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ABSTRACT: We present an artificial intelligence-guided approach to
design durable and chemically recyclable ring-opening polymerization
(ROP) class polymers. This approach employs a genetic algorithm
(GA) that designs new monomers and then utilizes virtual forward
synthesis (VFS) to generate almost a million ROP polymers. Machine
learning models to predict thermal, thermodynamic, and mechanical
properties�crucial for application-specific performance and recycla-
bility�are used to guide the GA toward optimal polymers. We present
potential substitute polymers for polystyrene (PS) that achieve all
property targets with low estimated synthetic complexity.

■ INTRODUCTION
Plastics are integral to modern life, offering versatility and
convenience across numerous applications, including packaging,
energy reduction, and electronic devices.1−4 While plastics offer
strength and durability during their useful lifespan, these
qualities become significant drawbacks at their end-of-life,
with most materials being disposed of in landfills or released into
the environment.5,6 Unfortunately, this is a problem due to the
ever-increasing amounts of plastics being produced.7 These
synthetic materials persist in the environment for hundreds of
years, taking an extraordinarily long time to decompose.8

Microplastics, resulting from the breakdown of larger plastic
items,9 exacerbate the issue by infiltrating the food chain10 and
accumulating in human bodies.11 They also accumulate in
landfills,12 pollute oceans,13−15 and endanger wildlife.16

One of the most widely used plastics, polystyrene (PS),
contributes significantly to environmental damage through its
microplastics.17,18 Our focus here lies in developing an
alternative material to PS that could be chemically recycled.
This choice also stems from the significant presence of PS in
both U.S. and European plastic production, as economies of
scale are necessary to render recycling economically viable.8,19,20

Furthermore, the lack of widespread PS recycling is predom-
inantly due to cost barriers,21,22 compounded by the toxicity
concerns associated with styrene, the monomer used in PS
production, and PS microplastics.23−25 To enhance the
recyclability of PS and plastics in general, a shift toward more
sustainable polymers supporting a circular plastic economy is
crucial.26,27

Thankfully, the polymer chemical space is expansive, with
innumerable viable and environmentally friendly options

awaiting discovery. Among them are those with the potential
to exhibit desirable properties conducive to recycling without
compromising peak performance during usage. However,
navigating this vast space presents challenges; traditional
Edisonian trial-and-error physical experimentation is slow and
expensive. Data-driven techniques and machine learning (ML)
have emerged as a powerful alternative paradigm for navigating
molecular and polymeric design spaces.28−34 Specifically,
generative models like variational autoencoders (VAEs) and
generative adversarial networks (GANs) have been developed to
address design challenges.35−41 These models support “inverse
design” by mapping a latent space to material properties,
enabling the creation of materials with targeted characteristics.
Additionally, recent work by Gurnani et al.42 introduced a
translation-based approach, polyG2G, to generate polymers
resistant to dielectric breakdown. Selected polymers from these
publications are showcased in Table 1. While effective for
producing polymers with specific attributes, these approaches
do not connect polymers to their monomer structures�an
essential factor for synthesis. This gap underscores the need to
combine inverse design algorithms with systems that can
develop polymers optimized for chemical recyclability and
straightforward synthesis.
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The genetic algorithm (GA), a type of generative model,
stands out as a promising optimization algorithm for conducting
efficient searches. It boasts a rich history of application in
polymer and molecule design spanning several decades.43−46

Notably, the GA excels in navigating vast polymer spaces to
swiftly identify optimal designs tailored to specific tasks.29,47

This study presents a novel GA tailored for the design of
chemically recyclable polymers. Departing from previous
methodologies where the focus was on polymer design followed
by retrosynthesis techniques to predict monomers,47,48 our
approach begins with monomer design. In this work, every
monomer designed belongs to a specific class that has its
associated polymerization pathway (Table 3). The newly
designed molecules undergo virtual polymerization through
these predefined reaction templates to generate hypothetical
polymers. This process is referred to as virtual forward synthesis
(VFS). For this study, our focus was exclusively on ring-opening
polymerization (ROP) reactions and monomers capable of
accommodating them. This choice stems from the significant
potential of ROP polymers for chemical recycling into
monomers.49−51 Additionally, our recyclability modeling
requires knowledge of the monomer structure and is only viable
for ROP reactions.52

In past successful approaches to genetic algorithms, the design
criteria only targeted the polymers, without considering the
monomer.29,47 However, for every polymer proposed, it was
difficult to know how to synthesize as there was no starting
monomer nor a clear pathway for polymerization (addition,
condensation, ROP, etc...) This lack of knowledge of the
monomer and reaction class prohibits enthalpy calculation
which is indispensable for recyclability measures. By introducing
monomers and utilizing a state-of-the-art enthalpy prediction
model (see section Methods: design) this work aims to achieve
that goal of computationally searching for recyclable polymers.
On the experimental side, there have already been efforts to

design recyclable ROP class polymers.53 In this paper, they
gather and present about 60 polymers as a proof-of-concept in
terms of recyclability. Only one polymer could achieve all our
design criteria. In fact, considering all literature, only one other
polymer meets our design criteria for PS.54,55 Both polymers are
presented in Figure 2b. While this experimental synthesis
demonstrates the potential of ROP class polymers, it does not
guarantee that these specific polymers can be produced at scale.
As such it is paramount to explore the magnitude of other
candidates to increase the chances of finding a polymer that
could eventually solve our global problem at scale. Our model
can produce thousands of potential recyclable polymers that
achieve design targets.

In the following sections, we outline the process of finding
new chemically recyclable polymers that meet performance
criteria, like thermal stability, high stiffness and strength, and
effective thermal insulation.

■ METHODS
To guide the GA toward the desirable molecules and their
polymers, ML models are employed to predict key properties of
polymers such as Tg, decomposition temperature (Td), tensile
strength at break (σb), Young’s modulus (E), and heat capacity
(Cp). These properties, along with their desired target values
that lead to PS substitutes are listed in Table 2. The synthetic

complexity of each novel molecule is optimized too, increasing
the likelihood of creating synthesizable designs. Therefore, on
the whole, the GA streamlines the process of identifying suitable
polymers by leveraging rapid property predictions using ML
models.
Recyclability is evaluated through the enthalpy calculations.

Enthalpy is chosen because we have modeling capabilities to
predict the enthalpy of polymerization, and it is proportional to
the ceiling temperature (Tc). The Tc, defined as the enthalpy of
polymerization over the entropy of polymerization, determines
the temperature above which monomers are more stable,
triggering polymer depolymerization. By designing polymers
with a Tc below the Td, we can ensure the polymers are
chemically recyclable.
Although predictive methods for Tc and entropy are lacking,

enthalpy predictions are feasible.52 These predictions neces-
sitate ROP polymers, focusing our design space on this area.
This ROP design space has also previously been identified in
literature as promising for chemical recyclability49−51). Specific
enthalpy design criteria are defined in section Methods: design.
After identifying desirable polymers based on all of their

properties, their chemistry is further evaluated to ensure they

Table 1. Table Highlighting Previous Successful Examples of Computational Generative Design in Developing Polymers That
Meet Specific Target Criteriaa

aIt includes the generative methods employed, the target criteria for the designs, the polymers that met these criteria, and the properties of those
polymers.

Table 2. Design Objectives for PS Replacement, Surrogate
Properties Correlated with These Objectives, and Their
Target Values Used During the Genetic Algorithm Design
Process

property target goal

Tg >373 K thermal stability
Td >473 K thermal stability
σb >39 MPa strength
E >2 GPa rigidity
Cp >1.24 J/gK thermal insulation
ΔH >−10, <−20 kJ/mol chemical recyclability
SA score <3 monomer synthetic complexity
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can be synthesized. Additionally, the ROP classes to which these
desirable polymers belong are examined. The goal is to create
polymers with specific usage properties that are chemically
recyclable, allowing them to be broken down back into their
original monomers for reuse, thereby promoting sustainability.
Genetic Algorithm Implementation. The GA, with the

aid of the python package RDKIT,56 designs hypothetical
monomers, which are subsequently subjected to virtual reaction
templates generating novel polymers. The initialization of this
process involves the following steps, as exemplified in Figure 1a:

1. Scaffold generation: a molecular scaffold is constructed
(Figure 1a “Scaffold”), comprising a base structure
capable of polymerization and featuring variable function-
alization sites.

2. R-group creation: a global list of R-groups (Figure 1a “R-
Groups”) is created, serving as chromosomes for the GA’s
optimization process.

3. Molecule creation: these R-groups are bonded to the
scaffolds using the atoms adjacent to the asterisks (see * in
Figure 1a “Scaffold” & “R-Groups”) to create molecules
that can be then virtually polymerized.

4. Virtual polymerization: SMiles ARbitrary Target Specifi-
cation (SMARTS) patterns, which are line notations used
to define reaction templates, are defined to virtually
polymerize the molecule using VFS (Figure 1b “Polymer-
ization”). This generates polymers suitable for ML
property prediction.

Following this, the GA creates an initial population by
generating nmolecules from the scaffold and randomly assigning
R-groups from the global list to their functionalization positions.
Each newly formed molecule undergoes polymerization, and the
resulting polymer’s properties (section Methods: design) are
predicted using the ML models. The polymers are then ranked
according to the fitness function outlined in section Methods:
fitness, enabling the selection of top-ranked polymers as
“parents” for the subsequent generation.

The parent polymers are randomly paired and generate a
predetermined number of children. Each child polymer
randomly inherits one of its parents’ scaffolds, and then
crossover occurs, combining the parents’ R-groups into a pool.
The child’s functionalization sites are then randomly assigned R-
groups from this pool. Subsequently, a small subset of child
polymers undergo mutation, where some functionalization sites
are replaced with random R-groups from the global list. If a child
polymer has been previously encountered in a prior generation,
mutation continues until a unique molecule is generated. This
generation of polymers is then fingerprinted28 and undergoes
property prediction using ML. The topmost desirable polymers
of that generation become the “parents”. This iterative process,
illustrated in Figure 1b, repeats for a set number of generations,
driving the evolution of new polymers.
Design Target and Property Predictors. PS, commonly

employed in take-out containers and packaging, displays
exceptional performance, encompassing thermal stability, high
stiffness and strength, and good thermal insulation. Key
properties influencing these characteristics include Tg, Td, σb,
E, and Cp. Properties that dictate chemical recyclability for a
replacement polymer include the enthalpy of polymerization
(ΔH). Accordingly, we adopt these properties as design targets
that govern the fitness function of the GA, with each property’s
target value and its purpose detailed in Table 2.
Tg must exceed the boiling point of water (373 K) to ensure

the new polymer remains stable when exposed to heat. Setting
Td 100 K above this value prevents decomposition during
chemical recycling.
To ensure durability, σb surpassing 39MPa and E exceeding 2

GPa are selected to prevent breakage and excessive bending,
aligning with the properties of PS.57 Additionally, Cp equal to
that of PS is adopted to prevent burns from hot contents.
In contrast to other properties where surpassing a threshold is

the goal, we aim for the ΔH to fall within the range of −10 to
−20 kJ/mol. IfΔH is too negative, the Tc will likely be too high,
and polymers will not be depolymerizable before decom-

Figure 1. (a) Example of GA initialization. The scaffold is a five-member cycloalkane with functionalization positions denoted by the labeled asterisks
(*). New molecules are generated by functionalizing these locations with the corresponding R-groups displayed in the middle. The R-groups are then
randomly attached to the scaffolds to form several monomers. Four examples of such monomers are shown at the bottom, each consisting of the base
scaffold and two R-groups. Subsequently, the newly formed monomers undergo VFS. (b) Schematic illustration of the GA workflow, depicting the key
processes of crossover, mutation, polymerization, property prediction, and fitness evaluation/selection.
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position. However, if it is too close to zero, The Tc will likely be
too low and the polymer will not be useable at room
temperature.
These properties are predicted using two subsets of previously

developed and published models: a Gaussian process regression
(GPR) model to predict ΔH based on the polymer and
monomer,58 and a multitask neural network (MTNN) trained
on homo and copolymer data to predict all other properties.59

These ML models have been developed and extensively tested
on a data set comprising both previously synthesized polymers
and hypothetical polymers with properties predicted using
density functional theory (DFT) and molecular dynamics
(MD). Specifically, we highlight several previous studies that
have combined DFT-calculated values with ML techniques and
chemical intuition to achieve more accurate results.60,61 Further
details pertaining to the models used in this study, including
training data used, algorithmic details, and accuracy can be
found in their respective publications.58,59 A short section
regarding these models and their requisite polymer fingerprints
is provided in the Supporting Information Section 1 “ML
Models and Fingerprinting”.
Finally, a synthetic feasibility target criterion is established to

reduce the complexity of designed molecules. The synthetic
accessibility score (SA score) method, which uses a combination
of fragment contributions and complexity penalty,62 is used to
calculate molecular complexity. The SA score ranges from 1 to
10, where 1 indicates a molecule is more likely to be synthesized
and 10 indicates it is less likely to. The target value is set to 3, a
common value for synthetic molecules.62 To design novel
polymers, aiming for monomers with a low SA score (<3) will
increase their chances of being synthesized.
Fitness Assessment. Underpinning any GA is the fitness

function it optimizes over. We use a clamping fitness function
that has previously performed well for many-property GA
optimizations.47 However, as the target values forΔH fall within
a range, the predicted values must first be transformed to
facilitate scoring. This fitness assessment is defined as follows:

1. Enthalpy transformation: ΔH values are transformed so
that the transformedΔH target is in the same range as the
other property targets, enabling the application of
standard clamping across properties and Min−Max
scaling. The revised objective is to attain a ΔH greater

than 10 kJ/mol. For any polymer i the enthalpy
transformation is defined in eq 1
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2. SA score transformation: since we aim to minimize this
target criterion and are using a MinMaxScaler that
prioritizes higher values, we take the additive inverse of
the target criterion to optimize this property

SA SAi i= (2)

3. Clamping of predicted properties: predicted properties
exceeding the target thresholds were clamped to the
targets using eq 3

k k kmin( , )i i target= (3)

ki represents the predicted and transformed values of property k
for polymer i. ktarget denotes target value as defined in Figure 2a.
ki′ signifies the clamped predicted value of polymer i. This
transformation prioritizes polymers that satisfy all criteria over
those that excel in only a few.

4. Normalization and Fitness Calculation: The clamped
property values are normalized within the range of 0 to 1
using a MinMaxScaler. A fitness value for each polymer is
then calculated by adding these normalized properties, as
described in eq 4

N
k k

k k
1

i
k T T E C H SA

i

prop , , , , , ,

min

target min
g d b p

=
= (4)

here, kmin′ represents the minimum clamped predicted value for
all polymers in the data set. Nprop is the total number of
properties being optimized for. θi represents the fitness score for
polymer i. Each property receives an equal weight in the fitness
calculation.
We note that, in section Results and Discussion, SA Score is

not used to screen for promising candidates because molecules
that obtain an SA Score higher than 3 can still be synthesized.
Hence “desired” polymers need only achieve the first 6
properties�Td, Tg, σb, E, ΔH, Cp.

Figure 2. (a) Three-dimensional scatter plot displaying the predicted thermal (Tg, Td), mechanical (σb, E), and thermodynamic (Cp, ΔH) property
values of known ROP polymers. Predicted values are scaled according to section Methods: fitness and averaged by property category to facilitate
visualization of the six properties in three dimensions. The colors represent the overall fitness, found by averaging the scaled values for all properties.
(b) Some of the already known and synthesized polymers54,55 are predicted to have achieved the first 6 target criteria.
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Figure 2a displays a three-dimensional scatter plot of the
predicted property fitness values for known ROP polymers,
categorized into thermal (Tg, Td), mechanical (σb, E), and
thermodynamic (Cp, ΔH) properties. The colors represent the
overall fitness, calculated using eq 4, while each position along
the axis corresponds to amodified version of eq 4 where fitness is
averaged by category rather than all properties. The plot reveals
that only two out of all known ROP polymers meet the six target
property criteria, underscoring the need for improved methods
to explore the polymer space for recyclable candidates. Figure 2b
highlights these two previously synthesized polymers. The first
monomer is a hybrid that combines a 5-membered lactam,
known for its low ceiling temperature, to enhance chemical
recyclability, with a 7-membered ring lactam, which has a high
ceiling temperature, to achieve strong thermomechanical
properties.54 The second monomer incorporates a 5-membered
γ-butyrolactone for its recyclability benefits but includes a trans-
fused cyclohexyl ring to provide the necessary physical
properties without hindering depolymerization processes.55

The relatively high monomer SA Score indicates that monomers
with values above 3 can indeed be synthesized. All in all, the

scarcity of known polymers meeting these targets motivates
further search.
Compound Validation: Scaffolds, R-Groups, and

Reactions. Scaffolds. We leverage a comprehensive data set
of 30 million known compounds to enhance the likelihood that
the GA-generated molecules are valid. A key part of our method
is selecting the top 4−5 scaffolds associated with the most
frequently observed molecules in existing literature. These
scaffolds were generated by searching a vast database of
approximately 30 million known molecules for structures
matching those in the “Reaction” column of Table 3 and
identifying the most common combinations of R-group
locations in the rings. The data set was compiled from five
diverse sources: ZINC15, ChemBL, literature-derived com-
pounds, an eMolecules database dump from December 19,
2020, and data scraped from a VWR database.63−66 These
scaffolds represent the most encountered structures which
increases the likelihood that molecules designed from them align
closely with existing chemical structures. As such we believe that
the molecules these scaffolds form are already likely to be
synthesizable. Furthermore, to simplify the molecules resulting
from the GA, we deliberately selected scaffolds with only one or

Table 3. Table Displaying the Simplified ROP Virtual Reaction theMolecule Undergoes, the Class of Ring That was Opened, the
Scaffolds Used During a GARun, the Total Number of Possible Polymers from All Combinations of Adding Our R-Groups to the
Scaffolds, the Number of Polymers Generated During the GA Runs, and the Number That Met All Screening Criteria (Except SA
Score) for the Specific Classa

aFor the promising candidates, all polymers with single (N−N) nitrogen bonds were excluded.
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two available R-group attachment points. Additional details on
the scaffold selection process can be found in the Supporting
Information Section 2 “Scaffold Generation”. As shown in Table
3, we investigated a total of 8 ROP classes encompassing 37
distinct scaffolds.
R-Groups.To create the potential R-groups for attachment to

the scaffolds, we conducted an exhaustive search of the database
for all molecules amenable to being opened via one of the
specified reaction classes. Approximately 3.4 million molecules
met this criteria. Subsequently, we employed breaking of
retrosynthetically interesting chemical substructures (BRICS)
decomposition on these molecules, enabling us to isolate
fragments possessing a single connection point compatible with
the chemical context of the scaffolds. This process allowed us to
identify 29,030 fragments that could interface with the chemical
environment of the scaffolds, facilitating their integration into
the desired molecular structures. This process enhances the
chemical validity of our compounds, aligning them with
established molecular guidelines from the literature. While
using BRICS might constrain the chemical space, as all
generated molecules would only exhibit connections that are
known to exist in previously synthesized molecules, it does help
in increasing chemical validity. Further refining our selection, we
excluded groups featuring alcohols, primary and secondary

amines, carboxylic acids, carbonic acids, carbamic acids, and
acidic methylene groups−highly reactive functional groups that
could complicate polymerization. Additionally, we removed
duplicate R-groups with variations in stereochemistry, as these
aspects are not adequately handled by our ML models. This
process culminated in a curated list of 12,329 R-groups.67

Reactions. Once the molecule is created, then we use the
known reaction pathways68 outlined in Table 3 to turn these
monomers into potentially valid polymers to be fed into the ML
model. Table 3 presents the list of reactions, the class of
monomers opened in the reaction, along with the scaffolds used
for a molecule during a run of the GA, the total number of
different combinations that can be created by attaching all the R-
groups to the scaffolds, the total number of polymers generated
by the GA, and the number of polymers found by the GA that
meet all property criterion.

GA Runs. For every monomer class, we conducted three
iterations of the GA, as multiple iterations have been
demonstrated as one of the most effective means to enhance
molecule diversity.47 Initially, a population of 300molecules was
randomly generated. In each subsequent generation, the first
100 top-performing polymers, identified through their fitness
function, were chosen. These top polymers were then randomly
paired to form 200 families, capable of producing up to three

Figure 3. (a) Line plot showing the change in average properties for top children polymers (dashed lines) and the total population (solid lines) over
generations for one run of theGA on the ester class of monomers. The top 100 polymers, selected based on their fitness function values, serve as parents
for the next generation. The gray region indicates the target property range. (b) Line plot demonstrating the static evolution of the SA Score through
generations for the ester class of monomers. (c) Layered bar plot comparing the frequency of the most common R-groups in run 1 of the ester scaffolds
with runs 2 and 3. (d) Stacked histograms display the count of polymers meeting all target properties per generation for the run in (a).
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offspring each, although fewer were generated if no unique
combinations were feasible. Approximately 7.5% of these child
polymers would have one R-groupmutated. Moreover, to enrich
the diversity of generated polymers, each polymer’s simplified
molecular-input line-entry system (SMILES) representation
was stored in a Python set. If a previously encountered SMILES
was identified, the corresponding monomer underwent
mutation until a unique polymer emerged.

■ RESULTS AND DISCUSSION
Figure 3a illustrates the progression of polymer properties across
generations within one GA run for esters, with shaded areas
denoting the desired ranges for these properties. The choice of
esters stems from its ability to best depict trends in the evolution
of the GA polymers over time. Initial population averages for Td
and Cp fortuitously fall within these ranges, while the top 100
children polymers, achieve the desired Tg and σb. Consequently,
subsequent generations swiftly converge toward these targets.
Across the next ten generations, the GA refines E and ΔH,
culminating in top children polymer averages getting close to
achieving these objectives while still adhering to the design
objectives for the other properties.
The gap between parental and population averages arises due

to the deliberate selection of top-performing polymers as
parents. The next generation generated by crossover and
mutation of these parents is not guaranteed to have superior
properties as children, hence why the population averages
remain distant. Conversely, when this gap diminishes, it typically
indicates that the property in question is no longer the focus of
optimization, as its desired threshold has already been attained
as seen for Td. Thus, parent polymers are no longer selected

based on their superior performance in these properties and
their average values remain close to the population average. This
is not the case for σb though, likely because it is correlated with E,
and E is still being optimized for.
Despite the overall progress, the top children averages barely

reach E and ΔH targets, and population averages remain even
further away. Moreover, top-performing children from other
ROP classes never quite reach the threshold (see Supporting
Information Figure S7). This result can be partly attributed to
the enforced mutation mechanism when encountering pre-
viously identified molecules. Earlier studies demonstrated that a
high mutation rate can hinder a GA’s ability to optimize its
objective.47 This is particularly problematic in runs with a large
number of scaffolds with a single R-group location, where child
polymers created through crossover are likely to have been
previously encountered especially if both parents also have a
single R-group location. In such cases, the child polymer is
forced to mutate with a random R-group from the global list to
avoid duplicating the parent structure, and its new structure will
not be optimized for the target properties. In contrast, scaffolds
with multiple R-group locations, such as esters, are more
resilient to forced mutation, offering a wider range of potential
polymers, thus reducing the likelihood of previous encounters.
Even if forcibly mutated, they are likely to retain some optimized
R-groups, ensuring a better chance of retaining target properties.
This could explain why ethers, cycloalkenes, and amides tend to
have the fewest promising candidates (see Table 3) since they
have the largest number of scaffolds with only one R-group
location (see Supporting Information Figure S3).
Another possible explanation is that the GA simply did not

run long enough. As observed in previous studies,47 properties

Figure 4. (a) Gene strip demonstrates the overall occurrence of all R-groups with counts of >500 over 100 generations of evolution. Nine top R-groups
are indicated using their SMILES representation along with their frequency. (b) The distribution of the reaction classes for the polymers that achieve
all properties except SA Score. (c) 3D scatter plot representingHeat, Mechanical, and Thermal fitness on a scale from 0 to 1. The green points are more
favorable than the redder points. A total of 7731 desirable polymers have been produced by the GA (d) A collection of generated polymers along with
their R-groups that achieve target criteria and possess low molecular SA scores.
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often remain stagnant until a mutation occurs that suddenly and
dramatically improves the desired property, a phenomenon
known as punctuated equilibrium.69 This effect is evident near
generation 40 of esters, where a sudden drop in ΔH occurs.
However, continuing runs for many generations can be
problematic, as GAs tend to get “stuck” once they find
optimized zones (local minima), resulting in low diversity of
new solutions. To mitigate this, restarting with a new, randomly
generated initial population can be beneficial.47 As shown in the
layered bar chart in Figure 3c, the most common R-group in one
GA run, likely kept due to its effectiveness at solving the
properties, is often significantly different in the next run, and by
restarting, new and unique solutions, can be found.
To illustrate themolecular complexity, the evolution of the SA

Score is depicted in Figure 3b. Notably, the average values for
the parents and population remain stagnant during the run for
the ester class (see Supporting Information Figure S7 for the rest
of the ROP classes). This suggests a trade-off exists between
reducing the molecular complexity of the monomers and finding
polymers that meet all mechanical, thermal, and thermodynamic
requirements. As such, across all runs, only one “ideal” polymer
was found that satisfies all 6 properties as well as our reduced
complexity. However, the GA has succeeded in generating 60
desired polymers with slightly higher SA Score values (≤3.5).
Ignoring SA Score, as even those monomers with high scores

may be synthesizable, 7731 polymers meet the other six
properties: Td, Tg, σb, E, ΔH, and Cp. We refer to these as
“desired” polymers. Despite these properties not being met on
average during the GA runs in Figure 3a, numerous solutions for
polymers attaining all 6 properties, were found at each
generation, as shown in Figure 3d. Initially, few polymers met
all 6 desired properties, but the runs quickly optimized to find
unique solutions consistently across generations. The GA’s
ability to continue to find novel solutions is attributed to the
mutations discussed earlier, which ensures that new molecular
spaces continue to be explored. Notably, most polymers that
achieved all properties had two R-group locations, as seen in
Supporting Information Figure S6a. This also helps explain why
runs with fewer scaffolds containing 2 R-group sites have lower
counts in Figure 3d. However, increasing the number of R-group
locations results in increased molecular complexity, as seen in
Figure S6b, again highlighting a trade-off between property
optimization and molecular complexity.
In Figure 4a, we present a gene strip highlighting some of the

most frequently employed R-groups. Notably, many of the most
abundant R-groups form bonds at the cyclic nitrogen, yielding
tertiary amines in the monomers. Cyclic structures in general
were very common, making up the majority of the most
common R-groups. This is likely due to the fact that these chains
introduce steric hindrance, constraining chain mobility and
enhancing thermal and mechanical properties as a consequence.
Additionally, an ROP class distribution plot, depicted in

Figure 4b, illustrates the most effective reaction classes that meet
our criteria. Among these, esters and their variations�such as
thioesters and thionoesters�are notably the most prevalent.
Esters stand out with the highest average overall fitness value,
and thioesters, in particular, yield the most desirable properties.
However, the SA Score for esters are also the highest, indicating
they are more challenging to synthesize. This highlights a
recurring trade-off between molecular complexity and other
technical properties. Given that all seven properties listed in
Table 2 are weighted equally, molecular complexity contributes
only one-seventh to the overall fitness value. This explains the

high overall fitness scores for esters despite the higher
complexity. In future studies, we could consider increasing the
weight of molecular complexity to identify classes that yield both
more feasible and robust materials.
In contrast to the mere two known polymers predicted to

achieve all 6 physical properties, as shown in Figure 2b, the GA
was capable of finding ∼8k polymers achieving them. The 3D
scatter plot in Figure 4c illustrates this, with a dense
concentration of green dots representing the numerous
polymers meeting all property criteria. Notably, an exhaustive
enumerative approach to polymer design would have entailed
computing almost 2.5 billion polymers, a nontrivial task. Our
GA, however, reduces calculations by a remarkable 99.96%.
Furthermore, within the Supporting Information Section titled
“Ether Case Study”, we conducted a comparison between the
GA and an enumerative approach using the ether scaffolds and
700 R-groups. Through this investigation, we discovered that
although none of the 492,800 ethers generated via enumeration
fulfilled all the required properties, the GA successfully identified
975 out of the 1241 top 0.5% of polymers, after examining only
38,479 polymers - 7.8% of the total number of polymers
possible. This represents a remarkable order of magnitude
reduction in search, while still capturing 79% of promising
designs. Such results underscore not only the validity but also
the efficiency of our GA in navigating complex solution spaces.
Despite the technique’s potential, some limitations remain.

Even though SA Score was one of the target criteria, very few
polymers attained this target. Among the polymers deemed
desirable (those meeting all other criteria), only one met the SA
Score target, reported in Figure 4d. As shown in Supporting
Information Figure S6c, a significant number of the 7500+
promising candidates exhibit a high SA Score (>3), indicating
increased molecular complexity.70 Most lab-synthesized mole-
cules have an SA Score of less than 3, while naturally occurring
molecules range from 3 to 9 and peak at 670 due to their greater
complexity. Thus, because GA molecules will be synthesized in
the lab, lower complexities are desired. This highlights the need
for further refinements to the GA to prioritize synthetic
feasibility. This involves prioritizing less complex scaffolds and
R-groups to ensure the chemistry space contains a greater
number of potentially producible molecules for the GA to
discover. In Figure 4d, we select polymer candidates to replace
PS that meet all target criteria and lie in the lower end of the SA
Score range.
Previous work on ROP VFS for PS substitutes that is focused

on polymer validity was conducted by Kern et al.71 The research
specifically targets already-knownmonomers from literature and
commercial databases and then polymerizes them through a
similar VFS scheme into polymers, filtering the polymers that
have attained the properties needed for PS. Their method has
provided about 37,000 polymers from previously seen
monomers with (SA scores < 7). Our approach complements
this work by introducing an intelligent exploration strategy for
noncommercially available monomers, tackling a vastly larger
search space that would be impractical to navigate using the
prior works brute force method.
Overall, the GA significantly streamlines calculation times

compared to exhaustive enumerative methods. We can
effectively explore the polymer space by targeting only the
highest-performing polymers, as defined by user-defined
properties, instead of iterating over every single combination.
In this study, the GA identified over 7500 polymers with desired
mechanical, thermal, and thermodynamic properties while only
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surveying (fingerprinting + predicting) ∼ 900,000 polymers,
which represents a mere 0.037% of the total possible
combinations. Additionally, in a small-scale test study
(Supporting Information Section 3), the GA captured 79% of
promising designs compared to an exhaustive enumerative
approach. These findings underscore the effectiveness of the GA
in rapidly identifying promising polymer designs, establishing it
as a valuable tool in polymer research. This work lays the
foundation for other scientists to tackle the specific problem of
surveying unknown polymers to find recyclable polymers for any
purpose through cheap computational techniques.

■ CONCLUSION
In conclusion, our study introduces a novel genetic algorithm
specifically designed to create monomers that can be
polymerized into chemically recyclable alternatives to PS. The
persistence of PS in our ecosystems, due to its limited
recyclability and associated toxicity, underscores the urgency
of our research in providing sustainable solutions. By integrating
cutting-edge computational design methodologies, such as the
utilization of molecular scaffolds, BRICS-derived fragments,
advanced VFS techniques, and state-of-the-art ML models, we
efficiently traverse molecular design landscapes of billions of
hypothetical polymers. Combined with our GA, these
approaches help pinpoint over 7500 potential substitute
polymers that exhibit the requisite thermal, mechanical, and
thermodynamic properties necessary for serving as recyclable
alternatives to PS. Noteworthy among these are molecular
motifs featuring tertiary amine linkages to the polymer’s
backbone and cyclic side chains, likely attributed to their
capacity for impeding chain mobility, thereby enhancing
thermal and mechanical characteristics. These findings under-
score the efficacy of our GA in generating a diverse spectrum of
polymers that fulfill the prescribed property criteria, all while
significantly mitigating computational overhead compared to
exhaustive enumerative methodologies.
One significant limitation of this method is that while the

monomer-to-polymer reaction is well-defined, the monomer
synthesis pathway remains unclear. Although the SA Score
provides insight into synthetic complexity, it does not offer a
specific synthesis route for the monomer. To address this, future
efforts should prioritize resolving this issue by leveraging
retrosynthesis planning tools or integrating established reaction
pathways for designing and functionalizing monomers into the
GA.72 Strategically utilizing established pathways rather than
relying solely on BRICS fragments would likely improve
monomer synthesis planning and reduce the synthetic complex-
ity of candidate monomers. Importantly, the current GA
iteration can support this approach with minor modifications.

■ ASSOCIATED CONTENT

Data Availability Statement
The package, which includes the runner files, open-source code,
and postprocessing scripts, is available on GitHub. Additionally,
data on the scaffolds and promising polymers identified during
our run are also presented on GitHub. We share the csv with the
scaffolds found using our algorithm, the counts of unique
molecules and the code used to find these scaffolds. The open-
source code or package is accessible at https://github.com/
Ramprasad-Group/pvfsga. The data is available on GitHub in
our group polyVERSE repo.

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01530.

We have included a supplementary document that
supports the GA with test cases and provides a detailed
discussion on the acquisition ofmolecular scaffolds and R-
groups. It also elaborates on the mechanisms of the ML
models and fingerprint techniques. The test run
demonstrates the GA’s efficiency compared to an
exhaustive brute force method for the same input.
Additionally, we offer further information about the
promising candidates, focusing on their molecular
complexity and the number of R-groups. Supplementary:
design of recyclable plastics with machine learning and
genetic algorithm (PDF)
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