γcr

� �
if _γ >> _γcr

(
ð3Þ

We smooth Eq. (3) with Hβ _γ
to get log ηðMw;T; _γÞ (Eq. (4)),

log ηðMw;T; _γÞ ¼ log η0ðMw;TÞ×Hβ _γ
ðlog _γcr � log _γÞ

þ log η0ðMw;TÞ þ ðn� 1Þ log _γ
_γcr

� �� �
×Hβ _γ

ðlog _γ� log _γcrÞ;
ð4Þ

where β _γ is a parameter that dictates the rate of shift from zero-shear to
shear-thinning. For our implementation, we found that optimization over
the _γ domain was optimal when β _γ ¼ 30.

log η0ðMw;TÞ is defined by the T dependence. As temperature
increases, so does the rate of molecular self-diffusion, resulting in lower η
seen in fluidic polymer melts43. The William–Landel–Ferry (WLF)
equation39,48 describes the exponential decrease in η as the temperature
increases. Therefore, we can encode temperature dependence as

η0 ¼ ηMw
× 10

�C1 ðT�Tr Þ
C2þðT�Tr Þ; 8T ≥Tr

log η0ðMw;TÞ ¼ log ηMw
þ �C1ðT�Tr Þ

C2þðT�Tr Þ ; 8T ≥Tr

ð5Þ

where Tr is a reference temperature and C1 and C2 are material-dependent
empirical parameters. The values for these are dependent on polymer
chemistry.C1 = 7.60 andC2 = 227.3 K are examples of values that have been
proposed39 fromobservations of experiments on a small subset of polymers.
The reference temperature Tr is within a few degrees of the glass transition
temperature Tg. It has been proposed that the WLF relationship holds
within the range of Tg to Tg + 200K39.

ηMw
is defined by the Mw dependence. Longer and heavier polymer

chains experience increased entanglements, which hinder chain reptation in
thepolymermelt at low shear37,43. Equation (6) is a piece-wise power law that
describes this phenomenon.

ηMw
¼ k1M

α1
w if Mw <Mcr

k2M
α2
w if Mw ≥ Mcr

�
ð6Þ

where

k2 ¼ k1M
α1�α2
cr :

Mcr is the critical molecular weight, above which entanglement
density is high enough to increase the impact of Mw on η0. The two
power laws intersect at Mw = Mcr

37. Mcr is found to be approximately
2-4 times the molecular weight at which chain entanglement starts, but
the exact value is polymer dependent43. α1 is the slope of the
log η0-logMw curve if Mw < Mcr and α2 is the slope if Mw≥Mcr. Typi-
cally, α1 is theoretically and empirically determined to be about 1, while
α2 is found to be about 3.437,43, but the exact value is dependent on the
polymer. k1 and k2 are the y-intercepts of each power law and are
polymer-dependent.

Mw and η0 span several orders of magnitude, so we use Eq. (6) in the
log-scale to get Eq. (7),

log ηMw
¼ log k1 þ α1 logMw if Mw<Mcr

log k1 þ ðα1 � α2Þ logMcr þ α2 logMw if Mw ≥Mcr

�
ð7Þ

Smoothing Eq. (7) with HβMw
gives Eq. (8),

log ηMw
¼ ½log k1 þ α1 logMw� � HβMw

ðlogMcr � logMwÞ
þ log k1 þ ðα1 � α2Þ logMcr

�
þ α2 logMw

� � HβMw
ðlogMw � logMcrÞ;

ð8Þ

where HβMw
is the smoothened Heaviside step function using βMw

, a
parameter which dictates the rate of shift from α1 to α2.

Therefore, Eqs. (4), (5), and (8) determine the log ηðMw;T; _γÞ. The
predicted parameters n, _γcr , β _γ determine the _γ dependence in
log ηðMw;T; _γÞ, which is also a function of η0(Mw, T). The predicted
parametersC1, C2, and Tr determine the T dependence in η0(Mw, T), which
is also a function of ηMw

. The predicted parameters α1, α2,Mcr, βMw
, and k1

determine theMw dependence in ηMw
. The parameter outputs of the MLP

have physically appropriate bounding ranges (reported in Supplementary
Table 1).

ηdependence onPDI. The dispersity of molecular weights in a polymer
melt affects the bulkmotion of polymer chains43. For example, a short and
long chain may diffuse differently compared to two medium-sized
chains. Therefore, using just theMwwithout any knowledge of dispersity
can mislead the ML model. We account for dispersity by using the
polydispersity index (PDI),

PDI ¼ Mw

Mn
;

where Mn is the number average molecular weight. Empirical models for
this relationship22,24 may require detailed information on the specific shape
of the molecular weight distribution of a polymer melt. Not all of our data
points contain proper information on PDI (as discussed in the Results
section), so we do not directly encode η-PDI trends within the computa-
tional graph. Instead, the PDI could affect the transitions in the critical
regimes of the η0-Mw relationship and the η- _γ relationship (when _γ ¼ _γcr or
Mw =Mcr)

22–24. We incorporate this effect through the parameters βMw
and

β _γ (described in Table 1). A higher value of βMw
or β _γ creates a quicker

transition within their respective critical regimes.

PENN training
This entire PENN architecture is trained, in part, to minimize the error of
viscosity predictions. The sum of these errors across all n training points is
called the viscosity lossLη, defined in Eq. (9). Each data point is denoted by
its index i.

Lη ¼
1
n

Xn
i¼1

ðη̂i � ηiÞ2 ð9Þ

During training, we add loss terms (see Eq. (10)) to penalize the pre-
dicted α1 and α2 for the ith training point (α̂1;i and α̂2;i, respectively) for
deviating from their average values. The viscosity loss plus the penalty terms
form the total loss L.

L ¼ Lη þ
1
n

Xn
i¼1

wα½ðα̂1;i � 1Þ2 þ ðα̂2;i � 3:4Þ2� ð10Þ

wα is a hyperparameter that controls the impact that known values of the α1
and α2 parameters have on the final loss.
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Machine learning approaches
The PENN and ANN models were implemented in PyTorch49. All models
were trained on the same 9:1 (Train:Test) split. Before training, the features
and η were scaled to a range of (−1,1). The polymer fingerprint, PDI, and
temperature were scaled with the Scikit-LearnMinMaxScaler50 to a range of
(−1,1). The _γ was scaled by first adding a small value of 10−5, taking the
log10, and then scaling to (-1,1).Mwwas scaled by taking the log10 value and
then scaling to (−1,1). For the PENN, logMw and log _γ use the same scaling
bounds as η.

Within the training set, a 10-fold cross-validation (CV) was used to
ensure that themodels did not overfit the training set. TheANNandPENN
models also had separatemodels trained for eachCV split. Hyperparameter
optimizationwas performedusing theHyperband51 optimization algorithm
over eachCV fold for both theANNand thePENNmodels, withRayTune52

implementations, respectively. The ANN and PENN models, both con-
taining 4 layers (including 2 hidden layers), involved optimization of the
same hyperparameters: layer 1 size (64, 128, 256, 512), layer 1 dropout
(0,0.01, 0.015,0.02,0.025,0.03), layer 2 size (64, 128, 256, 512), layer 2
dropout (0,0.01,0.015,0.02,0.025,0.03), and weight decay (0.00001, 0.00005,
0.0001, 0.0005, 0.001). For the PENN,wα (0.001, 0.005, 0.01, 0.03, 0.05) was
also optimized.The value corresponding to the lowestLη (Eq. (9)) of theCV
test split was used.

TheAdamoptimizerwasused to train themodelswith a learning rate
(LR) reduction by a factor or 0.5 on the plateau of the validation loss given
a patience of 20 epochs. An initial LR of 0.0001 was used for the PENN.
Empirically, we found that the PENN tuningwas sensitive to high LR. The
initial LR for the ANN was 0.001. Training was stopped with an Early
Stopping patience of no improvement in the validation loss after 25
epochs.

The GPR model was implemented using Scikitlearn50 trained using
Bayesian optimization to tune key hyperparameters. The hyperparameters
optimized include the noise level (alpha) with a range of [10−2, 101], the
length scale of the RBF kernel (length_scale) with a range of [10−2,
102], and the constant value used in the kernel (constant_value)with a
rangeof [10−2, 102], eachwith a logarithmicuniformprior.Theoptimization
was performed over 50 iterations each over the 10-fold cross-validation,
with the best-performing model parameters selected based on the results.
The scaling for the inputs and outputs of the GPR were the same as
the ANN.

Data availability
The dataset used in this study is available on the Ramprasad group’s github
(https://github.com/Ramprasad-Group/polyVERSE/tree/main/Other/
Melt_Viscosity).

Code availability
A sample framework for the PENN architecture is available at https://
github.com/Ramprasad-Group/PENN_Melt_Viscosity. Python 3.10 and
PyTorch 1.12.1 were used.
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