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ABSTRACT: Artificial intelligence and machine learning have
become essential tools in predicting material properties to aid in
the accelerated design of new materials. Polymer solubility, critical
for new formulations and solution processing, is one such property.
However, current models are limited by inadequate experimental
data sets that cannot capture the complexity and detail for many
features contributing to polymer solubility. Here, we provide a data
set for polymer solution behavior based on Crystal16 turbidity
measurements that includes high quality percent transmission data
for polymer solutions for a variety of polymers, solvents,
concentrations and temperatures. We use this data set to train a
model that predicts the experimental transmission data at many
temperatures and multiple concentrations. From this, we are able to
classify the polymer/solvent pairs into three solubility categories providing a level of granularity to predictions beyond prior binary
classification models considering only solvent/nonsolvent classes. The inclusion of multiple concentrations, temperatures and
partially soluble data expands solubility prediction capability beyond prior work into predictions more attractive for use by
formulators and process designers working with industrial polymer solutions.

1. INTRODUCTION
In recent decades, the rapid advancement of artificial
intelligence (AI) and machine learning (ML) has prompted
significant interest in using ML methodologies to design
materials meeting property and performance requirements
across several application domains.1 Polymers are particularly
interesting in materials science due to their important industrial
applications and inherently complex characteristics2,3 and they
have widespread application in sectors including single use
plastics,4 functional coatings,5 pharmaceuticals,6 textiles,7,8 and
more. Although they impart desirable properties to materials,
they present complex attributes such as broad molecular weight
distributions,9 large temperature-dependent morphological
changes,10 and a semicrystalline nature with a processing-
dependent degree of crystallinity. These attributes of polymers
create challenges for developing high quality data sets to use with
AI andML and for accurately predicting material properties. We
recently showed that information-rich data related to polymer
solubility can be collected with a high degree of control using a
parallel crystallizer with turbidity measurements.11 Here, we
leverage that capability to create a large data set of percent
transmission for polymer−solvent pairs as a function of
concentration and temperature. We then assess the ability of
ML models trained on this data to predict the percent

transmission and translate those predictions into classifications
of “soluble”, “insoluble”, and “partially soluble”.
Homogeneous polymer solutions are integral to a wide array

of industrial processes, spanning membrane production,12 paint
and coating formulation,13 and pharmaceutical development.14

The dissolution of polymers in solvents is a complex process
influenced by factors including the thermodynamic driving
forces, often characterized in part through the χ interaction
parameter15−18 and kinetic factors, including phenomena such
as surface erosion versus swelling dissolution mechanisms and
solvent diffusion rates.19,20 While the “like dissolves like” rule-of-
thumb provides a foundational principle for solubility
prediction, it often overlooks critical factors such as temperature,
molecular weight, and concentration, which directly impact
solubility phenomena. The Working Party of Thermodynamics
and Transport Properties of the European Federation of
Chemical Engineering recently noted that there was a lack of
“high-quality data in the literature for the solubility of larger
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molecules in solvents”, highlighting the challenge of solving
industrially relevant problems related to solubility.21

Given the importance of polymer phase behavior and the
breadth of factors that impact the observed solubility, there is a
significant effort to develop new methods for solubility
prediction. These include predicting the classification of
solubility (solvent vs nonsolvent for a polymer−solvent
pair),22−24 phase diagrams,25 thermodynamic parameters
including Hansen solubility parameters,26 the χ interaction
parameter and activity coefficients,17 and specific values of
polymer solubility.27 The progress and emergingmethods in this
area were recently reviewed in Ethier et al.28 These predictions
include purely data-driven, computational, and combination
approaches, but most are limited by an insufficient amount of
high-quality data, the same problem noted by theWorking Party
of Thermodynamics and Transport Properties of the European
Federation of Chemical Engineering.21 This challenge motivates
us to develop a well-controlled data set with polymer phase
behavior information, in this case captured by transmission
versus temperature curves.
High-quality data can aid in reducing bias and enhancing the

accuracy of a ML model’s outcome. However, the lack of a
globally accepted approach for measuring the solubility of a
polymer makes it impossible to compare the results of different
methods in the same way. Different measurement techniques,
including visual inspection,29,30 light scattering,31−33 and
turbidity measurements,34,35 have been used to examine the
phase behavior and solubility of polymers. Turbidity measure-
ments are a promising method, as they are relatively simple to
perform and can be integrated into automated measurement
systems. Our prior work has shown that a standardized turbidity
method can be used to collect information-rich data that, for
systems with fast kinetics, leads to high throughput data
collection.11 In turbidity analysis a laser passes through a sample
of a standard size at a specific temperature and the percent
transmission is measured. For polymer solutions, 100%
transmission corresponds to a 1-phase solution and 0%
transmission corresponds to a fully precipitated 2-phase
solution, with partially soluble systems showing values in

between. Our prior work used a Crystal16 parallel crystallizer,
where, per manufacturer’s recommendations 85% and above
transmission corresponds to fully soluble, and 10% and below
corresponds to fully insoluble.11 With transmission versus
temperature data, polymer/solvent pairs can be classified as
“soluble” or “insoluble” in the solvent. Furthermore, the data can
be collected for multiple concentrations and translated into
phase diagrams. Studies have also used turbidity titration data to
determine the solubility parameter of polymers.36,37 Thus,
polymer solution turbidity data in the form of transmission vs
time and temperature is promising as a starting point for
building different prediction tools for polymer solution phase
behavior with different types of output.
We present here a study that first describes the polymer

solution transmission percent data set and analyzes the ability of
a ML regression model to extrapolate the transmission versus
temperature results to concentrations not present in the training
data set. While the experiments are designed such that the
system does not reach equilibrium at each temperature, the
prediction of the transmission data enables practitioners to
interpret the data that is most relevant to the experimental
solubility applications of interest. Key challenges in using the
experimental data resulting from turbidity measurements in ML
models are discussed in detail. We then use the turbidity data to
classify polymer/solvent pairs at specific concentrations into
three bins: “soluble”, “insoluble”, and “partially soluble”. This
improves on prior binary classification work that is limited to
“solvent” or “nonsolvent”,24 in providing a third class that is not
fully insoluble or soluble at that concentration at the given
temperature. We are motivated by USP29-NF2438 from the
pharmaceutical industry, which classifies active pharmaceutical
ingredient solubility in 7 classes based on the parts solvent
needed to dissolve one part solute: very soluble, freely soluble,
soluble, sparingly soluble, slightly soluble, very slightly soluble
and practically insoluble. More classification categories allow
improved granularity for predictions that can be used by
researchers selecting solvents. Overall, we provide a well-
controlled experimental data set for transmission versus
temperature of polymer solutions, which correlates to polymer

Figure 1. Processed data set used for modeling. The color of each data cell signifies the concentration tested. Different colors correspond to different
concentrations tested for each polymer/solvent case in our data set. For instance, dark blue is linked to cases where only 5 mg/mL has been tested and
brown is linked with cases where four concentrations of 5, 15, 30, and 50 mg/mL have been tested.
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solubility and demonstrates the performance of ML models in
directly predicting the data and in correctly classifying the
polymer/solvent pairs. This work can help address the data
sparsity and low-quality data problems for polymer solubility,
within the limits discussed in the analysis.

2. DATA SET AND METHODS
2.1. Generation of the Experimental Data for the Data

Set. Solubility data for 30 polymers in 45 solvents was collected
using a Crystal16 parallel crystallizer (Technobis Crystallization
Systems), employing a 645 nm wavelength laser to measure
turbidity. The Crystal16 equipment can concurrently process 16
samples in as many reactors. Figure 1 displays a heatmap of the
collected data that was used for this manuscript, showcasing
tests at concentrations of 5, 15, 30, and 50 mg/mL. These values
were selected based on their relevance in solution processing
and other polymer solution applications, though future
expansion of the data set to broader concentration ranges
would enable the model to be used for more scenarios. Most
polymer−solvent combinations include at least a 15 mg/mL
concentration. Poly(ethylene glycol) (PEG) and polypropylene
(PP) have the most extensive data across all concentrations.
5.47% (27 tested) of polymer/solvent pairs were tested at 4
concentrations, 1.62% (8 tested) at 3 concentrations, 16.22%
(80 tested) at 2 concentrations and 76.67% (378 tested) at 1
concentration. This is represented graphically in Figure 1.
Occasionally other concentrations were tested and included in

the data set, but they were not used in our experimental design
so are not shown in Figure 1.
The polymers were chosen for diverse functional groups, with

74% having molecular weights below 15 000 Da and all having
molecular weights above 5000 Da except for polyethylenimine-
linear and polytetrahydrofuran (PTHF) having molecular
weight of 2100 and 2900 Da, respectively. We selected a
moderate molecular weight for testing, as it is well within the
polymer regime but low enough to decrease kinetic effects and
make it more likely the values measured match equilibrium
values. Future studies could also include molecular weight as a
parameter and the reported molecular weights for each polymer
are included in the raw data, so could be included in analysis in
the future. The polymers were mixed with the solvent either as
purchased or after milling (milling performed for nylon-6,
nylon-12, poly(ethylene terephthalate) (PET), polypropylene
(PP), and polycaprolactone (PCL)). Solvents were also selected
to have diverse properties, coming from the nonpolar (26%),
polar protic (36%), and polar aprotic (38%) classes. Further
information on polymers and solvents is listed in Supporting
Tables S1 and S2 respectively.
The experiments involved two cycles of heating and cooling in

16 reactors, with hold times at cold (10 °C), hot (60 °C), and
room temperatures (25 °C), as is as shown by the red dashed
line in Figure 2a. The temperature ranged from 10 to 60 °Cwith
a heating/cooling ramp rate of 0.5 °C/min, including hold times
at 10 °C for 120 min, and at 60 and 25 °C for 60 min, which was
found to be a sufficiently long to reach equilibrium for most

Figure 2. (a) Example of raw data collected from the Crystal16 instrument. The dashed-red line represents the temperature as a function of experiment
time and the blue squares represent the transmission as a function of time. The orange circles represent the data after running the raw data through a
Savitzky−Golay filter with a polynomial order of one. (b) Processed, filtered data from (a). The reported transmission vs temperature was found by
averaging the transmission percentage in the heating, holding, or cooling phase, within integer steps of temperature ±0.5. (c) Distribution of
concentrations tested among all postprocessed data. (d) Distribution of transmission among all postprocessed data.
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polymer/solvent pairs.11 Although the data is not always at
equilibrium, the ability to predict the turbidity data is a strong
starting point for further analysis. It is important, however, to
consider these predictions as nonequilibrium with the ramp
rates of 0.5 °C/min. Our previous publication contains more
thorough information on standardizing our approach to
collecting the turbidity data.11

2.2. Data Curation. The Crystal16 method provides
transmission versus temperature and time, as depicted in Figure
2a. Despite a discernible underlying trend in transmission values,
certain samples exhibit intrinsic noise. In the sample shown in
Figure 2a with the blue curve, this is particularly evident during
the holding period, where the temperature remains constant. To
mitigate this noise, we applied a Savitzky−Golay filter to the
transmission data using the SciPy Python package (Figure 2a
orange curve).39 We opted for a polynomial order of one,
assuming a linear relationship between temperature and
transmission. The window size for filtering encompassed 2
min of data, determined by averaging the time differences
between consecutive timesteps in an experiment and rounding
to the nearest integer representing 2 min of steps. To ensure an
odd window size and balanced filtering around each data point,
we adjusted the window size by adding one if the calculated
value was even. This approach guarantees equal distance from
the center on both sides of the filter.
After applying the filter, our aim was to consolidate the data

into a unified transmission-versus-temperature plot, as depicted
in Figure 2b. This involved discretizing the temperature into
integer steps of ±0.5 °C and averaging the corresponding
transmission values. However, achieving low uncertainty in
averaged transmission values at specific temperatures is not
always possible, especially during temperature ramps where
kinetic effects can be slower than the ramping speed.
Consequently, significant variations can arise in transmission-
temperature profiles depending on whether the sample is
undergoing a heating, cooling, or holding phase. To address this,
we categorized temperature states accordingly and averaged
values within each phase of the temperature profile. This
variability in transmission-temperature relationships is evident
between temperatures 22−40 °C in Figure 2b. While the
disparity appears small in this sample, it can be substantial in
others, reaching up to 100% transmission difference, as
demonstrated between temperatures 32 and 45 °C in Figure
S1(b), though these extremes are rare in the data set.
For our modeling purposes, we focused solely on the

transmission values during the cooling phase. This decision
stemmed from the observation of a considerable error during the
initial temperature ramp-up cycle for a subset of reactors, as
evidenced in Figure S1(a,b). This discrepancy was likely
attributed to insufficient equilibration of these specific samples.
Furthermore, out of the 923 reactors we analyzed, 129 exhibited
significant noise during the holding periods of the experiment, as
depicted in Figure S1(c,d). This observation was unexpected as
these periods were anticipated to have a small standard deviation
due to their extended duration. We hypothesized that this noise
might be a result of experimental aberrations or exceptionally
slow kinetics and consequently chose to exclude these periods
from our analysis for this work.
For the remaining data set, we filtered out values exhibiting

standard deviations exceeding 5% in the averaged transmission
values. Most of these variations stemmed from fluctuations in
the transmission versus temperature across different cooling
cycles, as illustrated in Figure S1(b). Notably, these shifts were

comparatively minor compared to the shifts observed between
heating and cooling cycles. Out of the initial pool of 880 reactors
subjected to our filtration and processing procedure, 138 were
eliminated due to large standard deviations (>8% transmission)
observed during the holding phase, while an additional four were
excluded because all data points exhibited standard deviations
exceeding five. This left us with 738 reactors for further analysis.
Notably, the behavior of the four excluded reactors mirrored
that of those removed due to high standard deviations in the
holding phase, suggesting either exceptionally slow kinetics or
abnormal experimental conditions.
Subsequently, we isolated the transmission versus temper-

ature curves during the cooling phase of the ramping cycles. The
resulting concentration and transmission distributions are
depicted in Figure 2c,d and represent 39 407 data points
comprised of 30 polymer samples and 45 unique solvents.
Twenty-eight unique polymers were tested, and PEG was tested
at two different molecular weights of 8 and 1000 kg/mol. To
assess whether there is bias in which concentrations were
removed we analyzed the decrease in data points from the
Crystal16 unfiltered data to the final processed data set and
found no strong bias for which concentrations were removed
(see analysis in Supporting Information Section C).

2.3. Fingerprinting, Machine Learning Model Selec-
tion Methodology, and Hyperparameter Tuning. Our
objective was to model transmission percentage as a function of
temperature for a diverse spectrum of polymers, solvents, and
concentrations. To numerically represent the 30 polymers in our
study, we used a labeling scheme via one-hot encoding for
polymers (i.e., no chemical or structural descriptors) due to the
small sample size of 28 distinct polymer structures tested.40 This
encoding scheme transforms each polymer name into a binary
vector of length 30, where each column corresponds to a specific
polymer. The presence of a polymer is indicated by a value of 1
in the respective column, while its absence is denoted by a value
of 0. For example, chitosan would be represented as (1, 0, 0,···,
0), whereas poly(ethylene oxide) (PEO) would be encoded as
(0, 1, 0,···, 0). For solvents, we considered four different
molecular fingerprinting schemes and assessed the predictive
power of these schemes for solvents in conjunction with the one-
hot encoding of polymer names. We finally selected the Morgan
fingerprinting method for the solvent. Our analysis of the results
of all the four solvent fingerprint schemes is described in the
Supporting Information Section D. The inputs to our models
comprise temperature, concentration (in mg/mL, with discrete
values such as 5, 10, 50, etc.), one-hot polymer encoding, and
solvent molecular features.
For modeling, we employed one of three ML architectures: a

random forest (RF) regressor, XGBoost (XGB) regressor, and
neural network (NN). While initially analyzing the impact of
features on modeling, we solely used the XGB architecture due
to its superior training speeds. Afterward, we compared each
architecture against the Morgan solvent fingerprints. During the
testing of the architectures, five folds were created by using a
GroupKFold split based on polymer−solvent-concentration
groupings. For the RF and XGBmodels, no scaling of features or
transmission was done, and hyperparameters were tuned for the
RF and XGB models using Scikit-Learn’s randomized search cv
for 100 iterations with the five-folds.41 For the NN, both the
training features and the target variables were initially scaled
using a MinMaxScaler. Subsequently, the hyperparameters were
fine-tuned through the Hyperband optimization technique,
available in the KerasTuner Python package, leveraging an 80−
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20 split for training and validation data sets.42,43 The list of
hyperparameters tuned and the set of values are provided in
Supporting Information Table S4 and the optimal values are
listed in Table S5.
During the model selection process, we identified an

important challenge in using our transmission data. The data
is heavily skewed toward 0 and 100% transmission (Figure 2d)
and thus the resulting hyperparameters and optimization
schemes were heavily influenced by these extremes of trans-
mission. This can lead to poor predictions with the model
overfitting to these regions and incorrectly showing lower error
rates than realistically expected. For instance, an analysis of the
polymer polytetrahydrofuran (PTHF) across 18 solvents
revealed that all exhibited a transmission rate above 90%. This
trend suggests models could infer that all solvents mixed with
PTHF generally yield a transmission rate near 100%, with high
accuracies, while, in reality, there are solvents such as
isopropanol (IPA) that can precipitate at 10 °C. Thus, to select
and set up the model to be less heavily influenced by extreme
values of the transmission, we selected only data points with
transmission percents within the 5−95% range when evaluating
the models and tuning the hyperparameters. For the actual
training of the models, we used the full range of data (0−100%)
to enable comprehensive curve prediction and to preserve the
important data in the extreme ranges.
Following the identification of optimal hyperparameters, we

compared the model architectures using paired t tests with the
goal of identifying the best performing architecture for
subsequent experiments. By separating hyperparameter opti-

mization (via cross-validation) from model architecture
comparison (via paired t tests), we ensured a robust evaluation
framework. For model architecture comparison, we created 30
random 50−50 train/test splits of unique polymer−solvent-
concentration groupings, with the test splits only containing data
between 5 and 95% transmission. We trained 30 models to
evaluate their performance across the various data set partitions
to run a paired t test to assess the statistical significance of the
features and architectures tested. We chose these random train/
test splits instead of the 5-fold splits because a t test requires the
samples to be independent of one another, which is not the case
for cross-validation data.44 This analysis will enable us to select
which model, XGB, RF, and NN, provides the best performance
in predicting transmission versus temperature data for samples
not seen in the training data set.

3. RESULTS
We first compared the XGB, RF, and NN models. When only
data from 5 to 95% transmission was included in the data set,
XGB demonstrated the best performance, followed by the NN
and RF, which had comparable MAE values, as depicted in
Figure 3a. We note that the magnitude of the MAE is high, but
this is due to the use of a 50/50 split for model testing, and thus
corresponds to testing the model’s ability to extrapolate with a
low amount of training data. The superior performance of the
XGB model may be due to its proficiency in handling tabular
data compared to the other models and its resistance to
overfitting data.45 The optimal architecture for each model is

Figure 3. Box and whisker plots comparing the performance of RF, NN, and XGBmodels (a) when only data from 5 to 95% transmission was included
in the data set (b) when test data situated at transmission levels below 5% and above 95% is included. Each individual dot represents the test score from
one of the 30 50/50 train-test splits. Additionally, heatmaps display the T-statistic calculated from pair tests of different fingerprints (c) when only data
from 5 to 95% transmission was included (d) when test data at transmission levels below 5% and above 95% was also used. Annotations within the
heatmaps correspond to the P-values derived from the pair tests.
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provided in Table S5. Notably, when we retained the test data
situated at transmission levels below 5% and above 95%, the
random forest and neural network models displayed similar
performance, while the XGBmodel performed worse than them,
as depicted in Figure 3b. Although the MAE is lower for the
models run when the data below 5 and above 95% transmission
is included than when it is excluded, this discrepancy is likely a
result of overfitting to these extreme regions, rather than
indicative of superior model architecture. Based on these results,
for our production model, we use the XGB architecture with the
hyperparameters tuned only with 5−95% transmission values,
and with the Morgan fingerprint for the solvent.
We trained the production model on all our curated data

(inclusive of <5 and >95% transmission data), with the
performance of the model on the data displayed in the parity
plot of Figure 4. The model achieved very good performance as

indicated by the RMSE of 6% and R2 of 0.98. This indicates the
model is not underfitting the data, as it is capable of accounting
for 98% of the variance in the data. The low RMSE (6%)
suggests that the predictions are reasonably accurate, which
lends evidence to the assumption that themodel is well-suited to
the data. It is also clear from Figure 4 that a large proportion of
the data falls in the extremes of transmission percent (below 5%
and above 95%). Although it is not the focus of this work, we
used XGB’s built-in method to analyze the importance of various
features, keeping inmind that the choice of one-hot encoding for
the polymer limits the feature insights available. We discuss this
analysis in the Supporting Information Section E.
To evaluate the model’s performance under conditions where

the data has not been seen, we conducted a leave-one-out
(LOO) analysis, categorized by polymer−solvent-concentration
groupings. Referring to Figure 1, this process involves selecting a
cell that represents the polymer and solvent to be tested.
Initially, we train the model on all data except for the data in this
cell, evaluating its performance across the different concen-

trations. Subsequently, we introduce one concentration from
this cell into the training data, gauging its performance on the
remaining held-out concentrations, followed by the introduction
of two, and finally three additional concentrations. This process
continued over every combination of concentrations present for
the specific polymer−solvent pair. This test offers insights into
the model’s proficiency in dealing with novel polymer−solvent
pairings and how the model proficiency is impacted as different
concentrations of a polymer−solvent pair are added to the test
data. While our analysis focuses on XGB’s overfitting propensity,
we recognize the importance of evaluating overfitting across all
models. However, due to computational constraints, we relied
on paired t tests to assess model performance for the other
considered architectures (NN and RF). The outcomes are
depicted in Figure 5, where panel (a) represents scenarios where
the polymer−solvent group had not been encountered
previously, while (b−d) illustrate the model’s performance
when one, two, or three different concentrations of the
polymer−solvent pair had been added, respectively.
Unsurprisingly, the model exhibits its poorest performance

when encountering a polymer−solvent combination it has never
encountered before, which is especially evident in transmission
regions where values fall between 5 and 95%. However, even
under such circumstances, the model manages to achieve a R2

score of 0.63, which is not uncommon for modeling polymer
properties with this size of a data set.40,46 This moderate
performance stems from the model’s ability to distinguish
between scenarios of total insolubility (transmission of 0%) or
solubility (transmission of 100%), albeit without precisely
predicting transmission as it transitions between these states, as
can be seen by the significant cluster of points on the parity line
near 0 and 100% transmission in Figure 5a marked with darker
orange.
The addition of even a single concentration generally

enhances the model’s predictive capabilities, especially in
intermediary transmission ranges. This can be seen by the
convergence of the 2-D KDE plot toward the parity line in
Figure 5b and the increase of the R2 score to 0.8. Expanding the
data set to include two and three concentrations yields even
greater performance enhancements as indicated by the RMSE
and R2 and further convergence of the 2-D KDE plot toward the
parity line in Figure 5c,d. With three concentrations included,
the R2 rises to 0.9 and RMSE decreases to 14.02. This indicates
that the model’s ability to predict the percent transmission for a
given polymer/solvent pair at a given concentration improves as
the model sees other concentrations of that polymer/solvent
pair, but that at 3 concentrations it already has quite good
performance. This knowledge can guide data set development to
optimize the required number of experiments needed to build a
valuable data set. Each experiment takes approximately 13.5 h,
so the ability to make good predictions with 3 concentrations
(rather than 4, 5, etc.) can save significant resources.
Despite the promising performance of the model, the overly

large number of the transmission data at <5% and >95%
transmission is expected to be problematic for some polymers
and solvents. Here we examine the case where the data for a
polymer or a solvent always falls either at <5% or at >95%
transmission and the implication on the ability of the model to
extrapolate. In all tested solvents, two polymers showed distinct
transmission values: poly(ethylene terephthalate) (PET) always
exhibited values below 10%, while PTHF always showed
complete transmission at 100%. Our hypothesis is that the
production model will fail to identify whether this behavior

Figure 4. Production XGB model trained on Morgan fingerprints. The
orange regions represent 2 day kernel density estimate (KDE) plots to
showcase where most of the data is located. The darker the orange
color, the more data there is. The side plots are 1 day KDE plots of true
transmission (top) and predicted transmission (right).
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differs for these polymers in other solvents and it will continue to
report the fully soluble and insoluble transmission values for
these polymers regardless of the solvent. We demonstrate that
this hypothesis is accurate for PTHF, as illustrated in Figure 6.
We found that the transmission is 100% for PTHF in the 18
solvents tested and used for training data (Figure 6a). To test the
hypothesis, we predicted the transmission versus temperature
for isopropyl alcohol (IPA), a solvent not in the data set, with the
results shown in Figure 6b. The plot shows that the predicted
transmission (%) is 75% at 10 °C and reaches 95% at 60 °C.
However, experimental data for PTHF in IPA shows that the
transmission drops to 0% at 10 °C, Figure 6c, demonstrating that
the model was unable to accurately predict the transmission for
this polymer/solvent pair. These results confirm that a polymer/

solvent that exhibits consistently soluble or insoluble behavior in
the data set may lead to inaccurate predictions for unseen
solvents, as the data is tailored to the extremes of <5% and >95%.
So far, we have analyzed the quality of prediction of the

experimental transmission vs temperature data. The motivation
for predicting this data, rather than predicting quantities that
more directly capture solubility, such as the phase diagram or
Hansen solubility parameters, or classifying polymer−solvent
pairs into “soluble” or “insoluble” is that the transmission data
set can be used by many practitioners to predict the solubility
quantities of interest to their application. We present an example
of such a use here by converting the true and predicted values of
transmission into three classes. Pairs were labeled “insoluble”
when transmission was <10%, “soluble” when transmission was

Figure 5. Parity plots of XGBoost model performance with leave-one-out (LOO) analysis on Morgan fingerprints. The orange regions depict 2-D
kernel density estimate (KDE) plots, highlighting data distribution. Darker shades indicate denser data clusters. Accompanying side plots feature 1-D
KDE plots of true transmission (top) and predicted transmission (right). Panels (a) through (d) illustrate model performance as increasing instances
of polymer−solvent combinations are observed: (a) no prior instances, (b) one instance, (c) two instances, and (d) three instances.
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>85% and “partially soluble” when transmission was between 10
and 85% inclusive. Although we use the terminology of
“insoluble” and “soluble” we are referring to nonequilibrium
solubility during the cooling ramp, albeit under a consistent
cooling ramp for all tests, 0.5 °C/min, which is significantly
improved compared to prior data sets that do not report and
consistently control these parameters. As we grow the data set
we will include more equilibrium hold times and enable
predictions of equilibrium solubility, but the focus here is to
demonstrate the modeling approach with this data set measured
under precise conditions.
Figure 7 shows the confusion matrix of the data as if it were a

classifier instead of a regressor, based on the three classes defined
above. In Figure 7a, where unique polymer−solvent pairs are
being tested, we see that the model is very good at differentiating
soluble and insoluble, as indicated by the low numbers in the
upper right and lower left corners. However, the model tends to
be incorrect when making a partially soluble prediction, as
indicated by the high counts in the central top and bottle cells.
As further concentrations are added to the training data (Figure
7a−d increases in number of concentrations per polymer/
solvent pair in the data set), the prediction of all three classes
improves, though partial solubility is still relatively poor, even
with 3 concentrations included in the training data. This is likely
due to the low number of polymer/solvent/concentration

combinations that had any data in the window from 10 to 85%
transmission (131 unique polymer−solvent-concentration
combinations). However, it can also be due to the non-
equilibrium nature of some of the data in the partial solubility
category, which is more likely to have nonequilibrium data than
the fully soluble or fully insoluble category. These kinetics
considerations are the subject of future work with this data set.
Given that the predictions for partial solubility were poor

relative to insoluble and soluble and that this was due partially to
a low amount of data, we independently collected targeted data
for polymer/solvent pairs that demonstrated partial solubility
and included them in the training data set. This provided 44
additional polymer−solvent-concentration points for the partial
solubility range. We compared the performance using the
confusion matrix and F1 score and show the confusion matrix
results for 3 concentrations in training and F1 score in Figure 8.
The confusion matrices for all concentration instances with the
new data are shown in Supporting Information Figure S10. The
ability to correctly classify partial solubility was significantly
enhanced by the addition of more data in that range, as seen by
the lower values in the central top and bottom cells in Figure 8a
and b compared to (a). Additionally, the F1 score was higher for
all concentrations in all classes, especially the partial solubility
class, showing improved model performance with respect to
precision and recall.

Figure 6. (a) Transmission vs temperature data for PTHF in different solvents in the database, which demonstrates that PTHF in soluble in all 18
solvents tested. (b) shows predicted transmission (%) of PTHF in isopropyl alcohol (IPA) for 15 mg/mL. (c) shows the collected results of Crystal16
on PTHF in IPA, with the experimental validation confirming that 14.73 mg/mL of PTHF precipitates in IPA at 10 °C.
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Comparing the F1 scores to a prior binary classification
model, the F1 scores in this work were ∼0.6−0.7 for unique
polymer−solvent combinations (those not seen in training data)
and prior work F1 scores were 0.8−0.9.22 While this shows that
the performance of the predictions here was lower than prior
work, there are key differences. The data set size is much smaller
and less diverse than the prior work (which has ∼ thousands of
polymers and dozens of solvents). The current study’s high-
fidelity data does surpass the previous data set quality, which
sometimes contained contradictory solubility labels, and while
this can be a strength eventually, it requires significant time
investment to generate the data set leading to lower number of
points. Overall, this analysis demonstrates that a classification
based on true and predicted values of transmission percent
performs well for soluble and insoluble categories, where the
data set contains many data points, but that targeted additional
experiments in the partial solubility range can improve
predictions and enable this higher level of granularity in
solubility classification compared to binary predictions
performed previously.22,24

Moving beyond binary classification of solubility for polymer/
solvent pairs to this three level description with data at different
temperatures and concentrations has important implications for
how the ML predictions may be used by practitioners. Solid/
liquid equilibrium results in polymers being soluble at some
temperatures, but not others and only being soluble up to a

specific concentration. Predicting full phase diagrams for
polymer/solvent pairs is one way to incorporate this
information,25,47 but it is time-consuming to do for a broad
chemical space and unnecessary for helping to guide formulators
and process designers. Instead, having information at common
operating temperatures (such as 10−60 °C used here) provides
guidance relevant to industrial use. Incorporating predictions for
partial solubility and multiple known concentrations provides
guidance that a practitioner may use to judge that the polymer
may be soluble at slightly lower concentrations or different
temperatures, allowing a user to extrapolate with fewer trial-and-
error experiments than with only binary classes without
concentration information, as done previously with classification
models. However, to our knowledge, there are no rigorous
studies quantitatively identifying what a “useful” level of
solubility prediction would be, a weakness in assessing value of
prediction tools. As shown here, with the small, controlled data
set we can achieve success in some predictions and further data
collection in the partial solubility range can improve predictions
and could eventually lead to even more classes and greater
granularity.

4. CONCLUSIONS
This work serves two primary purposes. The first is to provide a
high quality data set that can be a resource for researchers to
analyze and model solubility relationships and the second is to

Figure 7.Confusionmatrix illustrating the classification performance of the data depicted in Figure 5. The regression data has been classified into three
categories: “Insoluble” (transmission < 10%), “Soluble” (transmission > 85%), and “Partial” (transmission between 10 and 85% inclusive). “Panels (a)
through (d) illustrate model performance as increasing instances of polymer−solvent combinations are observed: (a) no prior instances, (b) one
instance, (c) two instances, and (d) three instances.
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demonstrate modeling applications and challenges with this data
set, illustrating the potential for machine learning models to
predict solubility with well-controlled turbidity data sets while
highlighting caveats such as overtraining on extreme values. This
study demonstrates how experimental transmission data
collected through a turbidity method, in conjunction with
machine learning models, can be effectively used to forecast the
experimental transmission data for polymer−solvent combina-
tions. Experimental data was collected using the Crystal16
parallel crystallizer in a high throughput manner. The model
training was done for different unique polymer−solvent
combinations varying in temperature and concentration. Precise
predictions were attained by studying the % transmission vs
temperature by leveraging the XGBoost model in combination
with one-hot encoding and Morgan fingerprinting. The model
achieved good performance, with a RMSE of 6% and a
coefficient of determination (R2) of 0.98. The current database
is more tailored to completely soluble and insoluble cases with
transmissions of 100 or 0%, respectively, so it can generate good
prediction for cases on the two ends of the spectrum. The

model’s performance was assessed using a LOO analysis on
polymer−solvent concentration groupings, where the data was
not previously observed and a clear improvement in the
predictions was seen as more concentrations for each polymer/
solvent pair were added, but good performance was seen with
only 2−3 concentrations per pair.
We extended the work beyond transmission predictions to

analyze the performance if we use the predicted transmission
data to classify into “insoluble”, “partially soluble”, and “soluble”,
although the data set used for training is not always at
equilibrium, so these are referring to the phase behavior during
cooling at 0.5 °C/min. This adds a level of granularity in
solubility prediction compared to prior work, which only
classified as solvent/nonsolvent. We found good prediction for
soluble/insoluble, with less accuracy for the partially soluble
case due to the low number of data points and higher likelihood
of nonequilibrium values for partial solubility. Targeted addition
of more partial solubility data further increased those
predictions, however, showing a path to using the turbidity
data for practical solubility predictions. With this promising

Figure 8. (a) Confusion matrix for 3 instances of concentrations seen for each polymer/solvent pair illustrating the classification performance of the
data depicted in Figure 5 and (b) confusion matrix for 3 instances of concentrations seen for each polymer/solvent pair illustrating the classification
performance of the data with additional targeted partial solubility data. The regression data has been classified into three categories: “Insoluble”
(transmission < 10%), “Soluble” (transmission > 85%), and “Partial” (transmission between 10 and 85% inclusive). (c) F1 scores for classification
performance of data depicted in Figure 5 and (d) F1 scores for classification performance with additional targeted partial solubility data.
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starting point for prediction of experimental data that can be
translated to practical solubility information, further data
collection on polymers with varying solubility classes can
enhance the model’s predictive capabilities across a broader
range of solvents and polymers and an in-depth analysis of the
kinetics will enhance understanding of the limits of the data in
predicting equilibrium solubility. Overall, the model’s ability to
predict transmission percentage highlights its potential for
industrial applications where the prediction of the solution
behavior of the polymer across different temperatures is
important.
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