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Automated data extraction from materials science literature at scale using artificial intelligence and
natural language processing techniques is critical to advance materials discovery. However, this
process for large spans of text continues to be a challenge due to the specific nature and styles of
scientific manuscripts. In this study, we present a framework to automatically extract polymer-
property data from full-text journal articles using commercially available (GPT-3.5) and open-source
(LlaMa 2) large language models (LLM), in tandem with the named entity recognition (NER)-based
MaterialsBERT model. Leveraging a corpus of ~ 2.4 million full text articles, our method successfully
identified and processed around 681,000 polymer-related articles, resulting in the extraction of over
one million records corresponding to 24 properties of over 106,000 unique polymers. We additionally
conducted an extensive evaluation of the performanceand associated costs of the LLMsused for data
extraction, compared to the NER model. We suggest methodologies to optimize costs, provide
insights on effective inference via in-context few-shots learning, and illuminate gaps andopportunities
for future studies utilizing LLMs for natural language processing in polymer science. The extracted
polymer-property data has been made publicly available for the wider scientific community via the
Polymer Scholar website.

The field of materials informatics1,2 suffers from lack of data readiness and
data accessibility. Although materials data can be systematically generated
through computational and physical experiments, a substantial amount of
historical data is trapped in published literature.An ever-growing volumeof
data is continually released in scientific journal articles, but this data fre-
quently exists in unstructured natural language text formats, posing chal-
lenges for immediate utilization by modern informatics that rely on the
availability of structured datasets. Natural language processing (NLP)
techniques implemented in materials science seek to automatically extract
materials insights, materials properties, and synthesis data from a corpus of
text documents, and propose hypotheses and designs for new materials3–5.
After acquiring the corpus, a series of complex NLP operations are per-
formed which include turning texts into smaller units called tokens,
recognizing key entities (such as materials, characterization methods, or
properties) using named entity recognition (NER) methods, creating rule-
based algorithms to identify relationships between the entities through
dependency parsing, and finally, extracting information and organizing it
into a structured format6.

With the advent of modern machine learning (ML) and artificial
intelligence techniques, deep learning models including recurrent neural

networks and long short-termmemory architectures have become valuable
for NER tasks7,8. In recent years, the transformer-based BERT architecture,
with its ability to capture contextual and semantic relationships within
scientific texts9, has especially demonstrated superior performance com-
pared to traditional neural networkmodels10.Wehavepreviously developed
and published MaterialsBERT11, a NER model derived from
PubMedBERT12. This model demonstrated superior performance on pub-
licly available datasets in comparison to other BERT models, including
ChemBERT13 and MatBERT14, particularly for materials science-specific
data extraction tasks. By employing a MaterialsBERT-based pipeline, we
successfully extracted over 300,000 polymer-property records from
approximately 130,000 abstracts, the largest such undertaking at that time,
with the data made publicly available15. This data extraction approach
demonstrated the effectiveness of theMaterialsBERTmodel in processing a
substantial volume of abstracts to obtain polymer-property information.
The potential for large-scale data extraction using MaterialsBERT from the
full texts of journal articles presents a further new opportunity for materials
data acquisition.

While NER models excel in identifying named entities within texts,
discerning entity relationships across extended passages encompassing
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multiple sentences solely through recognized named entities continues to be
a challenge16. This limitation is particularly pronounced in technical and
scientific documents, where critical information is often expressed in a non-
standard and complex manner. In the domain of polymer science, NER-
based extraction methods encounter additional specific challenges stem-
ming from the expansive chemical design space of the materials and the
utilization of non-standard nomenclature, including commonly used
names, acronyms, synonyms, and historical terms17.

Recently, large languagemodels (LLMs) such asGenerative Pretrained
Transformer (GPT), Large Language Model Meta AI (LlaMa), Pathways
LanguageModel, etc., have gained significant attention in thefield of natural
language processing18,19. These models have shown remarkable perfor-
mance in handling various NLP tasks, showcasing their robustness and
versatility20, especially in high-performance text classification, NER, and
extractive question answering with limited datasets21. A key factor con-
tributing to the success of the LLMs is the vast amount of ‘knowledge’ these
models gain during semi-supervised pre-training (e.g., using masked lan-
guagemodeling to predict the next token given a set of preceding tokens for
context)22. In the pre-training phase, LLMs acquire a foundational com-
prehension of language semantics and contextual understanding through
exposure to training datasets, which typically comprise texts from general
science and scientific literature23. Subsequently, the pre-trained LLMs, also
referred to as base models, undergo supervised fine-tuning to produce
desired text outputs in response to specific prompts or instructions.
Examples include OpenAI Codex and Code LlaMa, both of which are fine-
tuned to generate code snippets based on a given natural language input24.
Similarly, ChatGPT and LlaMa Chat models are language models fine-
tuned to respond to user prompts or instructions conversationally while
maintaining a history of previous interactions for added context for the
conversation. A human-like understanding of the language semantics and
subsequent instruction tuning thus enable the LLMs to perform in-domain
tasks such as information extraction about a specific material class with no
(zero-shot) to only a few task-specific examples (few-shots). Such ability
offers excellent performance and eliminates the efforts needed to create a
labeled dataset of significant volume and train or fine-tune a new model25.

Despite the potential for many use cases including data extraction, the
improved capabilities of the LLMs depend on access to significant com-
putational resources. Using LLMs for inference incurs significant monetary
costs, due to high demands of energy consumption, hardware or cloud

computing time, and in terms of the environment, due to the carbon
footprint of powering a number of modern tensor processing units26,27.
Therefore, a data extraction pipeline aiming to efficiently utilize LLMs
should extract themaximumamount of high-quality information and at the
same time reduce the unnecessary prompting of the LLMs during the
processing of millions of full-text scientific articles.

Limited prior works exist on the application of LLMs for data extrac-
tion in materials science. Dagdelen et al. fine-tuned GPT-3.5 and LlaMa 2
models to extract useful records of linking dopants and host metal-organic
frameworks28. Zheng et al. developed a workflow utilizing ChatGPT as a
collaborator for human chemists, extracting 26,257 distinct synthesis
parameters of approximately 800 metal-organic frameworks from 228
articles29. Polak and Morgan proposed a similar workflow for metallic
glasses and high entropy alloys, employing follow-up questions toGPT-4 to
ensure correctness and address the issues of hallucinations with LLMs30.
Similarly, Yang et al. used a repeated questioning strategy with GPT-4 for
bandgap values, demonstrating reduced error rates and a more extensive
dataset than human-curated databases31. GPT-based approach offered
high-performance text classification, NER, and extractive question
answering with limited datasets, and could reduce researcher workload by
producing initial labelling sets and verifying human-annotations.

In this contribution, we present an approach to employing LLM- and
NER-based pipelines, specifically designed to automate the extraction of
property data of polymers from the full-text contents of journal articles. Our
data extractionworkflow,depicted inFig. 1, processes a corpusof 2.4million
materials science journal articles published in the last two decades, from
which, we identify and concentrate on 681,000 polymer-related articles.
Subsequently, the paragraphs of the articles are processed through a dual-
stage filtering scheme consisting of a ‘heuristic filter’ and a ‘NER filter’ to
identify themost relevant paragraphs that contain extractable propertydata.
The materials and properties are identified, relationships are established,
and the information is extracted in a structured format using Materi-
alsBERT andGPT-3.5models independently. Our pipelines extractedmore
than one million values of 24 selected properties from the full texts of the
polymer-related articles.Wehavemade the extracted data publicly available
at polymerscholar.org (henceforth referred to as Polymer Scholar) where
researchers can explore the distribution and relationships within the
properties of polymers15. To identify themost efficientmodel, with a special
focus on optimizing quality and costs, we evaluate three models –Materi-

Fig. 1 | Overall workflow to extract polymer property data. a Polymer-specific
documents are selected from a corpus of 2.4 million materials science journal arti-
cles. Multiple stages of filtering select the most relevant documents and paragraphs
of the documents before performing data extraction by MaterialsBERT and GPT-
3.5. Extracted data are finally deposited to a relational database of the Polymer

Scholar web interface. bProperty-specific paragraphs are selected by a heuristic filter
based on string matching and dictionary lookup. c The NER filter identifies para-
graphs with extractable named entities. The LlaMa-2 large language model was also
evaluated, but was not used in the final data extraction pipeline due to comparatively
low performance and long inference time, as described later in the text.
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alsBERT,GPT-3.5, andLlaMa2, across four critical performance categories:
quantity, quality, time, and cost of data extraction. Our study undertakes a
thorough examination of the capabilities of the LLMs, juxtaposing their
performance against MaterialsBERT. We also present results offering
insights into optimizing the performance and costs associated with using
LLMs for data extraction via in-context few-shots learning and analyzing
the general trends, characteristics, and distributions of the extracted full text
data. We conclude by addressing the remaining challenges and looking
ahead at the future potential of utilizing LLMs for informatics tasks specific
to polymer science.

Results and discussion
Overview of the data extraction pipelines
We assembled a corpus comprisingmore than 2.4millionmaterials science
journal articles publishedover the last twodecades.The articleswere initially
indexed through the Crossref database, followed by authorized downloads
from 11 publishers, including Elsevier, Wiley, Springer Nature, American
Chemical Society, and the Royal Society of Chemistry. Further details
regarding the articles can be found in the Methods section and in ref. 32.
Specifically focusing on polymer-related content, we identified 681,000
documents by searching for the term ‘poly’ in the title and abstract of the
articles. Extracting information from these polymer-related documents
involved treating individual paragraphs as text units, resulting in a total of
23.3 million paragraphs. To extract data from the selected paragraphs, we
targeted 24 properties of polymers based on their significance and down-
stream usage. Commonly reported thermal and optical properties were
selected for their efficacy in training multi-task ML models, using highly
correlated properties as substitutes for less prevalent ones. Additionally,
properties that are beneficial for various polymer application areas were
included. For instance, the bandgap and refractive index are vital for
dielectric aging and breakdown, gas permeability properties are crucial for
filtering and distillation applications, and mechanical properties are sig-
nificant for thermosets and recyclable polymers. A list of the polymer
properties selected for extraction can be found in Table 1.

A two-step filtering system was used to avoid unnecessary prompting
of LLMs by ignoring texts that do not have extractable and complete data.
First, as illustrated in Fig. 1b, each paragraph was passed through property-
specific heuristic filters to detect paragraphs that mention a target polymer
property or its co-referents manually curated via literature review.
Approximately 2.6 million paragraphs (~11%) successfully passed the
property-specific heuristic filters, indicating relevance to the selected 24
properties of polymers. Subsequently, an additional NER filter was applied
to identify paragraphs containing all necessary named entities such as
material name, property name, and property value (Fig. 1c) to confirm the
existenceof a complete extractable record.This refinedfiltering stage yielded
about 716,000 paragraphs (~3%) containing texts relevant to the selected 24
properties. Regardless of the final data extraction model, the NER filter is
utilized to verify the presence of ‘material’, ‘property’, ‘value’, and ‘unit’
entities in the given paragraph because the absence of any of these entities
would preclude the extraction of a complete data point by the models. This
filter thus assists LLMs in accurately identifying relationshipswithoutwhich
theymay generate placeholder values such as ‘notmentioned’, ‘n/a’, or ‘-’, or
even hallucinate false data if an entity is not present in the text.

The texts of the filtered paragraphs are then passed to either Materi-
alsBERT forNER-baseddata extraction, or to theOpenAIAPI forGPT-3.5-
based data extraction. During the extraction process, the relationship
extraction module of MaterialsBERT processes the identified entities to
determine and establish correct relationships using heuristic rules. GPT-3.5,
on theother hand, automatically identifies relationships between the entities
by itself. Finally, the extracted data undergo post-processing, validation, and
deposition into a relational database and the data stored in the database is
made publicly accessible for visualization via a user-friendlyweb interfaceof
Polymer Scholar. In total, the pipelines extracted over onemillion polymer-
property records from the full texts. Data extracted by GPT-3.5 (Materi-
alsBERT) from the full text is approximately 21 times (12 times) than what

was collected purely from the abstracts in our previous work for the selected
24 properties. Additional details about the different stages of the pipelines
are discussed in theMethods section, with specific details on data extraction
using MaterialsBERT provided in ref. 11.

Data extraction using large language models
Polymer-related property data from a journal article can be extracted by
leveraging the ability of LLMs to understand the specialized semantics of
materials entities discussed in the text. However, obtaining the desired
output from an LLM poses a challenging task and is presently a subject of
active research33,34. Even with the same prompt or instruction and text
generation parameters, the LLMs can produce varying responses35. The
effectiveness of simple natural language prompts in eliciting desired results
from LLMs is not always straightforward, due to the models’ interpretation
methods often being non-intuitive36. Hence, it is crucial to employ techni-
ques and parameters that can minimize the variability in the generated
responses.

Table 1 | List of the selected 24 property names and the
corresponding number of property values extracted using the
GPT-3.5 and MaterialsBERT pipelines

Property GPT-3.5 MaterialsBERT MaterialsBERT
Full text Full text Abstract

Glass transition
temperature

125,585 75,722 6155

Melting temperature 76,577 41,766 1615

Thermal
decomposition
temperature

70,285 19,817 1479

Lower critical
solution temperature

20,115 11,658 712

Crystallization
temperature

12,863 4045 605

Thermal conductivity 5574 10,300 1429

Upper critical
solution temperature

1486 581 50

Bandgap 63,361 30,732 2245

Ion exchange
capacity

3118 4656 1034

Refractive index 18,982 9785 576

Tensile strength 63,014 38,773 4382

Young’s modulus 40,148 32,207 1904

Elongation at break 30,754 15,072 1499

Compressive
strength

12,343 6879 814

Flexural strength 7201 3543 313

Hardness 5271 1984 244

Water contact angle 84,601 63,685 3932

Water uptake 15,991 6019 330

Limiting
oxygen index

7893 6606 1146

CO2 permeability 2943 2561 685

Swelling degree 1880 1995 71

Methanol
permeability

1228 852 174

O2 permeability 735 503 99

H2 permeability 501 1072 46

Total 672,449 390,813 31,539

The number of data records extracted from the abstracts alone usingMaterialsBERT are taken from
ref. 11 for comparison against the full text data extraction.
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One of the intriguing capabilities of LLMs, referred to as in-context
few-shot learning, is their ability to learn from examples (often termed as
‘shots’) prepended to the prompt25. The response generation can be suffi-
ciently influenced by the shots and the prompt given to themodel as inputs.
For few-shot learning, we used a pool of examples containing manually
curated 595 glass transition temperature (Tg) values and 356 bandgap
values from 630 abstracts. Given the necessity for the LLM’s response to be
presented in a structured format for seamless programmatic extraction of
material names and property values, we experimented with different
prompts.Wefinally selectedone that directs themodel to identify entities of
interest, reading: “Extract all <property> values in JSONL format with
‘material’, ‘property’, ‘value’, ‘condition’ columns.” The placeholder
<property> is replaced with the desired polymer property names we
chose to extract. A sample shot, shown in Fig. 2a, displays glass transition
temperature data manually curated from the abstract of ref. 37 and the
corresponding prompt. The formatted response in the example adheres to
the JSONL structure, serving as a demonstration to the model that its
generated response should precisely follow the same format. The shot is
followed by the actual prompt containing the input text from which data
needs to be extracted. Fig. 2b provides an illustrative example of such a
prompt, comprising a paragraph taken from the full text of ref. 38, along
with specific instructions given to the LLM for data extraction. The resulting
response from GPT-3.5 is shown in Fig. 2c, revealing three data points of
glass transition temperature values extracted by the LLM.

Our similarity-based shot selection method, illustrated in Fig. 2e,
provides a way to determine the most suitable example from the pool of
examples for inclusion as a shot along with the LLM prompt. We first
performed k-means clustering (with k = 10) on the word embeddings of the
examples. The embeddings of the examples and input text were determined
using the MaterialsBERT text encoder. Subsequently, we selected the
example corresponding to the centroid of the cluster closest to the input text
which is sent to the LLM for data extraction. This method, as opposed to
random selection, allows us to choose an example that closely resembles the
text from which data needs to be extracted.

To assess the monetary costs associated with text generation using
GPT-3.5, we counted the number of OpenAI tokens in the input prompts
and shots while extracting property data from the 630 manually curated
abstracts. The tokenization process employed by the LLMs depends on the
linguistic characteristics and contextual nuances of the words, numbers,
punctuations, and symbols present in a given text. Our initial evaluations
nevertheless reveal a direct correlation between the number of tokens and
the word count within the selected abstracts, as depicted in Fig. 2f, which
provides an approximate but simpler way to understand the effects of the
text lengths on computational expenses associated with using GPT-3.5.
Costs during text generation directly increase with the number of words
being processed. Furthermore, the introduction of multiple shots as an
additional component in the input requires the LLM to consider extended
textual inputs during response generation. A linear increase in both token

Fig. 2 |Data extraction using large languagemodels. aExample of a shot generated
from the text of a manually curated dataset containing glass transition temperature
and bandgap values. b Prompt used to extract data using LLM. cResponse generated
by GPT-3.5 and d Tg data extracted from the response text. e Schematic illustration
of clusters formed byword embeddings of the texts of 630manually curated abstracts
and choice of the shot most similar to the text from which data is to be extracted.

f Correlation between token count and number of words in 630 abstracts related to
polymers. The positive y-intercept is attributable to the average expected number of
punctuation marks and symbols typically found in the texts. g Barchart depicting an
increase in the number of tokens and the ultimate cost for OpenAI API usage for
multiple shots. h Effects of multiple shots on the accuracy of the extracted Tg and
bandgap data from the manually curated 630 abstracts.
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utilization and corresponding API usage can be observed in Fig. 2g with an
increasing number of shots used to extract data from the 630 abstracts.

Despite the expectation that the model’s performance would improve
with an increased number of shots, we consistently observed optimal results
when providing only a single shot to GPT-3.5 while prompting for
extraction of Tg and bandgap values (see Fig. 2h). A plausible explanation
for this phenomenon could be that the model learns the structure of the
anticipated output immediately from a single shot and experiences dis-
orientation when additional shots are added to the prompt. Based on these
observations, we proceeded to use one shot while prompting the LLM to
extract data from a given text.

Performance benchmarking for a labeled subset of the
full corpus
We employ NER- and LLM-based extraction methods to comparatively
assess the validity and reliability of different data extraction pipelines. The
primary objective of this assessment is to identify the most effective
extractionmethodswhile emphasizing the optimization of computational
and monetary costs. Consequently, the evaluation involves a subset of
1000 articles from the larger pool of the 681,000 polymer-related papers.
In this subset, we have manually curated data from the abstracts of 630
articles, which reported one or more Tg and bandgap values in their
abstracts and were selected randomly. The rest of the 370 articles were

randomly chosen from the polymer papers. Bar charts containing the
distribution of the selected articles compared to the full corpus are shown
in Fig. S1.

The assessment pipeline, depicted in Fig. 3a, involves parsing the full
texts of the selected papers into paragraphs, resulting in a total of 37,434
paragraphs. As discussed in the previous section, two filtering stages are
employed to select the most relevant paragraphs for a target property and
paragraphs containing extractable data. In the first stage, the property-
specific heuristic filter is applied, resulting in a reduction of the paragraph
count to 12,817. Subsequently, the second stage utilizes theMaterialsBERT-
based NER filter, further narrowing the selection to 6179 paragraphs. The
final data extraction process involves three models: MaterialsBERT, incor-
poratingNERand rule-based entity recognition and relationship extraction;
the open-source 70 B LlaMa-2 model developed by Meta AI; and the
commercially available GPT-3.5 model hosted by OpenAI. To determine
the optimal shot for each prompt in the LLM-based data extraction process,
we comparedour strategy based on similarity to a random selection of shots
from the curated data pool. We termed these approaches as “Similar” and
“Random” shot selection methods, respectively.

In terms of quantity, (Fig. 3c, d) GPT-3.5 demonstrates significant
superiority over the other models. It extracted the largest amount of data,
comprising 4706 material-property value pairs using Random-shot and
4589 pairs using Similar-shot selection from the selected 6179 paragraphs.

Fig. 3 | Performance evaluation of NER and LLM pipelines. a Overview of the
pipelines used to measure the performance of MaterialsBERT, LlaMa-2, and GPT-
3.5 for data extraction from 1000 polymer documents. b Representation of F1 score
measurement using manually curated data. c, d Total number of materials and

property data extracted using the pipelines, e time spent running the pipelines,
f, g calculated F1 scores for Tg and bandgap respectively and h incurred cost due to
API usage by the pipelines.
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The NER-based MaterialsBERT pipeline extracted 3631 material-property
pairs, slightly outperforming LLaMa, which extracted 3441 data pairs.

To assess extracted data quality, we checked if the extracted material
name, property name, and property value (including unit) match the
manually curated records (Fig. 3b) to calculate the F1 scores. Our F1 score
computation methodology necessitates that the extracted data be com-
pletely present within the provided text. Thus, to ensure precise data
extraction, it is imperative to identify all entities, specifically ‘material’,
‘property’, ‘value’, and ‘unit’within the specified paragraph. Furthermore, to
verify the correct relationships among these entities, they must correspond
accurately with their respective entities in the curated dataset to account for
hallucinationby theLLMs.TheF1 score calculationmethodnot only verifies
the accuracy of the completely extracted data but also confirms their origin
from the appropriate source paragraph, because any semantically accurate
but fabricated datapoints produced byLLMswould be absent in the curated
ground truth data extracted from the provided text. Additional details about
the calculation of the F1 score are discussed in the Supplementary
Discussion.

We found that the performance of the models is contingent on the
property being extracted. Both LLMs exhibit superior performance relative
to the NER-based MaterialsBERT pipeline in extracting data for bandgap,
while accuracy declines when extracting data for Tg (Fig. 3f, g). GPT-3.5
achieved the highest F1 score of 0.67 for Tg, with the Similar-shot selection
method slightly outperforming the Random selection method. Materi-
alsBERT and LlaMa obtained F1 scores of 0.63 and 0.64, respectively. LlaMa
2 outperformed the comparatively lower F1 score of 0.66 achieved using
MaterialsBERT, particularly during the extraction of bandgap, where it
achieved an accuracy of 0.77. GPT-3.5 once again secured the highest F1
scores of 0.87 and 0.85 for the Random and Similar-shot selectionmethods,
respectively. We previously demonstrated the superior performance of
MaterialsBERT compared to other existing NER models11. The higher F1
scores compared to the MaterialsBERT obtained in this work thus under-
scores the advantage of the LLMs over the existing NER models.

Concerning computational efficiency and monetary costs, Materi-
alsBERT emerges as the most advantageous choice (Fig. 3e). Operated in-
house, MaterialsBERT processed the 6179 paragraphs in under half hour
without incurring any financial costs. LlaMa-2, also hosted locally, imposed
no direct monetary costs but demonstrated the longest inference time,
attributable to its substantialmodel size of 70 billion parameters running on
four Nvidia Quadro GP 100 GPU cards. In contrast, the commercial LLM,
GPT-3.5, requiredAPI calls toOpenAI’s servers for inference, introducing a
direct financial cost of $4.48 (for ~2.9 million tokens) for each of the shot
selection methods (Fig. 3h).

This thorough evaluation allowed us to identify the best models for
data extraction from the full corpus. GivenGPT-3.5’s superior performance
in both quantity and quality and MaterialsBERT’s optimal cost efficiency,
we chose to incorporate GPT-3.5 with Similar-shot selection and Materi-
alsBERT in our final pipeline to extract data for all the selected properties
from the entire corpus of polymer articles.

Data extraction from full texts
Having selected the best-performing models, we extracted data for the
24 selected properties from the full texts of 681, 000 polymer-related journal
articles using the NER-based MaterialsBERT and the LLM-based GPT-3.5
pipelines. Given that neither pipeline can achieve perfect accuracy, and
manually curating data sets for all 24 properties requires a significant effort,
we conducted additional validation of the extracted data in a post-
processing step. After programmatically obtaining the data from the
MaterialsBERT pipeline and JSONL responses generated by GPT-3.5, we
verified if the property namematched one of the selected 24 property names
or their known variations. We standardized the extracted values and units
within the extraction pipelines, such as converting kPa or GPa toMPa, K to
°C, etc. Subsequently, in the post-processing stage, we checked if the unit of
the extracted data matched the unit corresponding to the selected property.
Additionally,we assessed if the extracted value for eachproperty fellwithin a

specifiedminimumandmaximumrange, that wasmanually assigned based
on literature review. We ignored any extracted data that does not satisfy
these post-processing validation criteria. In addition to the polymers, the
pipelines also extracted property data for other classes of materials. To
identify the polymers, we checked if the extractedmaterial is a valid polymer
name by cross-referencing it with a comprehensive, albeit non-exhaustive,
list of polymer names manually collected from the literature.

From the GPT-3.5 pipeline, we extracted 672,449 polymer-property
records, and from theMaterialsBERTpipeline, we obtained 390,813 records
for the 24 selectedproperties that passed the validation stage (seeTable 1). In
assessing the number of data points extracted for the selected properties, the
GPT-3.5 pipeline demonstrated superior performance compared to the
MaterialsBERT pipeline. Specifically, with the full text, the LLM extracted
data volume was 72% greater than the data extracted by the NER pipeline,
and 21 times the data extracted from abstracts (using the NER pipeline) in
ref. 11. Among the extracted data, thermal and mechanical properties were
more commonly found in the literature, while data on gas permeability was
comparatively sparse.

Figure 4a, b illustrates the distribution of extracted Tg and bandgap
data, respectively. For comparative purposes, we have also presented the
distributions of Tg and bandgap data extracted from abstracts using
MaterialsBERTwhich show a significantly higher amount of data extracted
from the full texts. Though not obvious in the distribution of extracted data
from abstracts, a bimodal distribution of Tg values and an elongated tail can
be observed for all pipelines, demonstrating the presence of extreme
property values. A comparative analysis of full-text extraction using
MaterialsBERT reveals 75,722 valid Tg records, which is about 12 times the
data extracted from abstracts earlier. This corresponds to 20,511 unique
materials. Further, it provides 30,732 valid bandgap records, indicating 13
times the abstract extracted data and corresponds to 10,627 unique mate-
rials. In contrast, the GPT-3.5 pipeline provides a higher volume of valid
records, amassing 125,585 Tg records, a 65% increase over MaterialsBERT
and 20 times the data extracted from abstracts. This pertains to 69,740
uniquematerials. Similarly, GPT-3.5 yielded 106%more bandgap data than
MaterialsBERT (63,361 records), which is 28 times the data obtained from
abstracts, for a total of 31,337 unique materials.

Upon comparing the valid data points of Tg and bandgap that passed
the post-processing criteria, we observed that each pipeline retrieved data
from the source paragraphs where the other pipeline encountered diffi-
culties (Fig. 4c). This supports the previously reported F1 scores, demon-
strating that GPT-3.5 is capable of understanding more intricate
relationships and extracting more data. Notably, there is a significant
number of paragraphs whereMaterialsBERT fails (F1 = 0.66), in contrast to
the success ofGPT-3.5 (F1 = 0.85). Specifically,GPT-3.5 extracteddata from
an additional 47,966 paragraphs, from which MaterialsBERT failed to
extract any valid data. Conversely, MaterialsBERT successfully extracted
data from 7311 paragraphs where the GPT-3.5 pipeline did not retrieve any
valid data.

The combined data extraction efforts of both pipelines resulted in a
total of 113,099 unique materials for Tg and bandgap. Notably, only 11,042
material names exactly matched between the pipelines, as illustrated in
Fig. 4d, and parity plots showing overlap between the pipelines in Fig. S2.
GPT-3.5 demonstrated its proficiency by extracting an additional 88,128
material names that were not captured by MaterialsBERT. This significant
increase in the identification of new material names can be attributed to
GPT-3.5’s inclination towards detailed extraction of composition and types
while extracting material names (see Table S3). It is important to mention
that variations in naming and co-referents of polymers were considered
correct during the calculation of the F1 score. Consequently, although there
is a low overlap of the names exactly extracted by themethods as depicted in
Fig. 4d, a high F1 score is still maintained. For comparison, similar Venn
diagrams for Tg and bandgap data extracted from the 630 abstracts are
shown in Fig. S1. Upon further investigation, we found thatMaterialsBERT
in some cases faced challenges in correctly associating property andmaterial
names in texts filled with numerous numbers and values. This was
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particularly prevalent in cases involving polymer blends or composites,
where MaterialsBERT often extracted redundant values for each polymer.
As a result, the total amountofdata extractedby theMaterialsBERTpipeline
is often erroneously inflated for many ordinary polymers, as shown in
Fig. 4e. GPT-3.5 exhibited significantly enhanced efficiency in accounting
for composite and blend compositions in the sentences. Examples eluci-
dating the F-1 score calulcation method and anomalies of MaterialsBERT
are discussed in the Supplementary Discussion.

We plotted the pairwise distributions where values of two properties
were available for the samematerial name andwere extracted from the same
source article. Fig. 4f depicts the relationship between bandgap and Tg data
extracted by the pipelines. GPT-3.5 demonstrated the ability to capture
more data including numerous extreme property values, while Materi-
alsBERT successfully captured values towards the center of the distribution.
Additionally, both methods illustrate the scarcity of materials exhibiting
high bandgaps and simultaneously high Tg values. Six data points with high
bandgap or Tg values, as determined by the pipelines, are identified and
numbered in Fig. 4f. The pipelines correctly extracted points 1, 2, and 3. In
the case of point 1, GPT-3.5 managed to extractmore detailed information,
identifying both ‘non-oriented PMMA layer’ and ‘oriented PMMA layer’
instead of merely labeling it as ‘PMMA’. Neither GPT-3.5 nor Materi-
alsBERT were successful in extracting any bandgap data for points 2 and 3,
respectively. With regard to point 4, GPT-3.5 incorrectly identified the
thermal decomposition temperature as the Tg value. Meanwhile, Materi-
alsBERT was unable to extract the high bandgap value. Points 5 and 6 were
identified as a composite and blend, respectively. However, MaterialsBERT

only managed to extract the polymer names, failing to recognize the pre-
sence and modifications by other materials. Despite the observation that
GPT-3.5 typically extracts the compositions of polymer composites and
blends, it did not identify the presence of othermaterials in this instance and
only extracted the polymer names due to the complexity of the sentences in
the source text. Out of the total 12 values for the designated property pairs,
10 were accurately extracted. Supplementary Information, including
references and actual values of the marked points, can be found in Tables
S2 and S3.

Correlations between extracted properties
Knowledge of the relationships between distinct material properties can be
gained by examining the pairwise distributions among other property pairs.
Representative pairwise plots indicate diverse trends, with Fig. 4g high-
lighting a discernible positive correlation between crystallization tempera-
ture and Tg. The extracted data highlights an inverse correlation between
water contact angle andwater uptake (Fig. 4h), confirming that hydrophilic
materials with smaller contact angles tend to absorb greater amounts of
water. Additionally, the bandgap determines the energy above which a
material remains transparent. As the light wavelength decreases towards the
bandgap, there is a corresponding increase in the refractive index.When the
light wavelength is held constant, materials with a larger bandgap generally
exhibit a smaller refractive index. The inverse trend depicted in Fig. 4i
illustrates this relationship between the optical properties of the materials
extracted. Another fundamental observation for polymers is the inherent
trade-off between mechanical properties. Fig. 4j elucidates the negative

Fig. 4 | Comparison of GPT and MaterialsBERT extracted data. a, b Distribution
of extracted Tg and bandgap data from the abstracts using MaterialsBERT and full
texts of polymer articles using both GPT-3.5 and MaterialsBERT pipelines.
c, d Overlap between the source paragraphs and extracted material names in GPT-
3.5 andMaterialsBERT extracted Tg and bandgap data. e Barchart showing the total

number of data extracted from the full texts for the top 10 polymers using the two
pipelines. f Pairwise plot of bandgap and Tg values for the materials extracted from
the same source articles, marked points are discussed in the text. g–k Representative
pairwise plots showing relationships between selected pairs of properties. The
dashed lines are guides for the eye.
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trade-off between tensile strength and elongation at break, emphasizing the
capacity ofGPT-3.5 to capture additional values. The phenomenonofwater
absorption induces polymer chain swelling, thereby instigating plasticizing
effects that can alter themechanical properties of thematerial. Although the
specific nature of the relation depends on the material in question, Fig. 4k
suggests a pervasive negative trendwhereinwater uptake causes a reduction
in the tensile properties of materials. Overall, the extracted data largely
follow expected trends and agree with domain knowledge as demonstrated
by the pairwise distributions.

The datasets we extracted from literature containing the 24 properties
are integral for training downstream ML models. In a previous study, we
employed similar datasets to optimize the material system and develop
robust predictive models to optimize power conversion efficiency of poly-
mer solar cells and demonstrated a significant reduction in new polymer
discovery time39. In another study, we assembled a comparable dataset to
predict the retrosynthesis pathways for a target polymer40.

Outlook
LLMs, such as GPT-3.5 with likely over 200 billion parameters, show a
marked advantage in data extraction quality and ease due to their pre-
training on extensive text corpora, even without fine-tuning on domain-
specific datasets. The efficacy of pre-training is highlighted by GPT-3.5’s
proficiency in recognizing material and chemical entities. The LlaMa-2
model, with 70 billion parameters, demonstrates comparatively limited
capability in recognizing chemical entities and establishing correct entity
relationships, hinting at consideration for potential improvement through
fine-tuning on labeleddatasets. The challenges specific to polymer literature
forNER-basedmodels aremarked by the absence of a standardized naming
convention for polymers and the requirement for manual efforts to identify
entity relationships.

Despite the promising performance of GPT-3.5, various limitations
still exist for the extraction of data from polymer literature and their
applications in polymer informatics. We discuss some specific issues and
our goals for improvement below.
• Manual conversion is necessary to transform the extracted material

names into machine-readable formats such as Simplified Molecular
Input Line Entry System (SMILES) strings to make the datasets
informatics-ready. Despite the incorporation of LLMs into the data
extraction pipeline, the parsing of chemical structures from figures
remains a significant challenge, particularly in polymer-related studies.
This is due largely to the fact that polymer structures are often
exclusively presented in figures, which obstructs the direct extraction
and conversion of polymer chemistry into machine-readable SMILES
strings from the text. In the future, integration of large-scale computer
vision models with LLMs to efficiently identify and extract polymer
moleculesdepicted infigureswill enable immediate use of the extracted
data for training ML models without the need for additional manual
processing.

• The intricate nature of scientific texts, particularly in introducing
material names across different sections and using abbreviations,
makes establishing correct relationships between entitiesmentioned in
different paragraphs or even sentences a difficult task. Our current
pipelines extract data that is described completely in a specific para-
graph by looking for all the required named entities (i.e., ‘material’,
‘property’, ‘value’ and ‘unit’) to establish correct relationships. How-
ever, the properties of polymers often rely on further information, such
as molecular weights, temperature, synthesis and processing condi-
tions, andmorphology. This additional data also needs to be extracted
from multiple paragraphs, while ensuring the preservation of valid
relationships. Using a specific example of Fig. 2d, where one of the
extracted materials is simply labeled as a ‘copolymer,’ it becomes
challenging to fully extract the actual nameor chemistry of thematerial
without inputting the full text of the article into the LLM or correctly
identifying the first occurrence of the term using other means. How-
ever, feeding the entirety of text contents into larger context lengths of

the latest LLMs, even if possible, is fundamentally inefficient and a
squandering of computational resources. In addition, the outputs
derived from conversational LLMs often exhibit inconsistency,
necessitating manual effort for conversion into structured formats.
Formulation of a robust chemical entity relationship extraction strat-
egy that leverages both NER and LLM, could markedly augment the
quality and application of the extracted data.

• Extraction of materials data present in tabular formats can further
enhance the utility of comprehensive data extraction tasks. Another
significant source of data often originates from the supplementary
information published alongside articles. These documents are typi-
cally available in portable document format (PDF), which poses a
challenge for parsing due to the lack of standardization in document
creation41. While values with heightened scientific significance are
usually mentioned in the main text, the presence of a substantial
amount of extractable and relevant data in tabular format and sup-
porting documents has the potential to greatly improve the perfor-
mance of downstream data-hungry ML models. However, tables are
frequently arbitrarily structured, necessitating meticulous filtering,
classification, and pre-processing for correct relationship
establishment42,43.

• Extracting property data from literature represents a specific applica-
tion of NLP in polymer research. Accurate predictions of step-by-step
tasks and procedures, such as synthesis recipes, characterization data,
measurement conditions, etc., could guide the development of superior
polymers through inverse design and suggest specific conditions that
researchers could maintain to produce a target material. Synthesis
recipes, for example, present a unique challenge due to the need to
extract a diverse set of information, including monomers, catalysts,
temperature, reaction conditions, andmore.Additionally, the chemical
reactions must be predicted algorithmically, maintaining proper order
of the procedure. Despite these challenges, the capacity of LLMs to
comprehend complex procedures offers a promising avenue for
systematically extracting such information.

Nevertheless, it is evident that the introduction of LLMs such as GPT-
3.5 is a significant leap forward in the field of data extraction, particularly in
complex domains like polymer literature. Future work may involve fine-
tuning the model to concurrently handle searching, filtering, NER and data
extraction tasks. As advancements in smaller open-source models persist,
we anticipate the potential to substitute our entire workflow with a single,
fine-tuned, open-source LLM. Such a system could democratize the process
of extracting accurate data from literature. However, this transition would
require comprehensive analysis and validation by the materials science
community. Our focus will not only be on refining data extraction work-
flowsbut also on ensuring the availability of the extracteddata for inspection
through resources such as Polymer Scholar.

Conclusion
In conclusion, this study presents a framework for automated extraction of
polymer property data from full-text scientific literature, utilizing a com-
bination of NER-based MaterialsBERT and GPT-3.5 LLMs. The approach
has demonstrated a significant improvement in data extraction capabilities,
yielding 21 timesmore data thanpreviously extracted from just the abstracts
of journal articles. A comparative analysis of the performance and costs
associated with both extraction models was also conducted. The GPT-3.5
andMaterialsBERTmodels achieved F1 scores of 0.67 and 0.63 respectively
for Tg, and 0.85 and 0.66 respectively for bandgap. While traditional NER
models offer speed, the LLMs, althoughmore costly, provide ease of use and
require less manual effort, making them an attractive alternative. GPT-3.5
also shows a marked improvement in recognizing materials entities and
correct entity relationships, particularly in the context of polymer compo-
sites and blends. However, both models encountered difficulties in
extracting correct values from texts containing complex discussions about
materials. The potential of LLMs lie in their ability to produce not just
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structured outputs such as property data extraction, but also assistance with
property predictions, material design and synthesis recipe
recommendations.

Methods
The literature corpus
Our literature corpus consists of ~2.4million documents downloaded from
publishers including Elsevier, Wiley, Springer Nature, American Chemical
Society, and Royal Society of Chemistry which covers articles published up
to the year 2021. Only HTML and XML versions of the documents were
processed in this work as formats such as PDF are difficult to parse44.
Literature publishedbefore the year 2000 is often found inPDF formatwhile
XML and HTML versions are available from most publishers after 2000.
The details of the workflow is discussed in ref. 32.

Full-text extraction
Plain text paragraphs embedded inside the p, span, or similar tags of the
HTML and XML documents were extracted using the LXML Python
package. Both the abstracts and the full texts available in the body of the
documents were collected in the process. Subscripts and superscripts in
the text were encoded by the underscore and the caret symbols, respec-
tively. No additional pre-processing was performed since the LLMs are
generally able to ‘understand’ chemical entities, units, and literature
references.

Property-specific heuristic filter
The paragraphs extracted from full texts of the journal articles underwent a
two-stage filtering process before being sent to the data-extraction pipeline.
The heuristic filter assessed the text for the occurrence of the property name
or any of its known variations, employing string-matching and dictionary
lookup techniques. The property name variations were carefully curated
through an extensive literature search.

NER filter
NER-based filtering was used to identify the paragraphs that contain data
suitable for extraction. First, the named entities present in the paragraph are
predicted using MaterialsBERT. The filter then selects the paragraphs that
have (1) at least one of the material-related named entities, (i.e., “POLY-
MER”, “MONOMER”, “POLYMER_FAMILY”, “ORGANIC”, “INOR-
GANIC”) (2) the “PROPERTY_NAME” entity and (3) the
“PROPERTY_VALUE” entity present in the text. If the text does not
meet all three conditions, the paragraph fails the filter. This allows the filter
to select paragraphs with data for all possible materials and properties
known by MaterialsBERT and are suitable for extraction.

LlaMa model
An instruct-tuned 70B LlaMa-2-chatmodel was used in this work to extract
data from texts. The architecture of the LlaMamodel was obtained from the
HuggingFace hub using the transformers Python package. The corre-
sponding LlaMa 2 weights were requested and obtained from the official
website ofMeta AI. A 4-bit GPTQ quantized (group size 32, with act order)
version of the model was run on four 235W 16GB Nvidia Quadro GP100
GPUs hosted in our in-house computing servers. For text generation
parameters, the temperature was set to 0.001, top_p to 0.95, min_p to 0,
frequency_penalty to 1.1, and top_k to 1. Themaximum output length was
automatically computed each time before inference, so the total number of
tokens for the prompt and the generated output remains less than the
context length of themodel, i.e., 4096.The use of a conversationalmodel did
not involve incorporating history from prior interactions during text gen-
eration. Consequently, the model treated each prompt as a distinct text
generation request.

GPT model
TheGPT-3.5-turbo-0613model hosted byOpenAIwas used to extract data
from text. TheOpenAIPythonpackagewas used to access theOpenAIAPI.

The temperature parameter was set to 0.001 for text generation by the
model, with all other parameters remaining at their default values. Similar to
the LlaMa 2 model, a history of previous interactions was not maintained
between the API requests. Themanually curated Tg and bandgap data were
used as a shot to the LLM regardless of the property to be extracted. The
extraction process from the full texts of the 716,000 paragraphs took
approximately a month (respecting the guidelines for fair usage of the API
server), incurring approximately 1200US dollars. The API usage costs were
calculated assuming 0.0015 and 0.0020USdollars per one thousandprompt
tokens and completion tokens respectively.

Data availability
The journal articles used to extractmaterial property data were downloaded
through licensing arrangements that the Georgia Institute of Technology
has with Elsevier, Wiley, Royal Society of Chemistry, American Chemical
Society, Springer Nature, Taylor & Francis, and the American Institute of
Physics. The pre-trained language model MaterialsBERT is available in the
HuggingFace hub at https://huggingface.co/pranav-s/MaterialsBERT. The
material property data extracted in this work can be freely explored through
https://polymerscholar.org.

Code availability
The code used in this work can be found at https://github.com/Ramprasad-
Group/PromptDataExtraction.
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