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Abstract
The sublimation enthalpy, ΔHsub, is a key thermodynamic parameter governing the
phase transformation of a substance between its solid and gas phases. This
transformation is at the core of many important materials' purification, deposition,
and etching processes. While ΔHsub can be measured experimentally and estimated
computationally, these approaches have their own different challenges. Here, we
develop a machine learning (ML) approach to rapidly predict ΔHsub from data
generated using density functional theory (DFT). We further demonstrate how
combining ML and DFT methods with active learning can be efficient in exploring
the materials space, expanding the coverage of the computed dataset, and sys-
tematically improving the ML predictive model of ΔHsub. With an error of �15 kJ/
mol in instantaneous predictions of ΔHsub, the ML model developed in this work
will be useful for the community.
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1 | INTRODUCTION

Sublimation is a physical process, during which a material
directly changes its state from solid to vapor without passing
through a liquid state, at a temperature T below the triple
point of its phase diagram.[1–3] Sublimation and its reverse
processes, that is, deposition or desublimation, are widely
used in techniques involving both solid and gas phases of a
material, for example, vapor deposition,[4] vapor phase
infiltration,[5] substance purification/separation processes,[6]

and designing new solid-state forms of substances that are
inaccessible by other methods.[7] The key thermodynamic
parameter characterizing this process is sublimation enthalpy
ΔHsub, defined as the amount of heat needed to sublimate
1 mol of a material. Additionally, ΔHsub offers insight into
inter-molecular interactions, which are primarily
nonbonding and electrostatic in nature, given that

sublimation does not involve chemical reactions.[1–3]

Quantifying ΔHsub is important for a range of applications,
encompassing hybrid membrane process techniques,[5]

membrane separations, de-sublimation separation,[8] micro-
electronics,[4] crystal engineering,[9] and smart coatings.[10]

Simple organic molecules containing elements such as C, H,
O, N, F, and S are especially significant in these contexts as
they form the basis of many fundamental organic com-
pounds, frequently used as building blocks in the advanced
materials and industrial processes.

Two main classes of experimental methods used to
measure ΔHsub are direct (or calorimetric) and indirect ap-
proaches.[11–14] In the direct approach, ΔHsub is measured
using a microcalorimeter at a fixed temperature while indi-
rect approaches exploit the dependency of the vapor pressure
measured at different temperatures to derive both the en-
thalpies and entropies of sublimation. The indirect methods
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appear to be more robust and reliable than the direct
methods.[11] In general, ΔHsub measurements are rather
difficult, expensive, and time-consuming, especially for low-
volatility chemicals.[13,14] It is also worth noting that inter-
laboratory agreement on measured ΔHsub data is not al-
ways good, and the intrinsic complexity in measuring this
quantity could be a main reason.[15,16]

Computing ΔHsub using first principles methods such as
density functional theory (DFT)[17,18] is a promising
approach.[19–25] In such a computation, ΔHsub is defined as the
difference between the energies computed for the solid phase
of the material, typically modeled as a crystal, and that
computed for the gas phase of the components thatmake up the
material, typicallymodeled as an isolated molecule. TheDFT-
based computational approach has its own challenges,
including constructing realistic molecular and solid-state
models, adequately accounting for the nonbonding and
dispersion interactions, which can be computationally
expensive,[26,27] and attaining chemical accuracy, which is ≃5
kJ/mol. These challenges strongly limit the applicability of
DFT in computing ΔHsub,[19–25] particularly in a reliable high-
throughput manner, especially for organic materials.[28,29]

Efforts to develop rapid quantitative structure–property
relationship (QSPR) models for ΔHsub emerged quite
early.[30–36] Methods used to create the QSPR models vary
from the natural idea of group contributions,[33,35] which is a
linear regression model of fragment energies of predefined ad
hoc fragments, to those employing more sophisticated
nonlinear regression algorithms and descriptors supported by
cheminformatics software such as RDkit.[30–32,34,37] In some
cases, the errors of these methods in predicting ΔHsub could be
as low as 15–20 kJ/mol[34,35] but with questionable trans-
ferability, that is, these models do not perform well on unseen
compounds/materials.[36] This problem can be traced back to
the choice of the descriptors, which may not capture well the
delicate nature of ΔHsub discussed above, and the training data,
which may not be sufficiently large, diverse, and complete.

During the last decade, significant progress has been
made in the development of comprehensive descriptors/fin-
gerprints for organic molecules and polymers.[38–41] Never-
theless, there remains a pressing need for a systematic
strategy to generate high-quality data for training predictive
ML models for ΔHsub. One such strategy that has gained
prominence is active learning, which has been widely used to
quickly and efficiently develop and improve ML predictive
models for various physical properties of materials.[42–44]

This approach allows for iterative improvement of the model
by strategically selecting new data points for experimental
measurement or computations, thereby enhancing the
model's predictive capabilities while minimizing resource
expenditure. By integrating group contribution methods
including feature engineering with advanced ML techniques
and employing strategies such as active learning, researchers
can efficiently improve and push the boundaries of ΔHsub
prediction, potentially unlocking new insights into material
properties and accelerating the discovery of novel com-
pounds with desired characteristics.

In this work, a DFT ΔHsub dataset for 845 representative
organic molecules was first built and validated by comparing
it with available experimental values. The molecules were
chosen to cover a broad range of chemical variants and
functionalities, including various combinations of C, H, O,
N, F, and S elements. Then, an ML model was trained on the
DFT dataset to predict the sublimation enthalpy for new
organic molecules. Feature analysis unveiled key factors
affecting sublimation enthalpy, offering insights that can aid
in the creation of new materials. We also demonstrate an
approach for refining the model using an active learning
strategy. This entails enhancing the ML model's efficacy and
expanding the chemical space through selective DFT cal-
culations. The resulting ML ΔHsub model is set to broaden its
scope, potentially encompassing domains such as metal–
organic hybrid materials, while enhancing its reliability
and precision, as portrayed by the schematic in Figure 1.
This synergy of ML prediction, active learning, and feature
analysis presents a potent toolset for material design and
broadening chemical space exploration.

2 | METHODS

2.1 | First-principles calculations of
sublimation enthalpy

We used Vienna Ab Initio Simulation Package (VASP),[45–

48] a plane-wave based DFT code, to compute the sublima-
tion enthalpy ΔHsub of the organic materials. Within our
numerical scheme, ΔHsub was computed as the enthalpy
difference between the gas model, created by placing a
molecule in a big simulation box with a vacuum layer of at
least 10 Å around the molecule. The crystal model of the
material was obtained from Crystallography Open Database
(COD).[49–51] Having the gas and the crystal models, our
DFT computations were carried out using a plane-wave basis
set that corresponds to an energy cutoff of 400 eV, the
Perdew–Burke–Ernzerhof (PBE)[52] exchange-correlation
(XC) functional, and the van der Waals vdW-DF2 correc-
tions[26,27] for the nonbonding dispersion interactions. The
gamma point was used for the gas model, and a k-point
spacing of 0.2 in reciprocal space was employed for the
crystal model.

2.2 | Materials features and machine
learning algorithm

We first featurized the dataset of 845 organic materials based
on their chemical structure. This process, also known as the
fingerprinting, involves using the PYMATGEN package[53] to
get the SMILES string[54] of the organic molecules, and then
using descriptors of RDkit,[37] an open-source chem-
informatics toolkit to compute the features from the SMILES

string. The goal of this process is to represent the chemical
structure and the bonding environment of the materials in a
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way that is ingestible by the ML algorithms. Ultimately, each
material is represented by a set of 208 features. Some of
them, which are identically zero, were removed. In Sec-
tion 3.3, we will use SHAP values (SHapley Additive ex-
Planations),[55] a cooperative game theoretic technique, to
analyze the importance of the features that influence ΔHsub.

Then, we employed Gaussian process regression
(GPR),[56] using a radial basis kernel and a WhiteKernel
function to account for the data noise, to train the ML model
on the featurized data. The training process was configured
to restart the optimizer five times to ensure robust hyper-
parameter tuning. The main reason for using GPR in this
work is that GPR provides a built-in measure of prediction
uncertainty, which plays a central role in the active learning
strategy.[56] A fivefold cross-validation (CV) procedure was
used in the training process to regulate potential overfitting,
the problem that is critical when learning from small datsets.
During the cross-validation process, the training dataset was
split randomly into five subsets. A model was trained on the
union of four subsets, for example, 80%, and then validated
on the remaining subset, for example, 20% of the training
set. This process involves examining five models and the
hyperparameters of the model with the smallest cross-
validation error are selected to train the final model on the
whole (100%) training set. Root-mean-squared error
(RMSE), mean absolute error (MAE), and the coefficient of
determination R2 are the three metrics that were used to
evaluate the performance of the ML models.

2.3 | Active learning workflow

Our active learning approach is depicted in Figure 2 and
serves as a test of how future expansion of our dataset can
progress. Initially, a seed training set of 299 data points
involving only C, H, O, and N, (i.e., F and S were absent)
was compiled and their ΔHsub were computed. Starting from
the seed dataset, an ML model was developed using GPR.
Not surprisingly, the model could not predict ΔHsub for data
points containing these chemical species. Then, the ML

model was then used to predict ΔHsub (with uncertainties) of
the (test) set of the remaining materials. Based on the ML
predictions and uncertainties, a given number of cases in the
test set were selected for DFT computations. These newly
computed ΔHsub data points were combined with the current
training set, allowing for a better ML model to be trained.
The key feature of GPR that is at the core of the active
learning strategy is the prediction uncertainty, which offers a
measure of how much similarity/dissimilarity the examined
case (material) shares with all the cases in the training set.
Those with high prediction uncertainties are likely far from
(or not represented well by) the training data, and thus
including them in the training data will improve the ML
model (Note, in this work, our DFT calculations have been
completed for all the 845 organic materials. During this test
of the active learning algorithm, there was no more DFT
calculation conducted).

To demonstrate the efficiency of the active learning
strategy, we examined two different plans of data selection
for iterative augmentation, whose details are also given in
Figure 2. In plan A, chosen to be the baseline option, three
data points were randomly selected from the test set for in-
clusion in the training set. In plan B, three new materials
with the highest prediction uncertainties were selected.
These two plans were performed until all 845 data points had
ΔHsub computed and were included in the training set. The
performance of these plans is analyzed and discussed in
Section 3.2.

3 | RESULTS AND DISCUSSION

3.1 | Creation and validation of computed
dataset

A dataset of 845 organic crystal structures was obtained
from COD.[49–51] Each of these materials can be viewed as
an infinite lattice of molecules that are packed in an ener-
getically favorable fashion without new primary chemical
bonds between the molecules. Therefore, the chemistry of

F I GURE 1 Workflow adopted to build the ML model of ΔHsub for organics.
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each organic crystal in this dataset is specified by the
molecule from which the crystal is formed. These molecules,
that is, the building block of these organic materials, cover 6
chemical species, including C, H, O, N, F, and S, and span
multiple organic chemistries, for example, linear, cyclo-
group, and mixed functional-group molecules. The subli-
mation enthalpy ΔHsub was computed using DFT for all 845
organic crystals.

Among the 845 molecular crystals considered in this
work, experimental data of ΔHsub can be found for 28 of
them from the National Institute of Standards and Technol-
ogy (NIST) Chemistry WebBook,[57] spanning from ≃25 kJ/
mol to ≃190 kJ/mol. Comparing the computed and measured
ΔHsub for these 28 materials, the coefficient of determination
R2 is 0.75, establishing reasonable confidence in the DFT
computations. For the particular case of solid benzene, the
computed ΔHsub is 48.8 kJ/mol, falling well within the re-
ported range of the measured ΔHsub, which is 46:9 − 62:8
kJ/mol.[57] The satisfactory agreement between the
computed and the measured values of ΔHsub demonstrated in
Figure 3 serves as a validation of the DFT computational
scheme we used in this work.

3.2 | ML model of sublimation enthalpy for
organic molecules

In order to understand the effect of training set size on the
prediction accuracy before building the final predictive
model, various models were generated using increasing
training set sizes from 10% to 90% through random selection
from the 845 DFT dataset. 10 models were developed for
each training set size and the average RMSE, MAE, and
standard deviation (error bars) were calculated for all 10
models. The learning curve based on the results from this
process is demonstrated in Figure 4a, which evaluates the
performance of developed models. As expected, the test

RMSE and MAE of the ML model decreased with increasing
training set size until about 80%–90%.[58]

Note the gap of about ≃5 kJ/mol for RMSE between the
training and the test curves, which hints that the features of
the materials offered by RDkit may not be sufficient to fully
represent the original data (in terms of SMILES). This is, in
fact, a common situation in materials informatics, where
current methods of data representation are incomplete.
Further, it is common in ML to see a drop in performance
between training and testing sets, particularly when the
training set is relatively small. The data points in the training

F I GURE 2 Active learning workflow for developing ML models to predict ΔHsub and expanding the training dataset to systematically improve the ML
model. Two plans of data augmentation, whose details are discussed in the text, were considered.

F I GURE 3 Calculated values of ΔHsub, given with respect to the
experimental data reported for 28 organic molecular crystals. Error bars are
given for cases having multiple reported experimental values.
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set are not fully representative of those in the test set. The
ML model provides a test RMSE of 14 kJ/mol (<10% of
absolute mean ΔHsub) when 90% of the DFT dataset was
used to train the model, which shows that our trained model
generalizes to new data points.

A parity plot of DFT-computed ΔHsub versus ML-
predicted ΔHsub is shown in Figure 4b. The error bars in
the plot represent the GPR uncertainty. The average CV test
error (RMSE) of the prediction model that uses the full
dataset is 15.24 kJ/mol. In general, Figure 4 indicates that
the ML model trained by our DFT dataset accurately pre-
dicted the ΔHsub for new organics and could act as a tool for
predicting the ΔHsub for novel organic structures.

3.3 | Feature importance analysis

In this section, we used SHAP,[55] a game theoretic
approach, to explain the predictions of ΔHsub in terms of
contributions from each feature. Figure 5a ranks the 12 most
important features, whereas Figure 5b reveals the way each
of them contributes to the predictions of ΔHsub. Five of the
12 features that involve partial charge are “MaxPartial-
Charge”, “MaxAbsPartialCharge”, “MinAbsPartialCharge”,
“MinPartialCharge” and “BCUT2D_CHGHI”. The most
important feature is “MaxPartialCharge”, which, according
to Figure 5b, has a strong and positive correlation with
ΔHsub. This feature contributes strongly and positively to
ΔHsub when its value is high, whereas the contribution is low
on its low values. Because inter-molecular interactions are
electrostatic in nature, high partial charge intensifies these
interactions and ultimately raises ΔHsub. Overall, partial
charge and any features involving partial charge are critical
for ΔHsub.

The second important feature is “FractionCSP3”, which
quantifies the fraction of sp3 hybridized carbon atoms. The
rationale behind this observation is that sp3 hybridized car-
bons have the lowest electronegativity, so a high fraction of

sp3 carbon atoms leads to weak inter-molecular interactions,
and thus, low ΔHsub. Therefore, “FractionCSP3” correlates
negatively to ΔHsub, as revealed by Figure 5b. In addition,
“fr_NH1” (number of secondary amines) and “NHOH-
Count” (the number of NHs or OHs) are also important
features for ΔHsub prediction as higher ΔHsub values contain
more of these types of functional groups. The next important
feature is “FpDensityMorgan1”, one of three Morgan density
fingerprints[59,60] that show up in the list. “FpDensity-
Morgan1” measures the local density within the smallest
radius used by the Morgan algorithm[59] while the other two
features, that is, “FpDensityMorgan2” and “FpDensity-
Morgan3”, correspond to the next larger radii. The local
density encoded in “FpDensityMorgan1”, “FpDensity-
Morgan2”, and “FpDensityMorgan3” is important because it
directly correlates to the amount of charge that determines
the electrostatic (inter-molecular) interactions, according to
Coulomb's law.

In summary, the features related to partial charges are
critical for determining ΔHsub because of the Coulombic
nature of this concept. Going forward, the feature impor-
tance analysis presented in this work can be used in the
future as precursor design rules for targeted ΔHsub.

3.4 | Active learning

Active learning is an efficient strategy to systematically
explore the chemical space, expand and diversify the training
set, and ultimately improve the ML model. We show how
active learning could be used to enhance our ML model by
making use of the dataset described above consisting of 845
organic crystals.

Figure 6 visualizes the training data at three different
steps of plan B by projecting them onto the 2D space
spanned by PC1 and PC2, the two first principal axes, which
are obtained by a principal component analysis (PCA) and
capture the most variance of the training data. In this visual

F I GURE 4 Prediction accuracy (a) RMSE and (b) MAE for ML models trained using different training set sizes, averaged over 10 runs. The
corresponding test set sizes are equal to the difference between the total training dataset (845) and the training set size. (c) Parity plot obtained from the ML
model (208 features) with the train and test size of 90% and 10%, respectively.
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representation, the coverage of the materials space is sys-
tematically and efficiently expanded/diversified when the
active learning strategy using prediction uncertainty is
performed.

The expansion/diversification of the training data as
demonstrated in Figure 6 is critically important for
improving the ML model. In Figure 7, we quantitatively
visualized the performance of the ML models trained at step
0 (whose training set of 299 data points) and step 1 (whose
training set of 302 data points) of plan B. At step 0, the
training set contains only C, H, N, and O species, thus all the
predictions of ΔHsub on S-containing molecules (Figure 7b)
are highly erroneous with an RMSE of 131.1 kJ/mol. In fact,
most of the predictions for data points containing S or F
chemical species return ΔHsub ≃ 0 kJ/mol with very large
uncertainties (≃80 kJ/mol). At step 1, three new points were
added to the training set, one of them has S species and the
others have no S (Figure 7c). Figure 7d shows that by having
one material that has S species, the RMSE of the predictions

of ΔHsub on S-containing materials is reduced to a third of
the initial value to 41.1 kJ/mol, whereas the presence of two
new materials without S in the training set also reduces the
RMSE of the predictions on the materials involving no S
from 35 kJ/mol to 27.2 kJ/mol. Figure 7a–d clearly indicate
that augmenting underrepresented cases in the training data
is extremely important in expanding the domain of appli-
cability and advancing the power of the ML models. It
should be noted that in each step, three data points were
selected simultaneously. Although a sequential selection
method was also evaluated, its performance was similar to
the approach described in Plan B, as discussed in this
section.

Active learning is known to be an efficient strategy to
augment the training data in an informed manner, targeting
specifically underrepresented cases, and ultimately
improving the performance of the ML model.[42–44] In (the
baseline) plan A, augmented data were selected entirely
randomly without any information on whether they are

F I GURE 5 (a) Important values assigned to features based on SHAP. The names of the features are shown on the y-axis, while their importance is
shown on the x-axis. (b) The contributions of each feature as compared to the average model prediction. The y-axis on the right side indicates the respective
feature value being low versus high. Each dot represents one instance in the data.

F I GURE 6 (Projections of the training dataset (blue and red circles) at the (a) initial step, (b) an intermediate step, and (c) the final step of plan B onto
the 2D manifold spanned by PC1 and PC2, two first principal axes obtained from a principal component analysis (PCA). Red circles highlight the new
points that are added during the active learning process. Gray circles represent the entire dataset of 845 organic crystals.
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underrepresented. In contrast, the selection of augmented
data in plan B relies on the prediction uncertainties. The
rationale of plan B is that a small (or large) value of the
prediction uncertainty indicates that the material under
consideration is well- (or under-) represented in the training
set. Therefore, three data points with the largest un-
certainties, that is, they are under-represented in the training
data, are selected from the test set to be advanced to DFT
computations of ΔHsub.

The superiority of active learning in improving ML
models is further demonstrated in Figure 7e,f. For each plan
A or B, the RMSE and the maximum uncertainty of the
predictions on the test set are shown. Each measure was
averaged over 10 models that were trained independently on
a given training set. Although the averaged RMSE provides
an un-biased assessment of the performance of the ML
model trained, the averaged maximum uncertainty signals
the ML model's confidence in making the prediction on a
new case. Figure 7e,f show that the augmented data points
identified by active learning can help to reduce both mean
RMSE and maximum uncertainty very quickly, that is,
significantly improving the ML models. When the training
set size is ≃400, the training data selected by the active
learning strategy, which is based on the prediction uncer-
tainty, are spread out very well through the entire materials
space considered in this work (see Figure 6). At this training

set size, the averaged RMSE and maximum uncertainty of
plan B are saturated at ≃15 kJ/mol and ≃20 kJ/mol,
respectively, the values plan A can only reach when the
whole materials space is included in the training set, that is,
the training set size is 845.

In summary, Figures 6 and 7 show that active learning is
a powerful strategy to quickly select the cases of interest,
creating a dataset that is a good sample of the considered
materials space, and quickly improve the ML model devel-
oped to predict ΔHsub. This observation is important when
the materials space becomes big, that is, containing millions
of materials, thus minimizing the number of expensive DFT
ΔHsub computations while maximizing the performance of
the ML model is a critical requirement.

4 | CONCLUSIONS

In summary, we have successfully developed an accurate
DFT-based scheme for computing the ΔHsub of organic
molecular crystals. Leveraging the computed ΔHsub dataset,
we have constructed a predictive ML model capable of
accurately predicting ΔHsub with a predictive accuracy of
approximately 15 kJ/mol. Although this important parameter
remains higher than the chemical accuracy, it will be lowered
in the next phase of the model development when more data

F I GURE 7 ML models of ΔHsub, training at step 0 (a) and (b) and step 1 (c) and (d) of the active learning strategy employing plan B of data
augmentation. Panels (a) and (c) visualize the training process while panels (b) and (d) visualize the predictions of the ML models on the test data. In panels
(e) and (f), the maximum RMSE and uncertainty of the predictions in the test set are shown for plan A and plan B, respectively. Each data point is obtained by
averaging over the results obtained from 10 models trained independently on a given training set.
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of ΔHsub are computed and used in the ML training process.
Furthermore, through feature importance analysis, we have
identified key features that significantly influence ΔHsub,
enabling their direct application in the selection and design
of materials.

During the development phase of the computed ΔHsub
dataset, we have demonstrated the superiority of active
learning in identifying underrepresented species. This
approach enables iterative data augmentation through tar-
geted DFT computations, resulting in the systematic and
efficient improvement of the ML model. Going forward,
active learning will continue to be employed to progressively
expand the computed ΔHsub dataset, further enhancing the
performance and capabilities of the ML models.

The combination of our accurate DFT-based scheme, the
predictive ML model for ΔHsub, and the active learning
approach opens up new possibilities for advancing our un-
derstanding of sublimation enthalpy and its impact on
organic molecular crystals. These findings provide valuable
insights for the selection and design of organic precursors
and hold great potential for driving advancements in mate-
rials science and engineering.

AUTHOR CONTRIBUTIONS
Yifan Liu: Investigation; Writing - original draft; Data
curation; Formal analysis; Methodology; Software; Valida-
tion. Huan Tran: Writing - review and editing; Supervision;
Conceptualization. Chaofan Huang: Writing - review and
editing. Beatriz G. del Rio: Writing - review and editing;
Supervision. V. Roshan Joseph: Project administration;
Conceptualization; Writing - review and editing; Supervi-
sion; Funding acquisition. Mark Losego: Conceptualization;
Writing - review and editing; Project administration; Su-
pervision; Funding acquisition. Rampi Ramprasad: Fund-
ing acquisition; Conceptualization; Writing - review and
editing; Project administration; Supervision.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation (DMREF-1921873). The DFT dataset
was generated with computational support from XSEDE
through two allocations DMR080058N and DMR170031.
The computed ΔHsub dataset can be accessed at our re-
pository https://khazana.gatech.edu/dataset/. The code and
data are available on GitHub https://github.com/Ramprasad-
Group/Sublimation_enthalpy_model.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in Khazana at https://khazana.gatech.edu/dataset/.

ORCID
Yifan Liu https://orcid.org/0000-0001-5102-0552

REFERENCES
1. Poling BE, Prausnitz JM, O’Connell JP. The Properties of Gases and

Liquids. McGraw-Hill Education; 2001.

2. Acree W, Chickos JS. Phase transition enthalpy measurements of
organic and organometallic compounds. Sublimation, vaporization
and fusion enthalpies from 1880 to 2010. J Phys Chem Ref Data.
2010;39(4):043101.

3. Červinka C, Fulem M. State-of-the-Art calculations of sublimation
enthalpies for selected molecular crystals and their computational
uncertainty. J Chem Theor Comput. 2017;13(6):2840-2850.

4. Campbell CT, Sellers JRV. Enthalpies and entropies of adsorption on
well-defined oxide surfaces: experimental measurements. Chem Rev.
2013;113(6):4106-4135.

5. Leng CZ, Losego MD. Vapor phase infiltration (VPI) for transforming
polymers into organic–inorganic hybrid materials: a critical review of
current progress and future challenges.Mater Horiz. 2017;4(5):747-771.

6. Yurata T, Lei H, Tang L, et al. Feasibility and sustainability analyses
of carbon dioxide–hydrogen separation via de-sublimation process in
comparison with other processes. Int J Hydrogen Energy.
2019;44(41):23120-23134.

7. McArdle P, Erxleben A. Sublimation – a green route to new solid-state
forms. CrystEngComm. 2021;23(35):5965-5975.

8. Yurata T, Lei H, Tang L, et al. Feasibility and sustainability analyses
of carbon dioxide – hydrogen separation via de-sublimation process in
comparison with other processes. Int J Hydrogen Energy.
2019;44(41):23120-23134.

9. Gharagheizi F, Sattari M, Tirandazi B. Prediction of crystal lattice
energy using enthalpy of sublimation: a group contribution-based
model. Ind Eng Chem Res. 2011;50(4):2482-2486.

10. Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials.
Adv Mater. 2008;20(15):2842-2858.

11. Almeida AR, Monte MJ. A brief review of the methods used to
evaluate vapour pressures and sublimation enthalpies. Struct Chem.
2013;24(6):1993-1997.

12. Chickos JS, Gavezzotti A. Sublimation enthalpies of organic com-
pounds: a very large database with a match to crystal structure de-
terminations and a comparison with lattice energies. Cryst Growth
Des. 2019;19(11):6566-6576.

13. Fulem M, Růžička K, Červinka C, Rocha MA, Santos LM, Berg RF.
Recommended vapor pressure and thermophysical data for ferrocene.
J Chem Thermodyn. 2013;57:530-540.

14. Růžička K, Fulem M, Červinka C. Recommended sublimation pres-
sure and enthalpy of benzene. J Chem Thermodyn. 2014;68:40-47.

15. Delle Site A. The vapor pressure of environmentally significant
organic chemicals: a review of methods and data at ambient temper-
ature. J Phys Chem Ref Data. 1997;26(1):157-193.

16. Růžička K, Koutek B, Fulem M, Hoskovec M. Indirect determination
of vapor pressures by capillary gas–liquid chromatography: analysis
of the reference vapor-pressure data and their treatment. J Chem Eng
Data. 2012;57(5):1349-1368.

17. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev.
1964;136(3B):B864-B871.

18. Kohn W, Sham L. Self-consistent equations including exchange and
correlation effects. Phys Rev. 1965;140(4A):A1133-A1138.

19. Vener MV, Levina EO, Koloskov OA, Rykounov AA, Voronin AP,
Tsirelson VG. Evaluation of the lattice energy of the two-component
molecular crystals using solid-state density functional theory. Cryst
Growth Des. 2014;14(10):4997-5003.

20. Manin AN, Voronin AP, Manin NG, et al. Salicylamide cocrystals:
screening, crystal structure, sublimation thermodynamics, dissolution,
and solid-state DFT calculations. J Phys Chem B. 2014;118(24):6803-
6814.

21. Manin AN, Voronin AP, Shishkina AV, Vener MV, Churakov AV,
Perlovich GL. Influence of secondary interactions on the structure,
sublimation thermodynamics, and solubility of salicylate: 4-
hydroxybenzamide cocrystals. combined experimental and theoret-
ical study. J Phys Chem B. 2015;119(33):10466-10477.

22. Motalov VB, Korobov MA, Dunaev AM, Dunaeva VV, Tyunina EY,
Kudin LS. Refined data on the sublimation enthalpy and thermody-
namic functions of l-and dl-methionine. J Chem Eng Data.
2022;67(6):1326-1334.

8 of 9 -

 29409497, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

gea.84, W
iley O

nline L
ibrary on [22/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://khazana.gatech.edu/dataset/
https://github.com/Ramprasad-Group/Sublimation_enthalpy_model
https://github.com/Ramprasad-Group/Sublimation_enthalpy_model
https://khazana.gatech.edu/dataset/
https://orcid.org/0000-0001-5102-0552
https://orcid.org/0000-0001-5102-0552


23. Levina EO, Chernyshov IY, Voronin AP, Alekseiko LN, Stash AI,
Vener MV. Solving the enigma of weak fluorine contacts in the solid
state: a periodic DFT study of fluorinated organic crystals. RSC Adv.
2019;9(22):12520-12537.

24. Voronin AP, Perlovich GL, Vener MV. Effects of the crystal structure
and thermodynamic stability on solubility of bioactive compounds:
DFT study of isoniazid cocrystals. Comput Theor Chem.
2016;1092:1-11.

25. Tsuzuki S, Orita H, Honda K, Mikami M. First-principles lattice en-
ergy calculation of urea and hexamine crystals by a combination of
periodic DFT and MP2 two-body interaction energy calculations. J
Phys Chem B. 2010;114(20):6799-6805.

26. Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC. Higher-
accuracy van der Waals density functional. Phys Rev B.
2010;82(8):081101.

27. Woods LM, Dalvit DAR, Tkatchenko A, Rodriguez-Lopez P, Rodri-
guez AW, Podgornik R. Materials perspective on Casimir and van der
Waals interactions. Rev Mod Phys. 2016;88(4):045003.

28. Huan TD, Ramprasad R. Polymer structure predictions from first
principles. J Phys Chem Lett. 2020;11(15):5823-5829.

29. Sahu H, Shen K-H, Montoya J, Tran H, Ramprasad R. Polymer
structure predictor (psp): a python toolkit for predicting atomic-level
structural models for a range of polymer geometries. J Chem Theor
Comput. 2022;18(4):2737-2748.

30. Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E.
Calculation of heats of sublimation and solid phase heats of formation.
Mol Phys. 1997;91(5):923-928.

31. Politzer P, Ma Y, Lane P, Concha MC. Computational prediction of
standard gas, liquid, and solid-phase heats of formation and heats of
vaporization and sublimation. Int J Quant Chem.
2005;105(4):341-347.

32. Byrd EF, Rice BM. Improved prediction of heats of formation of
energetic materials using quantum mechanical calculations. J Phys
Chem A. 2006;110(3):1005-1013.

33. Gharagheizi F, Ilani-Kashkouli P, Acree WE, Mohammadi AH,
Ramjugernath D. A group contribution model for determining the
sublimation enthalpy of organic compounds at the standard reference
temperature of 298 K. Fluid Phase Equil. 2013;354:265-285.

34. Liu R, Tang Y, Tian J, et al. QSPR models for sublimation enthalpy of
energetic compounds. Chem Eng J. 2023;474:145725.

35. Mathieu D. Simple alternative to neural networks for predicting
sublimation enthalpies from fragment contributions. Ind Eng Chem
Res. 2012;51(6):2814-2819.

36. Suntsova MA, Dorofeeva OV. Prediction of enthalpies of sublimation
of high-nitrogen energetic compounds: modified Politzer model. J Mol
Graph Model. 2017;72:220-228.

37. Landrum G. Others RDKit: open-source cheminformatics. 2006.
http://www.rdkit.org

38. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C.
Machine learning and materials informatics: recent applications and
prospects. npj Comput Mater. 2017;3(1):54.

39. Chen L, Pilania G, Batra R, et al. Polymer informatics: current status
and critical next steps. Mater Sci Eng R Rep. 2021;144:100595.

40. Tran H, Kim C, Chen L, et al. Machine-learning predictions of
polymer properties with Polymer Genome. J Appl Phys.
2020;128(17):171104.

41. Kim C, Chandrasekaran A, Huan TD, Das D, Ramprasad R. Polymer
genome: a data-powered polymer informatics platform for property
predictions. J Phys Chem C. 2018;122(31):17575-17585.

42. Lookman T, Balachandran PV, Xue D, Yuan R. Active learning in
materials science with emphasis on adaptive sampling using un-
certainties for targeted design. npj Comput Mater. 2019;5(1):21.

43. Kim C, Chandrasekaran A, Jha A, Ramprasad R. Active-learning and
materials design: the example of high glass transition temperature
polymers. MRS Commun. 2019;9(3):860-866.

44. HuanTD,BatraR,Chapman J,KimC,ChandrasekaranA,RamprasadR.
Iterative-learning strategy for the development of application-specific
atomistic force fields. J Phys Chem C. 2019;123(34):20715-20722.

45. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals.
Phys Rev B. 1993;47(1):558-561.

46. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calcula-
tions for metals and semiconductors using a plane-wave basis set.
Comput Mater Sci. 1996;6(1):15-50.

47. Kresse G. Ab initio Molekular Dynamik für flüssige Metalle Ph.D.
thesis. Technische Universität Wien; 1993.

48. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys Rev B.
1996;54(16):11169-11186.

49. Vaitkus A, Merkys A, Gražulis S. Validation of the Crystallography
open database using the crystallographic information framework. J
Appl Crystallogr. 2021;54(2):661-672.

50. Quirós M, Gražulis S, Girdzijauskaitė S, Merkys A, Vaitkus A. Using
SMILES strings for the description of chemical connectivity in the
Crystallography Open Database. J Cheminf. 2018;10(1):23.

51. Merkys A, Vaitkus A, Butkus J, Okulič-Kazarinas M, Kairys V,
Gražulis S. COD::CIF::Parser: an error-correcting CIF parser for the
Perl language. J Appl Crystallogr. 2016;49(1):292-301.

52. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approxima-
tion made Simple. Phys Rev Lett. 1996;77(18):3865-3868.

53. Ong SP, Richards WD, Jain A, et al. Python Materials Genomics
(pymatgen): a robust, open-source python library for materials anal-
ysis. Comput Mater Sci. 2013;68:314-319.

54. Weininger D. SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf
Comput Sci. 1988;28:31-36.

55. Lundberg SM, Lee S-I. A unified approach to interpreting model
predictions. Adv Neural Inf Process Syst. 2017.

56. Rasmussen CE, C. K. I. W. Gaussian Processes for Machine Learning.
the MIT Press: Massachusetts Institute of Technology; 2006.

57. William E, Acree JSC, Jr. NIST chemistry WebBook. In: Linstrom PJ,
Mallard WG, eds. NIST Standard Reference Database Number 69.
National Institute of Standards and Technology; 2022.

58. Joseph VR. Optimal ratio for data splitting. Stat Anal Data Min ASA
Data Sci J. 2022;15(4):531-538.

59. Morgan HL. The generation of a unique machine description for
chemical structures-a technique developed at chemical abstracts ser-
vice. J Chem Doc. 1965;5(2):107-113.

60. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf
Model. 2010;50(5):742-754.

How to cite this article: Liu Y, Tran H, Huang C,
et al. Accelerated predictions of the sublimation
enthalpy of organic materials with machine learning.
MGE Advances. 2025;e84. https://doi.org/10.1002/
mgea.84

- 9 of 9

 29409497, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

gea.84, W
iley O

nline L
ibrary on [22/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.rdkit.org
https://doi.org/10.1002/mgea.84
https://doi.org/10.1002/mgea.84

	Accelerated predictions of the sublimation enthalpy of organic materials with machine learning
	1 | INTRODUCTION
	2 | METHODS
	2.1 | First‐principles calculations of sublimation enthalpy
	2.2 | Materials features and machine learning algorithm
	2.3 | Active learning workflow

	3 | RESULTS AND DISCUSSION
	3.1 | Creation and validation of computed dataset
	3.2 | ML model of sublimation enthalpy for organic molecules
	3.3 | Feature importance analysis
	3.4 | Active learning

	4 | CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT


