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Abstract

Artificial intelligence (AI)-based methods continue to make inroads 
into accelerated materials design and development. Here, we review 
AI-enabled advances made in the subfield of polymer informatics, 
with a particular focus on the design of application-specific practical 
polymeric materials. We consider exemplar design attempts within 
a few critical and emerging application spaces, including materials 
designs for storing, producing and conserving energy, and those that 
can prepare us for a sustainable economy powered by recyclable and/or 
biodegradable polymers. AI-powered workflows help to efficiently 
search the staggeringly large chemical and configurational space of 
materials, using modern machine-learning (ML) algorithms to solve 
‘forward’ and ‘inverse’ materials design problems. A theme explored 
throughout this Review is a practical informatics-based design 
protocol that involves creating a set of application-specific target 
property criteria, building ML model predictors for those relevant 
target properties, enumerating or generating a tangible population 
of viable polymers, and selecting candidates that meet design 
recommendations. The protocol is demonstrated for several energy- 
and sustainability-related applications. Finally, we offer our outlook on 
the lingering obstacles that must be overcome to achieve widespread 
adoption of informatics-driven protocols in industrial-scale materials 
development.
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numerical representations of polymers based on their molecular frag-
ments, mapped onto properties through linear regression for rapid 
predictions. Today’s polymer informatics ecosystems have evolved 
considerably. First, contemporary polymer property datasets are 
larger, more reliable and cover many more properties than the group 
contribution methods. Second, recent numerical representation 
(or fingerprinting) schemes24–27 are much more comprehensive, in 
some cases24,25 incorporating thousands of descriptors across multiple 
length scales, ranging from the atomic to block to chain levels. They 
are also scalable (to handle search spaces of over a billion candidates), 
leveraging modern transformer-based28,29, graph-based30–32 and chemi-
cal language models33. Finally, machine-learning (ML) algorithms that 
map polymer fingerprints to properties (leading to predictive models) 
can handle extensive datasets, are generalizable and interpretable, 
and accommodate data from diverse sources and fidelity levels24,25,34.

These rapid and reliable property prediction models are critical for 
materials informatics. However, materials design requires more than 
prediction; it must involve the ability to ‘invert’ the prediction process 
and recommend materials that align with target properties or perfor-
mances35–37. Over the past decade, various inverse methods, including 
high-throughput screening38,39, Monte Carlo schemes40, recommender 
systems41, Bayesian optimization42,43, particle swarm optimization44–46, 
evolutionary or genetic algorithms47,48, syntax-directed variational 
autoencoders49,50 and graph-to-graph translation30, have proven effec-
tive at proposing candidate materials, particularly for polymers. How-
ever, a key challenge is ensuring that these materials are synthetically 
feasible. To tackle this, an emerging approach, which we call ‘virtual 
forward synthesis’ (VFS), could leverage millions of commercially 
available or easy-to-synthesize monomers and insert them in several 
hundreds of known polymerization reaction templates to digitally 
generate any number of synthetically accessible polymers51–53.

A robust strategy for use-inspired, application-driven, syntheti-
cally accessible polymer design involves several steps (Box 1). It begins 
with defining a set of screening criteria based on desired property 
values. A vast search space is then defined, potentially involving a 
large library of polymers produced through VFS or similar methods. 
In parallel, predictive ML models for these key properties are devel-
oped using sufficiently large and diverse datasets of measured or 
computed values54. The models predict key properties for polymers 
in the search space, and those meeting desired values are selected as 
potential candidates. The design loop is ‘closed’ by testing the recom-
mended candidates via physical experiments. Success is declared if 
the candidates meet the required property or performance criteria. 
If not, the design loop cycle repeats.

In this Review, we highlight several polymer design endeavours 
undertaken in the past few years that have benefited from applying AI 
or informatics methodologies. These case studies span polymer dielec-
trics for energy storage7,55,56, fuel-cell membranes and ionomers57, solid 
polymer electrolytes for batteries58–61, gas10,62 and liquid mixture63–66 
separation membranes, biodegradable polymers67 and depolymerizable 
polymers68–71. We then examine challenges and opportunities on the 
horizon, touching on complex scenarios involving composites, formula-
tions and cross-linked polymers; the autonomous extraction of property 
data from the exponentially increasing literature using natural language 
processing techniques; and the use of computational–experimental 
information fusion and multifidelity methods to produce and leverage 
data covering ever-greater chemical spaces. Ultimately, transitioning 
from successful laboratory-scale synthesis to commercialization is the 
definitive validation of the real-world value of polymer informatics.

Introduction
Polymeric materials have an ancient history, but the foundations of 
modern polymer science can be traced back to work by Hermann 
Staudinger in the 1920s. His groundbreaking idea1 was that high-
molecular-weight materials, such as rubber, cellulose and proteins, 
consist of lengthy chains formed by repeating molecular-size units 
linked by covalent bonds2,3. This fundamental concept of modern poly-
mer science played a crucial role in numerous remarkable discover-
ies and advancements (Fig. 1a), including the creation of innovative 
polymers such as polypropylene, neoprene, nylon, Teflon and Kevlar. 
These polymers, from daily packaging materials to high-tech device 
components, have permeated every aspect of our world4–13. The ability 
to control essential parameters such as chemical structure, processing 
conditions and additives has enabled the development of synthetic 
polymers with diverse properties, ranging from rigidity to elasticity, 
a broad range of electrical conductivity, and permeability and selec-
tivity to specific gases. This versatility stems from factors such as the 
structural diversity of organic materials, the exceptional synthetic inge-
nuity of chemists, and the vast chemical space that polymers occupy. 
Staudinger’s seminal work, honoured with a Nobel Prize in 1953, laid 
the foundation for successive Nobel Prizes in this field.

Although many noteworthy polymeric materials have been discov-
ered, developed and commercially deployed over the past century, the 
transition from concept to deployment has required years to decades 
even in the most successful instances (Fig. 1b). Several factors have 
contributed to this prolonged timeline. First, key concepts originate 
from the intuition and experience of a select few expert scientists 
and engineers. Pursuing these original ideas, either using physical 
experimentation or computer simulations, demands specialized skills, 
funds, resources and time; methodically exploring the vast chemical 
and/or processing space is non-trivial even within a restricted class 
of materials. The new material must satisfy various success metrics, 
encompassing properties, performance, cost, safety and supply chain 
considerations. And finally, attaining a satisfactory end point in a timely 
manner, ahead of the competition, necessitates prioritizing options 
such as the fastest or most cost-effective synthetic pathways. These 
considerations lead to substantial trial-and-error activities, missed 
opportunities and a sizeable reliance on serendipity.

It is tempting to imagine a future in which materials intuition, 
experience, and the vast repository of data and knowledge can be 
encoded and embedded in a powerful artificial intelligence (AI) expert 
system. This could not only safeguard against the loss (or neglect) of 
valuable assets, be they data or knowledge, but also hold the promise 
of continuous improvement, rapid and reliable property predictions, 
informed decision-making and democratization — making expertise 
readily accessible to anyone at any time. This philosophy has catalysed 
the emergence of several materials informatics ecosystems, summa-
rized in Table 1, around the globe in the past decade or so14. Fuelled 
in part by the Materials Genome Initiative, these ecosystems serve to 
complement, augment and elevate the impact of empirical or compu-
tation-based materials research. Various indicators suggest that this 
vision is gaining traction in industry15,16, driven by the perception and 
expectation that such AI-based knowledge systems can substantially 
reduce both the number and timelines of iterative cycles preceding 
the deployment of new materials.

This Review centres on polymer informatics17–22, specifically delv-
ing into AI-driven polymer designs tailored for various applications. 
The roots of polymer informatics can be traced back decades, initially 
emerging as ‘group contribution’ methods23. These methods used 

https://www.mgi.gov
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Application-specific design of polymers
Dielectric polymers for electrostatic energy storage
The escalating global demands for electric power and energy storage 
present profound challenges, one of the foremost being the design of 
materials for use in electrostatic capacitor devices that can withstand 
extreme electric fields and temperatures7,72–79. The selection of suit-
able dielectric materials, temperatures and electric fields for such 
applications is bound by the limitations imposed by electrical break-
down. Beyond a critical field intensity, accelerating electron cascades 
within an insulator lead to electrical discharge and system failure. This 
behaviour is exacerbated at elevated temperatures and is inherently 
governed by the material’s chemical composition and morphology80.

Polymeric dielectric materials, owing to their graceful failure 
modes, are the materials of choice for capacitive energy storage across 
transportation, aerospace, energy and defence sectors. In comparison 
to more extensively discussed energy-storage devices such as batter-
ies, fuel cells and supercapacitors, electrostatic capacitors present 
unparalleled power density7,55,72–76 (Fig. 2a). This positions electrostatic 
capacitors as particularly advantageous for a wide array of applications, 

including hybrid and all-electric systems, pulsed power systems, wind 
pitch control, aircraft launchers and space exploration7,72–76.

Current high-power capacitors use biaxially oriented polypro-
pylene (BOPP) as the dielectric, a material that has been used for over 
three decades. Its long-term presence is due to its high electrical break-
down strength of over 700 MV m−1 at room temperature, low cost for 
mass production, and considerable investment from the academic 
community, industry and supply chain. BOPP, along with similar com-
mercial polyolefins, also exhibits low dielectric loss and a substantial 
electronic bandgap, attributed, in part, to the absence of π-stacking 
moieties. Despite these features, these materials have a low dielectric 
constant, resulting in a diminished electrostatic energy density — a 
critical ‘figure of merit’ for this application. At room temperature, BOPP 
registers a baseline energy density of 5 J cm−3, which rapidly degrades 
with increasing temperature.

Rational materials design approaches to surpass BOPP in electro
static energy storage have proven successful55,56,81–83, driven by the 
establishment of clear property-based screening criteria and the inte-
gration of computational methodologies that primarily use density 
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Fig. 1 | Polymer innovations over the past two centuries. a, Selected chronological milestones in polymer science. b, Traditional transition from concept to 
deployment of some notable polymeric materials. LDPE, low-density polyethylene; PVC, poly(vinyl chloride).
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functional theory (DFT)84,85, in conjunction with physical experiments. 
Early efforts to define screening criteria emphasized the simultaneous 
attainment of a large electronic bandgap and a high dielectric constant 
as crucial to achieving high energy density55,56. However, the screening 
strategy has since been rethought in light of the inverse relationship 
between these two properties, particularly pronounced in polymers 
where dielectric response is dominated by electronic polarization.

To elucidate this inverse correlation between bandgap and dielec-
tric constant, high-throughput DFT computations55 were conducted for 

hundreds of hypothetical polymers constructed from common building 
blocks found in known polymers55,56 (Fig. 2b). The pragmatic choice to 
focus on polymers with a moderate bandgap (>4 eV) and a moderate 
dielectric constant (>3), rather than much higher values of both prop-
erties, resulted in the discovery of numerous polymers — including a 
polythiourea, a polyurea and a polyimide (inset, Fig. 2b) — with energy 
densities exceeding 9 J cm−3, twice that of BOPP, or better.

Enhancing the energy density of capacitors at elevated tem-
peratures remains a challenge, whose solution is crucial for not only 

Table 1 | Notable polymer informatics ecosystems

Name Category Short description Location Refs.

PolyInfo Database ~32k homopolymers, copolymers, polymer blends and 
composites, ~500k experimental data points

https://polymer.nims.go.jp 269

PI1M Database, open ~1M polymers generated from generative models trained 
on ~12k actual polymers

https://github.com/RUIMINMA1996/PI1M 270

CHEMnetBASE Database, open Polymers and properties https://poly.chemnetbase.com

polyVERSE Database, open ~200M generated polymers, ~10k properties computed 
for synthesized polymers

https://github.com/Ramprasad-Group/
polyVERSE

33,54,80,271

Polymer Scholar Database, open ~300k polymer property records extracted from 
literature

https://polymerscholar.org 192,243,244

OMG Database, open Open Macromolecular Genome, ~12M linear 
homopolymers created by commercially available 
monomers and 17 canonical polymerizations

https://zenodo.org/records/7556992 51

HTPMD Database, open 6,286 high-throughput MD trajectories of amorphous 
polymer electrolytes and analysis tools

https://www.htpmd.matr.io,
https://github.com/TRI-AMDD/htp_md

272

PPPdb Database, predictor Polymer Property Database and Predictor for polymer 
properties and phase diagrams

https://pppdb.uchicago.edu

CRIPT Enabling capability Community Resource for Innovation in Polymer 
Technology, graph data model for scalable, efficient 
and complex polymer data structure

https://criptapp.org 273

SMILES Enabling capability Line notation, capable of representing the atomic 
connectivity of polymers

NA 255

CurlySMILES Enabling capability Line notation and tools, handling stereogenicity, 
electron delocalization charges, extramolecular 
interactions and so on

https://www.axeleratio.com/csm/py/code/
downloads.htm

274

BigSMILES Enabling capability Line notation and tools, handling the stochastic nature 
of polymers

https://olsenlabmit.github.io/BigSMILES 275

G-BigSMILES Enabling capability Generative BigSMILES, line notation and tools, 
generating realistic polymer ensembles

https://github.com/InnocentBug/
bigSMILESgen

276

polyDAT Enabling capability Generic schema, handling chemical information, 
synthetical pathways and processing procedures

https://olsenlabmit.github.io/BigSMILES 277

polyGNN Enabling capability, 
software

Multigraph neural network, processing polymer repeat 
units as graphs to map onto properties, developing 
predictive models

https://github.com/Ramprasad-Group/
polygnn

164

polyBERT Enabling capability, 
software

Chemical fingerprinting capability, processing polymer 
chemical structure to learn and predict properties

https://github.com/Ramprasad-Group/
polyBERT

33

MaterialsBERT Enabling capability, 
software

Large language model, fine-tuned PubMedBERT on 
2.4M materials science abstracts, used to extract data 
available in Polymer Scholar

https://huggingface.co/pranav-s/
MaterialsBERT

192

RadonPy Software, open Open Python library, automating polymer property 
calculations using MD simulations

https://github.com/RadonPy/RadonPy 264

Polymer 
Genome

Predictor Informatics platform, offering 3 dozen polymer property 
predictors

https://www.polymergenome.org 24,25

PolymRize Enabling capability, 
predictor, commercial

Commercial platform to train models, predict property, 
and screen for target polymers and formulations

https://polymrize.matmerize.com

MD, molecular dynamics; NA, not available.
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substantial space and weight savings but also enabling high-temperature 
operations. Commercial materials such as BOPP rapidly decline in per-
formance and energy density as temperatures rise (Fig. 2c). To discover 
high-energy-density polymers capable of withstanding temperatures 
up to 200 °C, an additional critical criterion is needed to complement 
those based on bandgap and dielectric constant. This third screening 
criterion emphasizes that the glass transition temperature must sur-
pass a specified threshold — 200 °C in this case — for stable operation 
at elevated temperatures. Thus, the new screening criteria to design 
polymers with high energy density, tolerant to large electric field and 
temperature, are based on the simultaneous maximization of bandgap, 
dielectric constant and glass transition temperature.

Following the strategy outlined in Box 1, the most reliable available 
data (measured or generated using DFT) for these three properties 
have been used to build robust ML models and create new polymers 
with substantial energy density, stable across a broad temperature 

range up to 200 °C (refs. 7,55,56,80). Using VFS, over 50,000 candidate 
polymers were virtually generated, starting from suitable commercially 
available monomers and the ring-opening metathesis polymerization 
(ROMP) template. Bandgap, dielectric constant and glass transition 
temperature of the polymers were predicted, and those satisfying the 
screening criteria specified in Fig. 2c, about 30 polymers, were pre-
sented to synthetic chemists. Five of these were chosen, and four were 
successfully synthesized and characterized experimentally. All four 
polymers substantially surpassed BOPP, but one of them, a previ-
ously unknown polynorbornene dielectric named PONB-2Me5Cl, was 
a clear outlier with extraordinary energy density over a broad range 
of temperatures80. At 200 °C, PONB-2Me5Cl has an unprecedented 
energy density of 8.3 J cm−3, over an order of magnitude higher than 
any commercial alternative80. The reason for the superior performance 
of PONB-2Me5Cl is that it simultaneously displays high bandgap, high 
dielectric constant and high glass transition temperature owing to, 

Box 1 | An AI-based, use-inspired and application-driven strategy for polymer design
 

Application-driven strategies for polymer design share certain 
key steps.

Define screening criteria
First, a set of screening criteria specified in terms of property values 
desired for the application must be defined.

Define the search space
Next, a protocol to create a candidate list of polymers must be 
developed. Although numerous enumerative and generative 
approaches have been used, the greatest barrier has been to 
produce materials designs that are genuinely synthetically accessible, 
cost-effective and safe. A powerful approach proposed recently is 
‘virtual forward synthesis’, or VFS, which starts with commercially 
available monomer molecules and creates polymers using known 
polymerization reaction templates. Polymers generated using VFS 
have a naturally high probability of synthetic success.

Machine-learning model development
In parallel, reliable machine learning (ML) models are developed to 
predict the relevant properties rapidly and accurately. ML models 

are needed because determination or estimation of most properties 
of new-to-the-world polymers using traditional options is too slow 
(for example, physical experiments), impractical (for example, 
simulations based on density functional theory) or semiquantitative 
at best (for example, classical simulations via molecular dynamics 
simulations). Developing these ML models requires a sufficiently large 
and diverse initial training dataset, produced using prior physical 
experiments or computational methods. The polymer property 
datasets are then converted to machine-readable numerical form 
(or ‘fingerprinted’), followed by ‘learning’ the mapping between 
polymers and properties using suitable ML algorithms.

Candidate selection and recommendation
Finally, properties of relevance may be predicted using the ML 
models developed previously for the generated list of polymers, 
and those that meet the screening criteria are selected and 
recommended for physical experimentation and validation. The 
fresh data thus obtained from physical experiments, whether meeting 
the required criteria or not, may be used to restart the design cycle, 
which may progress in an iterative manner (also referred to as ‘active 
learning’) until the design goals are reached.

AI, artificial intelligence.

An AI-based application-specific polymer design strategy
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respectively, the lack of conjugation along the backbone, the rotatable 
polar group in the pendant side chain, and the stiff backbone combined 
with a bulky side chain. Such a combination of features and properties 
is rare (and possibly non-existent) in polymers synthesized thus far, 
highlighting how AI algorithms can aid in extending discoveries beyond 
conventional human imagination.

Looking ahead, there are additional opportunities to explore. 
Whereas the work discussed above revolved around a specific organic 
polymerization template (namely ROMP), there are hundreds of other 
templates available51–53, some even incorporating metal atoms in the 
backbone that can substantially increase dielectric constant86,87. Each 
template may be coupled with available (in orders of billions) and 
new-to-the-world (countably infinite) monomers, which could lead 
to numerous hypothetical, but synthesizable, polymers that are even 
better than the known and discovered candidates. However, practi-
cal considerations, such as monomer cost, complexities and scal-
ability of polymerization processes, toxicity concerns, the role of 

polymer–electrode interfaces88,89, and aspects related to recyclability 
and sustainability, impose limitations.

Polymers for fuel-cell applications
Fuel cells are devices that generate electricity directly from the chemi-
cal energy of reactants, namely a fuel (such as hydrogen) and an oxi-
dant (such as oxygen)90. A typical fuel cell consists of a fuel electrode 
(anode), an oxidant electrode (cathode) and an electrolyte filled in 
between (Fig. 3a). The electrolyte is a material that allows the charge 
carriers (such as protons) to transport efficiently while blocking car-
riers of opposite charge (such as electrons) and the gas reactants from 
penetrating and diffusing. The catalyst layers, where the oxidation and 
reduction reactions occur, are typically created by binding nanoparti-
cles of electrocatalysts (such as platinum) to a support with a polymeric 
ionomer solution. The electrolyte and the catalyst layers of both elec-
trodes accommodate all the essential chemical reactions and charge 
transports. Starting from early concepts in the 1840s, fuel cells have 
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Fig. 2 | Dielectric polymers for energy storage. a, Ragone plot of various 
classes of energy-storage systems, including electrostatic capacitors. 
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defines the screening for optimal candidates. Three candidates, labelled 1, 2 and 
3, were selected, synthesized and validated. c, PONB-2Me5Cl, a newly discovered 
and tested polymer for energy storage at high temperature, aided by a rethought 
set of screening criteria (inset table) to address high-temperature behaviours. 
Four candidate polymers in this class were synthesized and tested; all of them 

were high performing, with PONB-2Me5Cl displaying the best performance, 
substantially higher than regular polymers like biaxially oriented polypropylene 
(BOPP), polyether ether ketone (PEEK), polyetherimide (PEI), polyfluoroethylene 
(PFE) and polyimine (PI), by up to one order of magnitude, especially at high 
temperatures. DFT, density functional theory; PNB, polynorbornene; PONB, 
polyoxanorbornene. Panel b reprinted from ref. 56, Springer Nature Limited. 
Panel c reprinted from ref. 80, Springer Nature Limited.
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now been used in transportation, consumer electronics, residential 
power supply and more91–94. Compared with capacitors, fuel cells are 
generally higher in energy density but lower in power density (Fig. 2a).

Nafion, a perfluorosulfonic acid (PSFA) polymer (chemical struc-
ture in Fig. 3a), is the currently dominant proton exchange membrane 
(PEM) — that is, the proton-conducting electrolyte — and ionomer of 
both electrodes in modern fuel cells8,91–94. Given the conflicting require-
ments for PEM and ionomers57 (Fig. 3b), this choice is not always opti-
mal. For example, the low permeability of Nafion to O2 (refs. 95,96) is 
good for a PEM but not for a cathode ionomer97–99. In addition, the 
required proton conductivity of Nafion can only be obtained when it 
is submerged in water or when its humidity is nearly 100%, a challenging 
working condition to maintain. Moreover, the relatively low glass 
transition temperature (T ≈ 120g  °C) of Nafion limits its working tem-
peratures. Finally, Nafion is expensive. These factors, among others, 
drive the search for Nafion alternatives100–106, specifically fluorine-free 
materials105. The main approaches used thus far are empirical, focusing 
on controlling certain key features of Nafion, such as the sulfonic (–SO3) 
group105, and exploring its related chemistries97,100, with limited 
successes.

In fuel-cell design, ML approaches have been used mostly for 
device modelling100,107–109. In a rare work57 using an ML strategy to dis-
cover new polymers for fuel-cell applications, a list of screening criteria 
were established in terms of important properties of PEM and ionomers 
(Fig. 3b). Suitable datasets were curated, and ML models needed for the 

properties were developed (some are available in Polymer Genome). 
The most important model was trained concurrently on two datasets 
of proton conductivity and water uptake, enabling it to predict these 
correlated properties simultaneously. This model is an example of 
the multitask learning technique, used to fuse multiple data chan-
nels as elaborated in the ‘Computational–experimental data fusion 
and multifidelity learning’ section. In this design problem, the VFS 
approach was applied in a restricted manner by considering about 
60,000 homopolymers and copolymers that were experimentally 
synthesized and reported. More than 60 polymers were identified as 
possible candidates for PEM, cathode ionomer and anode ionomer 
(examples are shown in Fig. 3c).

Future work could address some critical gaps in this initial attempt 
towards designing polymers for fuel-cell applications. First, owing to the 
historical emphasis on PSFA membranes, the curated data are dominated 
by polymers with sulfonic (–SO3) groups, crucial for water retention in 
PSFA (although other groups may lead to similar functionality)57. Thus, a 
criterion of ‘having the sulfonic group’ may be used to narrow down the 
candidate pool. Second, this work was limited in the search space definition, 
containing only previously reported polymers (albeit for any applications, 
not just for fuel cells), further restricting the number of discoveries. Going 
forward, when the training data contain other polymer classes and when 
the full power of VFS is exploited to cover the vast space of synthesizable 
polymers51,52, numerous highly qualified candidates for fuel-cell PEM and 
ionomers can be expected. Development may also be needed to address 
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concerns such as the toxicity and sustainability of the candidates, and 
the scalability of their synthetic routes. As next-generation fuel cells that 
involve anions rather than protons are being considered110,111, the current 
approach will need to expand further to meet the requirements of anion 
exchange membrane designs.

Polymers for Li-ion battery electrolytes
Lithium-ion batteries are currently used in almost all kinds of electri-
cally powered devices, from portable electronics to hybrid cars, elec-
tric cars and aeroplanes, and their adoption is set to surge as global 
electrification progresses. Serious efforts to develop Li-ion batteries 

commenced in the 1960s, then accelerated owing to the oil crisis of the 
early 1970s112. The main advantages of Li-ion batteries are high densi-
ties of energy and power, robustness and long life cycle. In the Ragone 
plot (Fig. 2a), Li-ion batteries are intermediate to capacitors and fuel 
cells. A Li-ion battery cell (Fig. 4a) has an anode (the reductant) and a 
cathode (the oxidant), where Li ions are deposited and released, and 
an electrolyte, through which Li ions are transported. A separator is 
needed to prevent physical contact between the electrodes while allow-
ing Li ions to shuttle through113. Optimizing the current materials and 
discovering new ones for anodes114,115, cathodes116–119 and, especially, 
electrolytes58–61,119, have been important foci of the field120–122.
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The search for new electrolyte materials is motivated by safety 
concerns and the flammability of current liquid electrolytes, such as 
solutions of lithium hexafluorophosphate and some flammable organic 
liquids. Such materials are believed to lead to spontaneous explosions 
and fires in some Li-ion battery units123, as in more than 20 documented 
fires in Tesla models since their introduction124 and a Boeing 787 Dream-
liner aeroplane125. As a potential alternative, solid polymer electrolytes 
(SPEs) that are light, cheap and, most importantly, safe have been exam-
ined, including those based on poly(ethylene oxide) (PEO)126–129, poly-
acetals130,131, polyethylene carbonates132, polyesters133, polyacrylonitrile 
(PAN)134, poly(vinyl alcohol) (PVA)135, poly(methyl methacrylate) 
(PMMA)136, and polymer blends such as PEO/PAN137 and PVA/PMMA138. 
However, these SPEs still have major disadvantages for use in Li-ion 
batteries, one of which is their low Li-ion conductivity ( 10−5≲  S cm−1) 
at practical operating temperatures (the target conductivities are 
≳10−4 S cm−1).

Although a number of SPE candidates have been explored, they 
represent only a tiny fraction of the polymer space, which comprises 
tens of thousands of already known and synthesized polymers25,57, 
or millions of commercially available or easy-to-synthesize monomers 
that can be polymerized via hundreds of known polymerization reac-
tion templates. There is a good explanation for this: putting physical 
experimentation aside, physics-based computational methods are 
not ready to evaluate SPE candidates. Classical molecular dynam-
ics (MD) simulation, the most practical computational method to 
estimate Li-ion conductivity today in polymers128,129,139,140, is, at best, 
semiquantitative, and requires extreme care and specialized skills. 
Good candidates for potential SPEs are likely to be somewhere in the 
vast untapped polymer space, awaiting discovery and deployment.

ML approaches have made some progress42,139,141–144, especially in 
accelerating the MD-based evaluations of SPEs and decision-making 
procedures. Bayesian optimization has been used to drive coarse-
grained MD explorations of the polymer space. One endeavour142 
identified polymer blends with optimized Li-ion conductivity and 
mechanical strengths; another42, by generating a big volume of data, 
uncovered the relationships between the Li-ion conductivity and 
relevant atomic-level features such as molecule size and non-bonding 
interaction strengths. Based on an interesting idea to ‘accelerate’ the 
MD simulations, a ML capability was developed139 to perform early 
predictions of the equilibrium Li-ion transport properties of a polymer 
from its chemo-structural descriptors and information obtained within 
the first 0.5 ns of the MD trajectory. This scheme could reduce the MD 
simulation times by 90%, substantially accelerating explorations for 
SPEs139. In recognition of the importance of high-fidelity data in the 
field, a cloud-based platform was established145 to share raw data from 
6,286 MD trajectories of amorphous polymer electrolytes and standard 
post-processing and analysis tools.

The impact of ML approaches extends beyond the acceleration of 
MD simulations. By constructing a database of SPEs, a transfer-learned 
graph neural network was trained and used146 to search over 9,600 
combinations of polymers, dopants, salts and other parameters, lead-
ing to the discovery of eight polyphenylene sulfides, which were then 
validated experimentally (six of them are shown in Fig. 4b). ChemArr 
is a physics-informed neural network in which the Arrhenius equation, 
which governs the temperature dependence of the Li-ion conductiv-
ity, is explicitly encoded143 (Fig. 4c). The model was trained on a data-
set of 7,133 experimental Li-ion conductivity data points curated for 
247 unique polymers, and its power to predict Li-ion conductivity was 
demonstrated on two unseen new polymers, named P_CODC4CF3SA 

(Fig. 4d) and P_C10PA_MC. Attempts to design new SPEs were further 
extended to involve a quantum annealer, inverting the developed 
regression model to identify the ‘ideal features’ of the desired SPEs147. 
Existing databases were then searched, uncovering a trithiocarbonate-
based polymer resembling the ideal SPE. This polymer was synthesized 
and shown to offer a conductivity of 10−6 S cm−1 and thermal stabilities 
above 80 °C. Efforts in the past 2–3 years have leveraged the devel-
opment of generative models (Generative Pre-trained Transformer 
(GPT)-based and diffusion-based) to conditionally and continually 
design new homopolymers with high predicted Li-ion conductivi-
ties148,149. Using this approach, 19 polymer repeat units were found149 to 
display computed ionic conductivities (via MD simulations) surpassing 
that of PEO (Fig. 4e).

Although Li-ion conductivity is the most important property 
of a SPE for Li-ion batteries, SPEs should also have a large electro-
chemical stability window, which controls the open-circuit voltage and 
ultimately the cycle life of the batteries, and should be mechanically 
strong, thermally stable and durable for safety reasons. The critical 
gaps to address arethe develpment of necessarily bigger, more diverse, 
high-quality databases, and training powerful predictive models of 
the desired properties. The quantitative screening criteria for SPEs, 
like those in Fig. 2c and Fig. 3b, as well as for the novelty and validity 
of the candidates148 should be established. Then, the vast space of 
synthetically accessible polymers can be screened to identify superior 
SPE candidates. Regardless of the specific approaches adopted, care 
must be taken to safeguard the likelihood of finding viable and scalable 
synthetic routes of the SPE candidates.

Membranes for gas separation
Using synthetic polymer-based membranes to separate gas mix-
tures10,62,150–157 — for example, removing CO2 from natural gas or remov-
ing O2 from air — is favoured over competing technologies owing to 
the suitable combinations of energy efficiency, cost and size in these 
membranes158. Compared with distillation, which conventionally 
requires a massive amount of heat, membranes can, in principle, sep-
arate gas mixtures in the presence of just a pressure gradient (Fig. 5a). 
An important performance measure of a gas separation membrane is 
the selectivity, which, for binary mixtures, is defined as P Pα ≡ /i jij , where 

iP and jP  are the permeabilities of i, the more permeable gas, and j, the 
less permeable gas. Although many other technological factors influ-
ence the success or failure of a particular membrane, an ideal membrane 
material will have high selectivity and high permeability to the wanted 
gas. This combination simplifies the membrane engineering process 
and reduces the operating and capital costs.

The selectivity and permeability depend heavily on the size of ‘free 
volume elements’ (FVEs) — the small, often-ephemeral gaps between 
polymer chains — and the frequency at which these gaps appear and 
disappear owing to thermal fluctuations in the polymer chains. The 
selectivity is maximal when the FVEs have a uniform size, preferably 
positioned between the kinetic diameters of the desired and undesired 
gases159,160. Therefore, an ideal FVE size distribution should be tight 
and appropriately centred (inset, Fig. 5a). The permeability is high 
when FVEs with appropriate size for gas diffusion are created at a rapid 
frequency. Typically, materials that exhibit high frequencies of FVE 
creation often have a broad distribution of FVE sizes, giving rise to the 
well-known trade-off between permselectivity and permeability157,159 
(see Fig. 5b for an example).

The most obvious consequence of the trade-off is the presence 
of a performance upper bound, pointed out in 1991 (refs. 157,159). 
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Residing below this bound are the known polymers of that time, includ-
ing Matrimid, a polyimide membrane that is still commercially used 
today161,162. Since then, a handful of new polymers have been discovered 
that surpass the 1991 bound, establishing two new bounds dated in 2008 

and 2019 (refs. 147,160). One of the earliest discoveries that pushes the 
1991 bound was PIM-1, or Polymer of Intrinsic Microporosity 1, which 
possesses a new repeat unit chemistry147. Specifically, PIM-1 and other 
PIMs feature a site of contortion (that is, a spiro centre) in every repeat 

a bGas atom transport in polymer membranes

c Some notable and newly discovered membranes for gas separation
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unit that ‘kinks’ the polymer chain at extreme angles. This feature alone 
is often insufficient to make a polymer a ‘PIM’; another salient design 
motif is the incorporation of the spiro centre into a ladder polymer. 
The combination of these features, unseen in previous polymers, 
results in the record-breaking permeability of PIM-1. In summary, new 
chemistries can substantially improve performance, continuously 
pushing the existing bounds upwards, although this process might 
have a conceptual upper limit153.

Although permeability and selectivity may be estimated using MD 
simulations, this method is not quantitative enough to discover new and 
improved gas separation membranes. Works in the past 6–7 years have 
shifted towards ML approaches, training predictive models on past data 
to estimate the gas permeability from the chemical structure25,154,155,163–165. 
In 2022, six ML models for the permeabilities of He, H2, O2, N2, CO2 and 
CH4 were developed and used155 to screen more than 9 million hypotheti-
cal polymers, identifying thousands predicted to be ultrapermeable to 
O2 and CO2. Eight candidates, named P-DNN-C1 through P-DNN-C4, 
P-DNN-D1, P-DNN-D2, P-RF-C and P-RF-D (Fig. 5c), were validated using 
MD simulations. In another effort, six models for the permeability of the 
six gases mentioned above were developed and used154 for 11,325 poly-
mers from the National Institute for Materials Science (NIMS) database, 
predicting hundreds lying above the upper bounds for the O2/N2 and 
CO2/CH4 separations. Two of them, namely poly[(1,3-dioxoisoindoline-
2,5-diyl)sulfonyl(1,3-dioxoisoindoline-5,2-diyl)-1,4-phenyleneoxy-
1,4-phenylene] and poly[(1,3-dioxoisoindoline-2,5-diyl)sulfonyl(1,3- 
dioxoisoindoline-5,2-diyl)-1,4-phenylenemethylene-1,4-phenylene] 
(labelled as P432092 and P432095 in the NIMS database), were synthe-
sized and tested for CO2/CH4 separation (Fig. 5c). Targeting CO2 separa-
tion from N2 for carbon capture, three models, including one for CO2

P  
were developed and used to identify hundreds of high- CO2

P  polymers163. 
Three of them, labelled as Giro-1, Giro-2 and Giro-3 (Fig. 5c), display high 
PCO2

, as estimated by MD simulations.
These exemplary works highlight the role of ML approaches 

in designing membranes for gas separation. Yet critical challenges 
remain. One persistent challenge, common to all application domains, 
is ensuring that the recommended polymers are synthetically feasible 
and scalable. As an illustration, only two of the ML-derived polymers 
shown in Fig. 5c have been synthesized; the remaining candidates are 
difficult to make. Constructing a vast space of synthetically accessible 
polymers using VFS could be a solution, provided VFS includes reaction 
templates and chemistries with ladder features and spiro centres.

A second challenge, also relevant to all applications, is that the 
models need to train on data spanning large enough chemical spaces. 
To alleviate this challenge, MD-simulated data (although low in fidelity) 
for iP (ref. 166) and related or correlated properties may be generated 
to augment available measured data. For example, the solubility iS  and 
diffusivity Di of a gas in a polymer i are related to the permeability by 
P SD= ×i i i. Furthermore, the fractional free volume (FFV) of polymers, 
as discussed above, is strongly correlated to their permeability167. Data 
(measured and/or simulated) from any of two or more of these four 
properties ( D, , ,i i iP S  FFV), may be leveraged in a multitask ML archi-
tecture to learn all properties simultaneously, improving the accuracy 
and the robustness of the Pi predictors.

Finally, ‘ageing’ (or degradation) problems that pervade gas separa-
tions applications should be addressed. Over time, Pi can decrease 
owing to altered or degraded distribution of FVEs, and this behaviour 
should be managed appropriately. Membranes for gas separation should 
be mechanically, thermally and chemically stable over 5+ years for viable 
real-world applications. Testing these long time frames in an experimental 

laboratory is typically infeasible; development of algorithms to predict 
ageing of a given polymer would accelerate development in this field. 
Beyond membrane performance and ageing, incorporating additional 
properties in the screening criteria relevant for scale-up such as tensile 
modulus, glass transition temperature and thermal decomposition 
temperature would be impactful.

Membranes for organic liquid mixture separations
Polymer-membrane-based separations of non-aqueous or organic–
water liquid mixtures solve a different class of problems relative to gas 
separations. Membrane-based separations of liquid mixtures, driven by 
pressure rather than heat, are energy and economically efficient63–66. 
This method is important to the chemical and pharmaceutical indus-
tries, where separation processes, such as in the recovery of organic 
solvents, could account for up to 40–70% of the capital and operat-
ing cost63. Technically, membranes can be used to separate organic 
compounds with similar boiling points65 or that are temperature sen-
sitive168; these types of separations are challenging or expensive to 
carry out with incumbent technologies, such as vacuum distillation. 
Important liquid mixture separations accessible to membranes include 
water purification, solvent recovery, solute concentration, diluent 
separation, iterative synthesis of oligomers, homogeneous catalyst 
recovery, natural product extraction, membrane reactors and solute 
fractionation, among many others63–65,169. Membranes that can separate 
the liquid phase of small molecules, such as ethanol and iso-octane, 
typically operate in a solution-diffusion regime, like gas separations.

One difficulty for this class of membrane-based separations is 
estimating how well the membrane will perform when challenged 
with a new complex mixture. The efficiency of a separation depends 
on several factors, including the characteristics of the liquid mixture 
to be separated (such as the number of distinct solute and solvent 
types, concentration, size, polarity and so forth of each solute and 
solvent), the choice of the membranes, the operating conditions (such 
as pressure) and the time-dependent performance fluctuations (that 
is, the ageing). In the design problem of membranes for separation of 
organic liquid mixtures specifically, this high dimensionality of the 
search space makes it a daunting task for traditional physics-based 
models alone.

To handle complex mixtures, ML models based on neural net-
works, random forest models and support vector machines were 
established to predict important liquid mixture transport properties 
such as the permeance and rejection of mixtures containing a solvent 
and a solute169. Nonlinear regression techniques, whose parameters 
are determined by a combination of genetic programming and global 
deterministic optimization, were used to predict the permeance of 
pure solvents and solvent mixtures through membranes170, and the 
solute rejection in liquid mixtures containing multiple solvents and/or 
solutes171. Building on this work, some ML models were developed172 
that can predict the solute rejection using the molecular structure of 
the solute as input. Unlike previous counterparts that can handle a few 
fixed solutes, these models can be generalized to any solute.

Each of the above works are suitable for mixtures containing sol-
utes of a particular size (100–2,000 g mol−1) and often much smaller 
solvents that permeate via a pore-flow style mechanism. However, 
these models are unsuitable for mixtures of small molecules, or 
complex mixtures (for example, crude oil containing thousands of 
components), with near equal concentrations, in which there is no 
clear solvent or solute. Moreover, not all membranes operate with 
a pore-flow transport modality; indeed, many effective membranes 
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a Multiscale approach integrating machine learning and transport modelling

c Test results for 9- or 12-component hydrocarbon mixtures d Test results for crude oil
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operate in the solution-diffusion regime. To extend the range of possi-
ble mixtures and operation regimes, a multiscale approach integrating 
a multicomponent mass transport scheme with a physics-informed 
ML approach was developed173 (Fig. 6a). First, a neural network was 
used to predict the diffusivity and sorption uptake of each individual 
mixture component for a given membrane. Then, these predictions 
were fed into a Maxwell–Stefan solution-diffusion transport model174, 
from which each component’s flux was predicted. Importantly, this 
approach generalizes to the separation of arbitrary mixtures and linear 
membranes. Physical experiments then validated the framework’s 
ability to predict the permeation outcomes of complex liquid mixtures  
through membranes. Five polymers, two of them (Torlon and Matrimid) 
commercially available and the others (DUCKY-9, DUCKY-10 and SBAD-1)  
recently lab-synthesized66,175 (Fig. 6b), and mixtures of either 9 or 
12 liquid components (Fig. 6c) or real crude oils with thousands of 
liquid components (Fig. 6d), were tested. This multitiered approach 
could predict the separation of complex mixtures to within 6–7% of 
the measured values173 (Fig. 6c,d).

Although the ability to build robust ML models that can handle 
multicomponent industrial-scale complex liquid mixtures has been 
demonstrated, their potential can be expanded by continually train-
ing the models on emerging new data for other complex mixtures. 
Furthermore, the true opportunity is to leverage these models to sug-
gest new polymer membranes and optimal operating conditions for 
industrially important liquid mixtures. This gap may be addressed with 
the adoption of generative methods, like the VFS approach, to gener-
ate a diverse pool of candidates, forecast permeation performance 
for complex liquid mixtures and subsequently identify those meeting 
predefined criteria.

Conducting conjugated polymers
The development of conducting polymers176–180 marks a milestone 
in the history of polymers. In the early 1970s, polyacetylene was synthe-
sized, exhibiting semiconducting behaviour ascribed to the delocalized 
π-electrons arising from its conjugated structure179. Treating polyacety-
lene with Lewis acids or bases was revealed to substantially enhance 
its conductivity, sometimes by up to 13 orders of magnitude180, and 
turning it into a conductor. Because this process involves the removal 
or addition of electrons to the polymer chains, it is termed ‘doping’ 
in analogy to the doping procedures adopted in silicon technology. 
Doping is important to controlling the conductivity of conducting 
polymers, allowing them to find applications in organic light-emitting 
diodes181,182, organic field-effect transistors183,184, organic solar cells185,186, 
biomedicine187–190 and beyond.

Using a curated set of 389 experimental data points covering 
226 polymers and 65 dopants, with conductivities spanning 16 orders 
of magnitude, a data-driven approach was able to accelerate the iden-
tification of suitable candidates for conducting polymers191. Classifica-
tion and regression models to predict conductivity were developed191 
from handcrafted chemical fingerprinting schemes. The classification 
model categorized the conductivity as low, medium or high, while the 
regression model provided numerical predictions. The models were 

used to screen over 800,000 polymer–dopant combinations, recom-
mending 500 candidates for experimentation. Guidelines highlighting 
the critical features for conductivity were also compiled to aid future 
design efforts.

Beyond electronics, a vast amount of data have been published 
on a wide array of doped polymers in organic photovoltaics192, includ-
ing their open-circuit voltage, power conversion efficiency and other 
relevant parameters. Such data must be collected and curated (prefer-
ably aided by the natural language processing techniques discussed 
below) before they are ready for informatics, and these efforts are 
ongoing.

Polymers for a sustainable world
We now turn to the global issue of plastic pollution12,193. An enormous 
volume of plastics is produced every year, but their high chemical 
and thermal stability makes them extremely difficult to recycle194–197. 
According to a recent report by Greenpeace, only 5% of about 51 million 
tonnes of plastic created in the United States alone in 2021 was recy-
cled198, leaving the remaining for landfill at their end of life. Multiple 
approaches are expected to address this critical problem199–201. Techni-
cal solutions, such as developing and recycling polymers, are particu-
larly useful and active202–204. Among the many classes of recyclable 
polymers (Fig. 7a), we address those that are biologically and chemically 
recyclable.

Biodegradable polymers. In biological recycling, biodegradable 
polymers are transformed into natural by-products such as water and 
CO2 through the actions of enzymes from microorganisms such as 
bacteria (Fig. 7b). Several biodegradable polymer classes, including 
those derived from chitosan, alginate, collagen, gelatin, cellulose, hya-
luronate, silk, fibrinogen and starch, have been actively considered205 
to replace petroleum-based plastics. Applications for these polymers 
are targeted in numerous fields, including biomedicine206, the food 
industry207,208, packaging209, water purification210,211, electronics212, 
the automotive industry213, sustainable aviation fuel214, cosmetic 
products215, fabrics, paint additives, printing and adhesives, to name 
just a few.

Naturally, the most important property of biodegradable poly-
mers is their biodegradability — that is, the ability of the materials to 
be decomposed by enzymes. Perhaps because the biodegradation 
processes are highly complex and sensitive to extrinsic (such as pro-
cessing) and environmental conditions, quantifying and documenting 
the biodegradability in a consistent manner are non-trivial216. Com-
monly used measures of biodegradability are highly diverse, including 
weight loss217, total organic carbon formed218, tensile strength, carbonyl 
index and molecular weight change219, and a yes/no categorical vari-
able220 during biodegradability testing. The lack of a robust and consist-
ent definition of biodegradability makes it challenging to create good 
databases for this important property. Initial steps have been taken 
to predict the biodegradability of polyesters using ML methods220. 
Clearly, to design degradable polymers for specific applications in the 
future, it will be necessary to predict the biodegradability of polymers 

Fig. 6 | Polymers for the separation of complex liquid mixtures. a, Multiscale 
data-driven transport modelling framework informed by physics and/or 
chemistry. b, Five polymer membranes used to validate the framework. 
c, Test results from four selected membranes on 9-component or 12-component 
hydrocarbon mixtures, showing close correspondence between predicted and 

measured results. d, Test results from two selected membranes on real crude oils 
with thousands of liquid components, showing close correspondence between 
predicted and measured results. ML, machine learning. Panels c and d reprinted 
from ref. 173, CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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in a quantitative manner meeting different measures of biodegrada-
bility. This will require the development of high-quality datasets that 
include not only the chemical structure and biodegradability of the 
polymers but also other important information such as the biodeg-
radation time profile, relevant environmental conditions, processing 
history, morphology and sample geometry.

Putting the quantitative predictions of biodegradability aside, 
and focusing only on the design of polymer chemistries amenable 
for biodegradation, the search space is narrowed simply to materials 

occupying a known biodegradable chemical class that also display 
application-specific property values. Polyhydroxyalkanoates (PHAs) 
have emerged as a promising class of biodegradable polymers whose 
tremendous chemical diversity is directly accessible via biosyn-
thesis by microalgae and bacteria. PHAs are known to be produced 
by about 300 species of bacteria that thrive in wastewater effluent 
and can be cultivated year-round, making them synthetically sus-
tainable221,222. A vast diversity of polymer compositions is possible 
from the over 150 PHA monomers available, and configurational 
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(random, alternate, block copolymer, blend and so on) and morpho-
logical (percentage crystallinity, molecular weight, dispersity and 
so on) degrees of freedom allow for additional tunability. However, 
the design rules mapping the chemistry and structure of these biopoly-
mers onto their properties remain largely unexplored. Although DFT 
computations and classical MD simulations have been used for this 
purpose223–225, predictive ML models are more reliable and scalable. 
In one work67, PHA-based plastics were targeted as replacements for 
seven common petroleum-based consumer plastics. With this goal, 
multitask deep neural networks were trained on a multiproperty poly-
mer dataset consisting of nearly 23,000 experimental data points of 
13 different properties and validated on a diverse set of 15,344 homo
polymers and 7,512 copolymers. Nearly 1.4 million PHA-based polymers 
were screened using these models, identifying two biodegradable 
replacements for each commodity petroleum-based plastic (Fig. 7c). 
Although future experimental efforts are required to validate the pre-
dictions, this work demonstrates the potential of informatics-based 
tools in addressing the needs of biodegradable polymer design.

Apart from the technical feasibility, it is challenging to make 
biopolymer production and recycling economically viable and sus-
tainable, despite the ever-growing demand, policy-driven push, and 
concomitant trends in market growth for environment-friendly plas-
tics. The cost-competitiveness and scalability of the synthetic routes 
for usable biopolymers, and the polymer waste recycling processes, 
are of prime consideration. Whereas the production cost of traditional 
polymers is around US$1,000–1,500 per metric tonne, that of com-
monly used biopolymers can vary from 4 to 10 times more226,227, owing in 
large part to expensive carbon substrates, the highly sterile conditions 
required in batch reactors during fermentation, and the laborious and 
time-intensive downstream processes needed to extract and purify 
the synthesized biopolymers228. Genetically engineering microorgan-
isms with designer metabolic pathways that improve accumulation 
of biopolymer granules constitutes a future avenue worth exploring.

Chemically recyclable polymers. In chemical recycling, polymers 
reversibly depolymerize into monomers. Ring-opening polymers, 
created by opening cyclic monomers and polymerizing them, are 
particularly suitable because the ring-opening (that is, polymeriza-
tion) and ring-closing (that is, depolymerization) reactions are easy to 
manipulate (Fig. 7d). On depolymerization, the monomer feedstocks 
can be repolymerized to create new materials with original purity and 
performances. The polymerization and depolymerization processes 
may be tuned by controllable parameters such as the monomer ring 
size, catalysts, temperature, solvents and other triggers199,200,229,230. 
Research efforts in designing chemically recyclable ring-opening 
polymers for sustainability are timely69,70.

One of the most important controllable parameters in such chemi-
cal recycling processes is ring-opening enthalpy, HΔ ROP, defined as the 
difference between the energy of the polymer and that of the ring 
monomers. Ring-opening polymers that are depolymerizable should 
have slightly negative HΔ ROP, falling roughly between −20 kJ mol−1 and 
−10 kJ mol−1. Although HΔ ROP can be measured experimentally, com-
putational approaches can be much faster. This aspect is crucial for 
the selection of suitable monomers and eventually for the design of 
new depolymerizable polymers. The critical gap here is that although 

HΔ ROP can be roughly computed in a simple and intuitive way, doing so 
with a satisfactory level of accuracy is non-trivial. Challenges in com-
puting HΔ ROP are diverse, including creating suitable atomic-scale 
polymer models, selecting the right level of theory, appropriately 

sampling the polymer configurational space and, finally, reaching an 
ambitious level of the ‘chemical accuracy’, that is, about 5 kJ mol−1 or 
lower, expected of ab initio calculations231.

A computational method has been developed68 to quickly and 
accurately calculate HΔ ROP for arbitrary polymers. Central to this 
scheme is a procedure designed to extensively sample the configura-
tion space and compute the energies of the samples using DFT. Then, 

HΔ ROP obtained for polymer models of different sizes is extrapolated 
to the limit of the polymer at infinite size. Although this method is 
robust and accurate, as demonstrated by the experimental and com-
puted ring-opening enthalpies of the cycloalkane series (Fig. 7d), it is 
computationally demanding. To accelerate the accurate estimation of 

HΔ ROP, a predictive ML model has been trained71 on both experimental 
and computed data. This model provides HΔ ROP predictions with an 
averaged error of about 8 kJ mol−1, close to the desired chemical 
accuracy (~5 kJ mol−1)231.

These computational and ML approaches, developed synergisti-
cally with experimental efforts, have contributed to new ring monomers 
that have been successfully polymerized. Synergistic computations and 
experiments69 investigated a series of depolymerizable thiolactones 
created by systematically changing the pattern of methyl substitution 
and incorporation of sulfur heteroatoms. Chemically recyclable poly-
thioethers (Fig. 7e) have also been synthesized from readily accessible 
benzothiocane monomers70.

Future designs of chemically recyclable polymers will benefit from 
further advances in ML models. For instance, the ML approach to 
predict HΔ ROP can be improved considerably by growing and diversify-
ing both the computational and experimental HΔ ROP datasets. VFS may 
be used to generate hypothetical polymers via reaction templates 
amenable to depolymerization. Reliable models will also need to be 
developed to rapidly predict other relevant properties, beyond HΔ ROP, 
for the large number of generated polymers. Attributes of interest 
include thermal, mechanical, gas/solvent solubility, gas/solvent trans-
port and thermodynamic properties, depending on the application 
area of interest. As with the other applications discussed above, suc-
cessful materials design is an exercise in multiobjective property opti-
mization. Beyond properties, successful and scaled-up development 
of chemically recyclable polymers involves synthetic considerations, 
such as the entropy of (de)polymerization, kinetics, solvent effects 
and catalyst selection199.

Critical next steps
Polymer composites and formulations
In the real world, polymer composites or formulations are much more 
common than homogeneous neat polymers. They come in various 
forms, involving a base polymer matrix and additives such as rein-
forcing and flame-retardant materials, rheology modifiers and pro-
cessing conditions. The polymer matrix is the primary continuous 
phase in these materials. The dispersed phase, containing the additives 
embedded in a discontinuous manner, and the processing protocols 
modulate the properties, overall appeal and utility of the polymer 
composites232,233.

The versatility of polymer composites, allowing for desirable 
properties to be customized on demand, has led to their widespread 
applications234–239. For electric vehicles, composites with suitable 
impact resistance, corrosion resistance, durability, and flame resist-
ance and fire containment are used in battery enclosures. In hydrogen 
fuel-cell vehicles, mechanically robust composites are used to con-
struct pressure vessels for hydrogen storage, while advancements in 
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polymer composites for fuel-cell membranes and ionomers are still 
sought after101–103.

The performance of a composite is intricately linked to factors 
such as the chemistry and topology of the base polymer (which may 
also be a copolymer or polymer blend), additives and processing condi-
tions. Although informatics protocols can handle these variations, ade-
quate data pertaining to these variations must be captured. Progress 
has been made to handle copolymers and blends within informatics 
schemes, including representations240, and efforts are emerging to 
handle more complex composites with a variety of additives.

Traditional approaches to optimize composites, primarily 
involving physical manufacturing and testing, are arduous and time 
consuming238. ML approaches are much more efficient, either accel-
erating composite simulations241 or training on experimental data to 
predict mechanical properties, such as fracture behaviour, ductility and 
density242. In a recent effort, a polymer composite database was curated 
based on technical datasheets from major manufacturers (Tran, H. et al., 
unpublished work). Using handcrafted features for the polymers, fillers 
and processing parameters, ML models for tensile modulus and stress 
at break were developed (Tran, H. et al., unpublished work). A sizeable 
opportunity exists for developing similar models for a large spectrum 
of composite properties — including mechanical, thermal, flammability 
and transport properties — using similar approaches, a logical evolution 
of the AI-based protocol depicted in Box 1.

Autonomous data extraction from literature using  
language models
The annual growth rate of materials science papers is about 6%. Owing 
to the non-machine-readable nature of the content, the expanding lit-
erature makes it difficult to extract valuable quantitative and qualitative 
information about material properties, manually discern trends and 
locate materials with desirable properties. Furthermore, data corre-
sponding to negative (or undesired) results are unlikely to be reported, 
skewing the balance of literature data. These factors impede progress 
in materials informatics, where property predictor training relies on 
labour-intensive data curation from literature.

Natural language processing (NLP) techniques, such as named 
entity recognition (NER), relation extraction, co-referencing and 
named entity normalization, are vital for extracting information243,244. 
Transformer-based models like Bidirectional Encoder Representations 
from Transformers (BERT)192,245 and ChatGPT, trained on extensive unla-
belled text, are predominant in self-supervised learning for contextual 
embeddings and information understanding. NER and relation extrac-
tion commonly use a BERT-based architecture, with labelled inputs 
(words and phrases indicated as material, property, characterization 
method and so on) feeding into task-specific ML models. Adapting 
these methods to new domains necessitates ontology-based label-
ling of new datasets. Tools like ChemDataExtractor246, ChemSpot247 
and ChemicalTagger248 specialize in NER for material entities, but 
these prior NLP efforts have focused predominantly on inorganic 
materials249,250 and organic molecules251,252, neglecting polymers.

Extracting information about polymers is challenging because 
their naming conventions vary, and these names (which in many cases do 
not reflect the chemical content of the polymer) cannot be directly con-
verted to simplified molecular-input line-entry system (SMILES) strings 
that represent the atomic connectivity of polymers in line notation. 
Efforts in the past 2–3 years have taken important steps to address these 
polymer-specific issues192,243,244,251,253. Of note is a pipeline for extracting 
material property data from a large body of polymer literature, derived 

from a corpus of over 2.4 million materials science articles published in 
the past two decades192. A NER model was trained on annotated versions 
of the polymer text using MaterialsBERT, a language model based on 
PubMedBERT254. Using this pipeline, over 1.1 million polymer property 
records were extracted from the full text of the corpus. The extracted 
data are available at Polymer Scholar (Table 1).

Moving forward, such data and knowledge extraction endeav-
ours must progress beyond individual sections of text, encompassing 
tables, figures and data dispersed throughout the full article. Each of 
these elements presents unique challenges. Extracting information 
from the full text is already intricate as relevant data may be dispersed 
across paragraphs, necessitating substantial advancements in relation 
extraction methods. Leveraging large language models such as GPT and 
LlaMa with tailored prompt engineering offers a promising avenue. 
Recognizing polymer chemical structure images and transforming 
them into polymer SMILES strings255 will also be important and may 
benefit from advances in molecular image recognition and SMILES 
conversion25,255. The ultimate aspiration and imperative are to establish 
an autonomous pipeline commencing from published literature and 
patents, culminating in the extracted material property information.

Computational–experimental data fusion and  
multifidelity learning
In polymer informatics, an important yet underexplored opportunity 
lies in harnessing simulation data to construct predictive ML models. 
Intriguingly, the initial publicly accessible models in Polymer Genome 
were trained on data generated using DFT. However, challenges in pro-
ducing DFT-based data for essential properties such as glass transition 
temperature, gas permeabilities and ionic conductivities prompted a 
shift towards using measured data for the model development. This 
approach has reached its limits, given the reliance on databases and 
handbooks with limited content, the struggle to capture the expand-
ing literature data (notwithstanding the advent of NLP approaches) 
and the inherent limitations of physical experiments in sampling the 
vast chemical space.

Traditionally, the prevailing wisdom cautioned against relying 
solely on computer simulation data owing to certain perceived con-
cerns. Although DFT computations are accurate, they are computation-
ally expensive, impractical for realistic length scales and timescales, 
and cannot access properties of practical importance using current 
computational resources. Classical force fields or potentials can cir-
cumvent these challenges, but their reliability and quantitative nature 
are often questionable. A gap exists not only between available com-
putational options but also between computational and experimental 
avenues.

Enter multifidelity or multitask learning (MTL) approaches, poised 
to bridge this gap. Considering two data channels, one reliable but 
sparse (for example, physical measurements) and the other less trust-
worthy but correlated to the former (for example, classical simula-
tions of related properties), MTL approaches leverage both channels, 
learning correlations and predicting at the higher fidelity level while 
generalizing at the lower fidelity but more diverse level. Numerous 
success stories in this domain already exist34,256–258.

The past decade witnessed the proliferation of DFT-based mate-
rials databases, such as Materials Project259, aflowlib260, OQMD261 and 
NOMAD262,263, but exclusively for inorganic materials. Computational 
data for polymers54,264 are limited, but we expect them to grow consider-
ably. Extant datasets are summarized in Table 1. The anticipation for the 
next decade is a swift emergence of polymer databases covering DFT 

https://chat.openai.com/chat
https://polymerscholar.org/
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and classical force-field-based data for a myriad of polymer proper-
ties, in addition to data from physical experiments; polyVERSE (briefly 
described in Table 1) is an initial step to alleviate this burden. Wide-
spread availability of such databases enables computational dataset(s) 
to be fused with measurement datasets, to cover chemical spaces 
at previously unimaginable scales. MTL approaches that exploit an 
amalgamation of computational and experimentally measured data 
are expected to give rise to a new breed of predictive models.

Physics-enforced deep learning
Although data-driven approaches have substantially advanced mate-
rials discovery, the extensive reservoir of knowledge, experience, 
intuition, heuristics, phenomenological understanding and estab-
lished relationships — collectively termed ‘known physics’ — within the 
domains of materials and chemistry cannot be disregarded. Integrating 
or imposing such known principles into ML models enhances their 
predictive power and ensures adherence to physical laws, leading to 
improved generalizability of predictions and accurate representation 
of physical phenomena. Furthermore, integration of known physics 
can address the inherent data scarcity issues prevalent in materials 
research.

Illustrative instances of incorporating known physics into ML mod-
els are discussed in the ‘Membranes for gas separation’ section, in which 
the gas permeability is elucidated as the product of gas solubility and 
diffusivity, and in the ‘Membranes for organic liquid mixture separa-
tions’ section, in which the organic molecule diffusivity through a poly-
mer is conditioned on the molecular volume. The established Arrhenius 
relationship between ionic conductivity and temperature has also been 
leveraged to generate reliable predictions of lithium-ion conductivity 
in polymers143, despite limited coverage in the conductivity dataset of 
polymer and lithium salt chemical spaces.

In practice, established equations are embedded within the loss 
function of neural network architectures, penalizing predictions that 
deviate from these principles. Physics-enforced neural networks 
represent a promising avenue to mitigate data scarcity, enhance 
generalizability and produce inherently interpretable predictive 
models265–268.

Outlook
Through compelling use cases, we have explored the transformative 
impact of AI methods and informatics on accelerating polymer discov-
ery across diverse applications, including energy-storage materials, 
separation membranes and sustainable materials. Several challenges 
must be addressed. To continuously improve intelligence, relevant 
high-fidelity and low-fidelity data must be captured or generated in a 
consistent, systematic and (re)usable manner; NLP and image analytics 
methods, alongside physics-driven and ML-accelerated computer simu-
lation techniques, will be key to accumulating such data. To maximize 
impact, it is imperative to foster technologically relevant use cases 
beyond academic laboratories.

As AI-based materials intelligence ecosystems mature and evolve, 
they will enhance the capabilities of human researchers, driving 
efficiencies, accelerating discoveries and enhancing productivity. 
If nurtured appropriately, AI-assisted materials discovery may offer 
a future where the collective wisdom of intuition and experience is 
immortalized within the expert system, and shared and refined for 
the benefit of all.

Published online: xx xx xxxx
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