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Machine learning (ML) models for predicting gas permeability through polymers have traditionally
relied on experimental data. While these models exhibit robustness within familiar chemical domains,
reliability wanes when applied to new spaces. To address this challenge, we present a multi-tiered
multi-task learning framework empowered with advanced machine-crafted polymer fingerprinting
algorithms and data fusion techniques. This framework combines scarce “high-fidelity” experimental
data with abundant diverse “low-fidelity” simulation or synthetic data, resulting in predictive models
that display a high level of generalizability across novel chemical spaces. Additionally, this multi-task
schemecapitalizesonknownphysics and interrelatedproperties, suchasgasdiffusivity andsolubility,
both of which are closely tied to permeability. By amalgamating high throughput generated simulation
data with available experimental data for gas permeability, diffusivity, and solubility for various gases,
we construct multi-task deep learning models. These models can simultaneously predict all three
properties for all gases under consideration, withmarkedly enhanced predictive accuracy, particularly
compared to traditionalmodels reliant solely onexperimental data for a singular property. This strategy
underscores the potential of coupling high-throughput classical simulations with data fusion
methodologies to yield state-of-the-art property predictors, especially when experimental data for
targeted properties is scarce.

Polymer-based gas and solvent separation membrane technologies have
significantly impacted a diverse range of applications, including carbon
capture, water purification, drug delivery, and food packaging1,2. Crucial to
propelling widespread adoption and advancement of this technology is the
identification and design of polymermaterials endowedwith a desired set of
properties and performance attributes. A key figure of merit in gas
separations is gas permeability, which describes the movement of gas
molecules into and through a polymer material. Based on the solution-
diffusionmodel3, gas permeability (P) through amembrane is definedas the
product of gas diffusivity (D) and gas solubility (S):

P ¼ DS ð1Þ
Capabilities that can accurately and rapidly predict gas permeability

across a diverse range of gases and polymer chemistries can be transfor-
mational and facilitate the discovery and development of new sustainable
high-performance polymer membranes4,5.

Traditionally, the measurement of gas permeability relies on the con-
stant volume permeation technique6, which, though serving as the primary
benchmark, is both time and resource intensive. In search of alternative
approaches, classicalmolecular dynamics (MD) simulations have emerged as
a complementarypathway toestimate gaspermeability7.However, thefidelity
of these simulations is constrained by the intrinsic limitations of the classical
forcefields employed and timescales that are computationally accessible. As a
result, they can only achieve, at best, semi-quantitative agreement with
experimental measurements, despite correctly capturing general trends.

In recent times, data-driven machine learning (ML) methods have
achieved remarkable strides, fundamentally reshaping the landscape of
materials property predictions and the tailored design of materials with
specific target characteristics4,5,8–13. ML methods have found extensive
applications in the polymer gas transport domain, encompassing a diverse
arrayof studies varying in thenumberof polymers investigated and the types
of features used to train models. An early example of this is the work by
Wessline et al. in 2006, where a neural network was used to correlate the
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infrared spectra of 33 polymerswith their carbondioxide permeability14. In a
more current study, Yuan et al. utilizedMultivariate Imputation byChained
Equations (MICE) to predict missing gas permeability values in a dataset
spanning hundreds of polymers across six gases15. These examples only
scratch the surface. In a comprehensive perspective paper, Ricci et al. delve
deeper into the evolution of ML in modeling gas separation with polymer
membranes, highlighting strategies, challenges, and future directions16.

These informatics approaches require a critical initial step: defining the
feature space in which the models are trained by mapping features to the
properties being learned. Early machine learning (ML) studies employed
simple feature sets; for instance, in a 2006 study byWang et al., six features
related to the experimental setup, such as temperature, feed gas flux, and
permeate-side pressure, were used17. These approaches have transitioned to
incorporate more descriptive and comprehensive features, capturing ato-
mistic to morphological structural details18,19. In this paradigm, a polymer’s
chemical structure is converted into a machine readable numerical repre-
sentation, commonly known as a fingerprint or feature vector. This fin-
gerprint allows an ML algorithm in the second step (during the training
phase) to discern intricate chemistry-morphology-property relationships
and subsequently generate predictive models for the properties. While
traditional hand-crafted fingerprints20,21 have conventionally represented
polymer structures in machine learning models, recent endeavors have
expanded the horizons of this methodology and have led to learned fin-
gerprinting techniques, which we adopt in this study. These techniques
involve machine learning key features directly from polymer repeat units,
offering faster feature extraction with comparable accuracy22,23. Despite
these advancements, a common challenge these methods encounter is
extrapolating outside of the known polymer-property space, i.e., outside of
the training data space24. Exploring new chemical spaces through various
avenues, including experiments, simulations, andmachine learningmodels
poses unique limitations that necessitate innovative solutions.

In the present contribution, we demonstrate the power of multi-task
(MT) learning, harnessing both experimental and computational data to
address and bridge the shortcomings outlined above, to build a best-in-class
gas transport propertypredictor.MT learning is a typeof transfer learning in
which amodel is trainedonmore thanone task, learningmultiple properties
and/or data sources simultaneously25. In contrast, single-task (ST) learning
involves the consideration of a singular property and data source. The MT
architecture, which integrates various data sources and exploits underlying
correlations and calibrations, has shown improved predictive performance
and enhanced transferability, compared to ST methods26,27. In the polymer
gas transport ML space, MT learning has been commonly implemented by
incorporating permeability data for various gases and utilizing datasets that
encompass a broad spectrum of properties, including mechanical, thermal,
and thermodynamic5,28,29. We expand on these previous works by utilizing
MT learning in two novel ways. The first aspect leverages data fidelity by
fusing “high-fidelity” experimental data with “low-fidelity” simulation data.
While experimentally measured data serves as the ground truth, it often
grapples with constraints stemming from labor-intensive protocols and
associated expenses. Conversely, simulation-generated data can be pro-
duced on a grander scale, but it may exhibit diminished accuracy due to
necessary approximations made in the theory to make the simulations
practical.MT algorithms learn to calibrate the low-fidelity (simulation) data
against the high-fidelity (measured) data across the whole space of the data,
thus leading to a high level of generalizability27,30. Typically, gas simulations
havebeenused to validateMLpredictions.Here,we integrate the simulation
data into the model itself.

The second innovative aspect of theMT learning approach extends the
general gas permeability ML model to include directly correlated gas
transport data; diffusivity and solubility. Gas transport experiments repor-
ted in the literature do not always include all three properties, and they tend
to focus on testing specific gases of interest. Consequently, some property
valuesmaynot be available for certain cases.MT learningoffers a solution to
this challenge by drawing on available properties to learn correlations
between them and make effective generalizations28. Incorporated within

these two outlined MT aspects is the integration of gas transport data
spanning a variety of gases. Our MT learning strategy leverages potential
correlations between the transport characteristics of multiple similar (or
dissimilar) gases15. A unified model that harnesses data from (1) diverse
sources (i.e., measured and simulated), (2) spanning multiple correlated
properties (i.e., P, D, & S), and (3) for various gases, can lead to enhanced
predictive performance and generalizability, as will be demonstrated here.

Akey ingredient of ourMT learning approach involves simulationdata
that could complementmeasured data for gas transport, as illustrated in Fig.
1a. To achieve this, we have designed a high-throughput molecular
dynamics (MD)andMonteCarlo (MC) simulationpipeline, depicted inFig.
1b.This pipeline generates data for gasdiffusivity (Dsim) and solubility (Ssim);
the subscripts explicitly indicate the source of the data. Simulated gas per-
meability (Psim) is then derived from the product of Dsim and Ssim, as pre-
scribed by Eq. 1. Experimental data are labeled as Pexpt,Dexpt and Sexpt. Data
for 6 different gases (CO2, CH4, O2, N2, H2, and He) span this study. An
overview of the dataset is presented in Fig. 1c. With this fused dataset, ML
models for gas transport properties are created using our newly-developed
graph neural networks method – polyGNN22, thus completing the MT
learning pipeline as visualized in Fig. 1a. The input for polyGNNconsists of
polymer “Simplified Molecular-Input Line-Entry System” (SMILES)31

strings. These SMILES strings are translated into graph representations and
fingerprints, an essential ingredient for the property prediction model
trained on the integrated dataset. The architecture of polyGNN, exhibited in
Fig. 1d, illustrates this process.

To test our MT learning approach, we constructed four distinct
models to examine and benchmark the impact of incorporating multiple
data streams. These models were designed to emulate real-world usage
scenarios for the prediction model’s application and to assess
the improvements in prediction capabilities. To evaluate the efficacy of the
MT learning, a comparison with ST learning is employed. Through these
case studies, we demonstrate that MT learning surpasses conventional
learning models by integrating diverse data sources and extracting
meaningful correlations, particularly in data-scarce scenarios. Further-
more, the inclusion of diverse property data in this approach substantially
broadens the coverage of the chemical space and effectively addresses the
ML extrapolation problem. This is an ongoing process though, one that
can lead to continuous improvement as more data becomes available.We
then performed a head-to-head comparison of our newMTmodel against
our previous, then state-of-the-art gas permeability predictor, deployed at
Polymer Genome (https://www.polymergenome.org)11, making predic-
tions across 13 polymer classes and demonstrating the superiority of the
present model.

Finally,wehighlight the power of the present development in the realm
of materials discovery. Robeson-type trade-off plots are created for gas
permeability, diffusivity, and solubility (by pairing each with selectivity), for
over 13,000 known (i.e., previously synthesized) polymers. These trade-off
plots reveal interesting candidates, as well as the true property limits across
the known polymer chemical space.Most importantly the limitations of the
present model (in terms of recognizing chemical spaces where the model is
uncertain) are also revealed.

By integrating high-throughput simulation data with available mea-
sured data and employing data fusion techniques, one can progressively
enhance the accuracy and generalizability of predictions. This philosophy
and strategy holds the potential to advance polymer discovery not only for
membrane technology but also for other applications.

Results
Experimental data acquisition
Measuredgas transportproperties (permeability, diffusivity, and solubility) for
six different gases (CO2, CH4, O2, N2, H2, and He) were obtained from 84
publications listed in the Polymer Handbook32. The experimental testing
temperatures ranged from25 °C to35 °C, and testingpressuresvariedbetween
1 and 30 atm. The dataset comprised a total of 820 polymers and included
3748, 709, and 550 Pexpt, Dexpt, and Sexpt values, respectively, amounting to a
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total of 5007 data points. Factors such as polymer process history and testing
methodwere not directly included as parameters. Instead, themeasuredPexpt,
Dexpt, and Sexpt values are treated as samples from the distribution of possible
values for a given polymer. As such, it is important to consider the uncertainty
in the predictions, and not just the mean value of the prediction.

Molecular Dynamics and Monte Carlo simulations
Gas diffusivity and solubility data were generated using classical mole-
cular dynamics (MD) and Monte Carlo (MC) simulations, respectively.
These simulations were conducted using the open-source large atomic
molecular massively parallel simulator (LAMMPS) package33. The

Fig. 1 | Multi-task learning approach for predicting gas transport properties in
polymers. aMT learning pipeline. Our innovative multi-task learning approach
employs the fusion of experimental and simulation data, harnessed through the
power of polyGNN, a graph neural network architecture, to construct a state-of-the-
art predictor for gas transport properties b Simulation protocol. The process begins
with a polymer SMILES string31, from which the Polymer Structure Predictor (PSP)
package36 constructs a simulation box. This box undergoes a 21-step equilibration
procedure37. Subsequently, the equilibrated structures serve as the starting point for
gas diffusivity and solubility calculations, accomplished through molecular
dynamics and Monte Carlo simulations, respectively. Gas permeability is deter-
mined by the product of the simulated gas diffusivity and solubility. c Dataset

overview. Curated experimental and simulation data used for training themulti-task
MLmodels. d polyGNN22 architecture. Amethod based on graph neural networks is
initiated with a polymer SMILES string. The encoder converts the repeat unit
SMILES string into a periodic graph along with fingerprints, followed by the com-
putation of initial atomic and bond fingerprint vectors. Subsequently, the message
passing unit generates the learned polymer fingerprint. Introducing a selector vector
to convey data fidelity (experimental or simulation) and specific properties (per-
meability, diffusivity, solubility) for six gases, the approach then combines this
fingerprint and selector vector before passing it to the estimator, resulting in the
prediction of the desired property.
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atomic potential parameters for polymers were adopted from the general
AMBER force field 2 (GAFF2)34. In the simulations, the gas molecules
(i.e., CO2, CH4, O2, and N2) were treated as rigid molecules, and thus
were modeled with non-bonded potentials described by the TraPPE
(transferable potentials for phase equilibria) models35. To perform the
simulations, 27 polymer chains were inserted into the simulation box,
with each chain comprising of approximately 150 atoms, and their ends
were capped with a methyl group. The initial polymer configurations
were generated using the Polymer Structure Predictor (PSP) package36,
and a representative snapshot is shown in Fig. 1b. To achieve equili-
brated structures, all systems underwent a 21-step relaxation procedure
as recommended by Abbott et al.37. The mean-squared displacement
(MSD) of the polymerswas then computed, andmovement beyond a few
times the distance of the radius of gyration on average was assessed. This
step ensured that the polymers explored various conformations and
reached an equilibrium conformational state and density. Once the
equilibrated structures were obtained,Dsim and Ssimwere calculated. The
simulation protocol is outlined in Fig. 1b.

For the Dsim calculations, a total of 27 gas molecules were randomly
added to the simulation box. This specific number of molecules was chosen
to be small enough tomaintain the system in the dilute Fickian regime such
that the gasmoleculesdonot significantly influence eachother, and yet large
enough to obtainmeaningful statistics. Subsequently, all systemsunderwent
an additional equilibration of 10 ns in the NPT ensemble, followed by a
100–200 ns production run in the NVT ensemble. The choice of a
100–200 nsproduction rundurationwasmade to ensure the convergence of
gas diffusivity and gasMSD slope across a broad spectrumof polymer types.
While shorter time frames are adequate for certain instances, there are cases
where the extended range of 100–200 ns is necessary to achieve the desired
level of convergence. To illustrate this behavior, we present an analysis of
simulation time versus methane diffusivity for polyethylene, polyimide,
polystyrene, and polymethyl methacrylate, with the results detailed in
Supplementary Figure S1. The box size in the NVT run was fixed using the
average spacing and density obtained from the last 1 ns of the NPT run.
Nosé-Hoover thermostat and barostat were employed with a damping
parameter of 100 time steps for each, and a time step of 1 fs was used in all
MD simulations. The barostat coupled the three dimensions of the box to
maintain a cubic box for all systems. Simulation outputs were saved every
1000 fs and block averaging from one polymer configuration was used to
calculate an average Dsim and standard deviation from the gas MSD. Block
averaging allows for the reduction of random noise and more reliable sta-
tistical measures38.

For the Ssim calculations, a 5 ns production run was performed on
equilibrated structures in an NVT ensemble. During this 5 ns run, a
snapshot of the structure was captured every 100 ps, resulting in a total of
50 snapshots. Employing an ensemble of snapshots allows for improved
sampling and a standard error, which is crucial for accurate estimation of
Ssim

39. Using a built-in LAMMPS function (https://docs.lammps.org/fix_
widom.html), 25,000 gas particles were inserted per snapshot, at random
positions, following theWidom insertionmethod40. Thismethod involves
determining the excess chemical potential resulting from the insertion of
gasmolecules into thepolymer, which allows for the estimation ofHenry’s
constant. Henry’s constant indicates how easily a particular gas dissolves
in the polymer. Henry’s Law is then used to obtain gas solubility from
Henry’s constant, with an assumption of a partial pressure equal to 1 atm,
which is the IUPAC standard testing condition41. This derivation is
detailed in themethods section.No relaxationwas performed to adjust the
positions of the polymer atoms or the gas particles during the insertion
process. Langevin thermostat was used with a time step of 1 fs for all MC
simulations. 25 polymer configurations were used to calculate the Ssim,
standard deviation, and the standard error from the excess chemical
potential.

Figure 1b provides an overview of the simulation protocol used, and
details of Dsim estimation from gas MSD and Ssim from the excess chemical
potential are described in the Methods section.

Validation of MD and MC simulations
As an essential step of this investigation, we aimed to validate and calibrate
the accuracy of the MD andMC predictions and assess the extent to which
the simulations capture trends in gas transport properties. Performing
classical simulations with a specific force field for polymer-gas systems
across extensive chemical spaces to estimate gas diffusivity and solubility is a
relatively rare endeavor.While generic force fields like GAFF2 are designed
for a wide variety of materials, they often require fine-tuning of potential
parameters for each unique material to attain better accuracy.

A total of 584 polymer-gas systems were simulated, out of which
342 systems had corresponding experimental measurements. The addi-
tional simulated systems were intended to expand the chemical coverage of
the model. A comparison of Psim, Dsim, and Ssim against their respective
experimental values, Pexpt,Dexpt, and Sexpt, is illustrated in Fig. 2. Overall, the
simulations tend to overestimate the measured values, but they effectively
capture the general trends across the polymer-gas chemical space con-
sidered. The overestimation of Dsim values, especially in low diffusivity
regimes, can be attributed to the difficulty of classical force fields to accu-
rately capture rare events and handle large chemical spaces42,43. More spe-
cifically, the simulated polymer systems often exhibit lower densities
compared to experimental systems, asmodeled systems are approximations
of the real polymeric materials and may include lower molecular weights
and limited equilibration times. In our methodology, we employ a 21-step
polymer equilibration relaxation procedure, which results in consistent
density trends compared to experimental systems. However, a slight
underestimation of density remains, as also observedbyAbbott et al. in their
study employing the same procedure37. This increased free volume allows
gasmolecules tomovemore easily andquickly through the polymer system,
resulting in higher diffusivity.

Similarly, the discrepancies of Ssim relative to Sexpt may be due to the
approximations inherent to theWidom insertion approach and the quality
of the classical forcefields across chemical spaces.Nonetheless, the favorable
trends that the force fields can capture provide optimism for the usage of
such simulation-derived datasets, albeit with lower fidelity, in multi-task
learning frameworks. Another essential aspect of the validation is the
derivation ofPsim, from the product ofDsim and Ssim using Eq. 1.While non-
equilibrium MD can be used to simulate Psim, it requires a more complex
setup and can be computationally intensive.

Multi-task model benchmark
To elucidate the effect of data fusion, we train and compare both ST andMT
polyGNN models, using a subset of the experimental data collected and
simulation data generated. These models were evaluated based on the
predictive accuracy of Pexpt, using various holdout train and test splits of 293
systems (comprised of 80 unique polymers with varying available gas data).
For instance, in a 20/80 split, 20% of the Pexpt data is set aside as testing data,
while 80% is used to train the model. To ensure representative data sam-
pling, stratified samplingbasedonpolymerSMILESwasusedwhensplitting
the data into train and test sets. In this type of sampling, when a polymer is
selected for the test set, all gas data for Pexpt associated with that polymer are
withheld from the training set. This also provides insight into how well the
model extrapolates to new unknown polymers. The polyGNN model
training parameters used are detailed in Supplementary Table S1.

In Fig. 3, we illustrate the twomodel types, ST andMT, along with the
details of the train and test splits. The performance of the models was
evaluated using two key metrics: the coefficient of determination (R2) and
the order ofmagnitude error (OME)–units in Barrer. R2 assesses howwell a
model predicts an outcome, while OME quantifies the prediction error in
terms of orders of magnitude (taken as the logarithm of the mean absolute
error). We conducted four random seed selections of the training and test
sets to compute the statistics of the model performance.

Our MT learning methodology comprises two primary components:
the integration of simulation data and the inclusion of correlated experi-
mental data. To establish a baseline for comparison, we employ a STmodel.
Shown in Fig. 3a and represented by the “ST” row in Fig. 3b, the STmodel is
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exclusively trained using Pexpt data. Due to its reliance on limited data and
the absence of diverse property inputs, the ST model’s coverage of the
chemical space is inherently constrained. As the test set percentage
increases, this model is trained on progressively reduced amounts of data,
leading to an anticipated decrease in predictive performance. This trend is
evident in Fig. 4 where the R2 decreases and the OME increases as the ST
model is trained on diminishing data portions. In the most challenging

scenario (80% test set size), the R2 dropped to less than 0.50 and the OME
increased to ≈0.44 Barrer.

Now let’s consider the first element of our MT learning approach,
specifically the augmentation ofPexpt training datawith Psim, represented by
the “MT-1” row in Fig. 3. TheMT-1model is enrichedwith simulation data
spanning the test set space. Its primary purpose is to exploit the correlations
between measured and simulated data learned from the training set. This
scenario mirrors situations where experimental data is unavailable, and
simulation data is introduced to guide the model’s predictions. Upon
examining theMT-1model, its performancenoticeably surpasses that of the
baseline ST model. The MT-1 model achieves an average R2 and OME of
≈0.77 and≈0.30, respectively, as shown in Fig. 4 (MT-1). This improvement
is particularly pronounced when the test set size reaches 80%, where the
coverage of experimental data within the chemical space is most limited.
This accentuates the ability of data fusion models, reinforced with simula-
tion data, to effectively mitigate the challenges of extrapolation that con-
ventional models (trained solely on a single experimental property) would
inevitably confront. Furthermore, as another demonstration, this analysis
was extended to experimental and simulation data for gas diffusivity,
resulting in a similar strengthening in performance, as illustrated in Sup-
plementary Figure S2. This observation underlines the value of bolstering
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models. Four distinct models were developed to assess the impact of MT learning.
The first model (ST) exclusively incorporated experimental gas permeability data. In
contrast, the subsequent MT models progressively integrated additional data. The
presence of each data type in themodel is indicated by a black checkmark. Here, P,D,
and S represent gas permeability, diffusivity, and solubility, respectively. The
abbreviation expt corresponds to experimental data, while sim signifies
simulation data.

-3

-2

-1

0

1

-4 -3 -2 -1 0

S
im

u
la

te
d

 lo
g

10
S

 (
cc

(S
T

P
)/

cc
*c

m
H

g
) 

Experiment log10 S (cc(STP)/cc*cmHg)

-13

-12

-11

-10

-9

-8

-7

-6

-13 -12 -11 -10 -9 -8 -7

S
im

u
la

te
d

 lo
g

10
P

 (
B

ar
re

r)
 

Experiment log10 P (Barrer) 

-8

-7

-6

-5

-10 -9 -8 -7 -6 -5

S
im

u
la

te
d

 lo
g

10
D

 (
cm

2 /
s)

Experiment log10 D (cm2/s)

r=0.8264

342 systems 
95 distinct polymers

331 systems 
96 distinct polymers

r=0.7834

r=0.7794

273 systems 
82 distinct polymers

(a)

(b)

(c)

Fig. 2 | Validation of gas transport simulations. a Gas permeability parity plot,
b Gas diffusivity parity plot, and cGas solubility parity plot. Parity plots comparing
the results from simulations against experiment data. Simulated gas permeability
was derived using Eq. 1, using simulated gas diffusivity and solubility as inputs. The
red lines represent trends in predicted data, while the black lines depict the parity
lines of optimal fit. The error bars for all plots are represented in standard deviations.
Error propagation techniques were employed to calculate the error bars for gas
permeability. While some overestimation is expected across all cases, a qualitative
correlation is demonstrated.

https://doi.org/10.1038/s41524-024-01373-9 Article

npj Computational Materials |          (2024) 10:186 5



experimental data with simulation data, indicating its potential extension to
other properties of interest as well.

Movingon to the secondcomponentof ourMT learningmethodology,
we focus on augmenting the Pexpt training data with Dexpt and Sexpt, repre-
sented by the “MT-2” row in Fig. 3b. The inclusion of this supplementary
data serves the purpose of empowering the model to leverage knowledge
from other available pertinent properties and established physics andmake
predictions for the Pexpt values. In this scenario, a remarkable enhancement
is observed, leading to a significant boost in predictive performance. Spe-
cifically, the average R2 and OME is ≈0.93 and ≈0.12, respectively, as dis-
played in Fig. 4 (MT-2). Comparing the MT learning component in the
previous passagewith this second component reveals a notable difference in
performance. While both approaches expand the coverage of the chemical
space, MT-2 stands out due to the incorporation of high-fidelity experi-
mental data. Unlike MT-1, where all augmented data comes from simula-
tion, the new information inMT-2 originates from additional experimental
sources, contributing to superior predictive capabilities. The MT-2 model
can be likened to an ideal scenario where complementary or correlated high
fidelity data is readily available. In scenarios where such ideal conditions are
notmet, theMT-1 approach excels by effectively integrating simulationdata
to achieve a respectable level of prediction accuracy.

In our final model, we combine the strategies embedded in both the
MT-1 andMT-2models, creating a unifiedmodel represented by row “MT-
3” in Fig. 3b. This comprehensive model encompasses all available experi-
mental and simulation data points. The performance of the MT-3 model
slightly outperforms that of theMT-2model, exhibiting an elevated average
R2 of ≈0.96 and a comparable average OME of ≈0.10, as depicted in Fig. 4

(MT-3).Overall, thismodel achieves superior performance compared to the
base ST model, which had an average R2 and OME is ≈0.57 and ≈0.38,
respectively. These results establish the efficacy of integrating simulation
and correlated experimental data in successfully addressing the challenges
posed by ML extrapolation.

Production model benchmark
In the first iteration of our gas permeability prediction work, deployed at
Polymer Genome (https://www.polymergenome.org), a Gaussian process
regression algorithm was employed alongside a hierarchical polymer fin-
gerprinting scheme to train a STmodel11. In the presentwork, a transition is
made to polyGNN (a recently publishedGraphNeural Networkmodel that
automatically generates fingerprints from SMILES strings), data augmen-
tation, and invariant transformations to train a MT model. The models
presented in the preceding sectionwere trained using a subset of our dataset,
a deliberate choice made to clearly illustrate the impact of incorporating
diverse data types on prediction capabilities in amulti-task setting.Ourfinal
productionmodel adopts theMT-3model scheme andnow incorporates all
the available experimental and simulation data for gas permeability, diffu-
sivity, and solubility. With this latest model iteration, our objective is to
achieve substantial improvements over the previous version and to push the
boundaries of transport predictions through polymers. The principal
component analysis (PCA) plot in Fig. 5a, created using Polymer Genome
fingerprints, displays the chemical space of the present study against 13,000
known polymers in our database. This plot visually demonstrates our
productionmodel’s expansion to include additional chemical compositions,

(a) PCA plot

(b) Dataset comparison

Fig. 5 | Comparison of chemical space and data coverage by the original and
production models. a Principal Component Analysis (PCA) plot. The PCA plot
demonstrates an expanded coverage of chemical space by both the original and
production models. The orange and blue dots correspond to the coverage of the
original and productionmodel, respectively, while the grey dots represent the 13,000
known polymers in our database. bDataset comparison. A comparison between the
original and production models reveals an incorporation of diverse data types. The
production model integrates experimental and simulation data for permeability,
diffusivity, and solubility properties.
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Fig. 4 | Predictions of Permeability at various train test splits. a Coefficient of
determination (R2). b Order of magnitude error (OME). R2 evaluates the predictive
performance of amodel, whereasOMEmeasures the prediction error by considering
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The different test set sizes illustrate the impact of reducing training data. At 80%, the
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reflecting a data-scarce region with limited chemical coverage. Comparatively, the
MTmodels show significant improvement over the ST model, particularly at higher
percentages of the unseen test set.
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increasing the range of polymers for which the model can make accurate
predictions. We also present a PCA plot in Supplementary Figure S3,
illustrating the chemical coverage of our simulation data in comparison to
experimental gas transport data and 13,000 known polymers in our data-
base. Figure 5b highlights the data fusion aspect of the model, showcasing
the contrast between the datasets employed in the original and current
models. Particularly noteworthy is the considerable enlargement of our
dataset, expanding from315 to1052polymers, accompaniedby a significant
increase in the total number of data points.With this amplified dataset, our
model gains the capability to not only predict gas permeability but also
include gas diffusivity and solubility. This broader scope of predictions
reflects the power of our MT learning approach and its ability to leverage
diverse data sources for a more comprehensive understanding of gas
transport properties through polymers.

To highlight the superior performance of the present model, Pexpt
predictions weremade on a holdout test set of 153 systems, consisting of 31
polymers across 13 polymer classes, following a similar approach as the
original model11. The summarized outcomes are presented in Table 1, and
the specific polymers selected for this assessment are listed in Supplemen-
tary Table S2. The overall R2 has increased from 0.93 to 0.96 in the updated
model compared to the original. Upon a more detailed examination of
individual polymer classes, it becomes evident that the R2 metric exceeds
90% for all classes for the production model, with a particularly significant
enhancement observed for polyphosphazenes, where the R2 value has risen
from 0.49 to 0.86. Additionally, substantial advancements have been
achieved in prediction accuracy for polymers such as polynorbornenes,
polypropynes, substituted polyacetylenes, and polypentynes. The dimin-
ished performance of the originalmodel in these cases could be attributed to
either limited data availability for certain polymer classes or inherent
uncertainties within the experimental data. Importantly, it should be noted
that the test data points for these specific polymer classes vary widely,
ranging from 4 to 53 data points. This variability in data availability across
diverse classes could potentially contribute to lower individual R2 values for
specific classeswhile concurrently contributing to a higher overallmodel R2.
Nonetheless, the updated model effectively overcomes these performance
variations, highlighting its robustness and versatility. Further insights into
the model’s performance are depicted in parity plots showcasing train and

test set predictions for the 31 evaluated polymers, shown in Supplementary
Figures S4 and S5.

Forward-looking design
The ideal performance of gas separation membranes is related to two
intrinsic material properties: the gas permeability and the permselectivity
between specific target gas pairs. Ideally, a membrane would provide high
permeability and permselectivity to maximize throughput and minimize
costs. In 1991,Robeson44 documented a trade-off relationship between these
two characteristics for polymers, often referred to as “the upper bound”.
This principle asserts that polymers with high permeability typically exhibit
diminished selectivity, and vice versa. These upper bounds illustrate the
trade-off relationship for pairs of commongases (CO2,CH4,O2,N2,H2, and
He), highlighting the best possible combination of permeability and
permselectivity. This upper bound establishes a comparative benchmark for
evaluating the performance metrics when designing novel membranes. As
such, data driven methods that establish a relationship between polymer
structure and polymer membrane performance hold immense potential in
accelerating the design of tailor-made polymers for specific separation tasks.

To this end, we demonstrate our model’s capability to make these
assessments. We constructed permeability trade-off plots for ≈13,000
known polymers (i.e., previously synthesized) for the gas pairs; CO2/CH4,
CO2/N2, H2/CH4, H2/CO2, O2/N2, and N2/CH4. Figure 6a shows the per-
meability trade-off plot for CO2/CH4, while the other gas pairs are shown in
Supplementary Figure S6. The ML predicted gas pair permeability and
selectivity closely alignwith the available experimental data and the bounds,
while simulation data over-predicts as expected. Both experimental and
simulation data are also shown in Fig. 6a. By predicting property values for
the ≈13,000 known polymers, we can gain a clearer understanding of the
overall trade-off behaviors. Robeson’s upper bound, initially established in
1991, is presented alongside updated bounds introduced in 2008 and
201945,46. PIM-DM-BTrip, a polymer with superior performance, is high-
lighted as a part of the set of polymers that helped define the 2019 bound.

Research endeavors commonly focus on permeability trade-off plots,
however as permeability can be broken down into diffusivity and solubility
components, we also created CO2/CH4 trade-off plots for these properties,
as shown in Fig. 6b, c. Diffusivity and solubility trade-off plots for CO2/N2,
O2/N2, and N2/CH4 are illustrated in Supplementary Fig. S7 and S8. When
using these models, the sensibility of predictions can be evaluated by
observing common trends for the properties. For example, gas diffusivity
tends to follow the relationship of DO2 >DCO2 >DN2 >DCH4, a pattern
primarily driven by the molecular diameter effects. However, Fig. 6b,
illustrates instances where the CO2/CH4 diffusivity selectivity falls below 1
(i.e., below 0 in the log scale). This contradicts the intuition that CO2 dif-
fusivity should almost always be greater than CH4. Although there are cases
whereDCO2/DCH4 < 1, it is a rare occurrence. A closer examination of these
suspicious predictions reveals that most of them fall in the lower diffusivity
regime. In this regime, predictionuncertainty, calculated usingMonteCarlo
dropout, tends to be inflated, revealing lower confidence for predictions.
This heightened uncertainty can be directly attributed to the scarcity of data
in this specific range, a challenge that is particularly pronounced in both
simulations and experimental measurements. Indeed, as can be seen from
Fig. 6b, there are no measured or simulation data points in this property
range, and hence, theML predictions must be viewed with extreme caution
and suspicion. This underscores the importance of recognizing that these
models are valuable tools, but they must be used in conjunction with che-
mical intuition and an understanding of prediction uncertainties, especially
for predictions in regions far away from the chemical space of the training
set. This becomes especially criticalwhenassessing areaswith limiteddata or
when venturing into new domains. These considerations thus mandate
either experiments or simulations in such unexplored chemical spaces to
better inform the ML models.

Trade-off plots are typically employed in designing amorphous poly-
mers for gas separation, but when considering other applications such as
packaging, thedegree of crystallinity of thepolymermust be considered.Gas

Table 1 | Benchmarking model performances

Polymer Class Original
Model R2

Production Model R2

Conjugated Polymers 0.99 0.97

High Temperature Polymers 0.94 0.99

Parylenes 0.89 0.97

Poly(aryl ethers) & Poly(aryl ether
ketones)

0.92 0.98

Polyamides & Poly(amide-imides) 0.96 0.99

Polyarylates 0.95 0.97

Polycarbonates 0.75 0.99

Polyimides & Polypyrrolones 0.97 0.96

Polynorbornenes 0.51 0.95

Polyphosphazenes 0.49 0.86

Polypropynes, polyacetylenes,
polypentynes

0.56 0.94

Polysulfones 0.80 0.99

Vinyl & Vinylidene Polymers 0.77 0.99

Overall R2 0.93 0.96

Acomparative analysisof thepredictionsof theoriginal andproductionmodels across153systems,
encompassing 31 polymers and 13 polymer classes. The production model integrates data fusion,
integratingmultiple data sources andmultiple properties, whereas the originalmodel relies solely on
experimentally measured gas permeability. Bold values signify the model with a superior R2.
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transport behavior in semi-crystalline polymers varies due to the crystalline
regions acting as impermeable barriers against gas penetration47.Michaels et
al. originally described this behavior using a two-phase model, which
comprises a crystalline phase and an amorphous phase, where impedance is
directly proportional to crystallinity48. Weinkauf et al. extended this model
into a three-phase model that incorporates the ratio between the rigid
amorphous phase fraction and mobile amorphous phase fraction (RAF/
MAF)47. These models provide critical insights into the behavior of semi-
crystalline polymers and offer guidelines for tailoring their gas transport
properties to specific applications. The present work may be extended to

address such practical situations by planning simulations of gas diffusivity
and solubility through amorphous, crystalline, and amorphous-crystalline
interfaces.

Discussion
In this study, we introduce a novel multi-task (MT) learning approach that
leverages a combination of measured and simulation data, along with cor-
related properties to create a state-of-the-art predictor for gas transport
properties. To thoroughly evaluate the effectiveness of this approach, we
performed a benchmark study in which we compared the individual
impacts of each of these tasks and their collective effect when considered
together. It was revealed that the addition of interrelated measured data led
to a bigger benefit in enhancing the predictive capabilities of theMLmodel.
The situation indicates that multiple correlated ground truth (i.e., mea-
sured) property data are most desirable to generate accurate property
forecasts. However, in instances where rich measured data is unavailable,
easily producible simulation data, when combined with measured data,
demonstrates its potential by offering informed predictions. In any case,
both scenarios of MT learning were able to learn underlying physical cor-
relations and are superior to single-task (ST) models that have a less robust
basis for predictions.

These ideas have been unified to create a model representing a major
advancement in predicting gas transport properties through polymers. This
model in a comparative analysis with the prior work displayed concrete
improvements, across 13 different polymer classes. Using our new ML
model we also generate selectivity trade-off plots for gas permeability, dif-
fusivity, and solubility for ≈13,000 known polymers (i.e., previously syn-
thesized). These plots provide insights into the strengths and limitations of
the modes, but more importantly, the need for data across diverse chemical
spaces, e.g., via simulations if measured data proves to be laborious to
generate. The prospect of continual expansion of the accessible polymer
universe will push the frontiers of what is achievable in terms of properties
and performance.

Methods
Gas diffusivity calculation in MD simulations
From our MD simulations, the diffusivity (Dsim) of gas molecules was
obtained by:

Dsim ¼ 1
6Ngas

lim
t!1

d
dt

XNgas

i¼1

4ri tð Þ2
� � ð2Þ

where Ngas is the number of gas molecules in the simulation cell, t is the
simulation time, ri(t) is the position of the gas molecule i at time t,
Δri(t) = ri(t)−ri(0), is the displacement of gas i between time 0 and time t,
and 〈Δri(t)

2〉 is the mean square displacement (MSD) of gas molecule i at
time t. The gas MSD was block averaged over 2-5 non-overlapping
trajectories depending on the system dynamics (depending on whether
breaking the trajectory into shorter blocks still allows itsMSDcurve to reach
the Fickian regime). This block averaging was also used to calculate the
standarddeviation.Thediffusivitywasobtainedusing the slope froma least-
squares linearfit of thefinal decade of theMSDdata. The log-log slopes of all
the systems’MSD curves are in the range of 0.95–1.05, which is a common
range for classical MD simulation diffusivity studies49–51.

Gas solubility calculation in MC simulations
TheWidomInsertionmethodwasused to calculate theHenry’s constant (k)
of gasmolecules within aMonte Carlo simulation. In thismethod, we insert
N gas molecules into the simulation box (one at a time, at various random
locations), and the excess chemical potential (µex) of the gas in the mem-
brane is obtained. The estimation uses an ensemble average of the N
separate, random, insertions, the ith ofwhichwill change the internal energy

Fig. 6 | Gas transport trade-off plots. a Gas permeability, b Gas diffusivity, and
c Gas solubility. Using our model to predict ≈13,000 known polymers, we compare
the results to experimental data. The orange and blue dots correspond to the
experimental data and machine learning predictions, respectively, while the grey
dots represent simulated values. The original Robeson upper bound (1991) is
depicted as the dashed black line, with reevaluated bounds from 2008 and
2019 shown as red and yellow dashed lines, respectively, for gas permeability. There
are no established bounds for gas diffusivity or solubility, but the model predictions
closely align with the experimental data values. In the case of CO2/CH4 diffusivity
selectivity, the low diffusivity regime has high prediction uncertainty and should be
taken with caution.
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of the system by ΔEi.

uex ¼ �kbTln exp
�4Ei

kbT

� �� �
N

ð3Þ

where kb is Boltzmann constant,T is temperature andN = 25,000 insertions.
This estimation is defined for the dilute limit, where there are no gas-gas
interactions.Whenan insertionoverlapswith thepolymer in the system, the
µex results in minimal contribution towards gas solubility, and thus these
insertions with energies greater than 5kBT are discarded. With µex, we can
obtain Henry’s constant, k, of gas molecules by:

k ¼ exp
μex
kbT

� �
N

ð4Þ

With k, we then useHenry’s lawwhich states that the solubility (S) of a gas is
directly proportional to the partial pressure of the gas (Pgas), which takes the
form:

S ¼ kPgas ð5Þ

We assume a standard testing condition of partial pressure equal to
1 atm, and thus:

S ¼ k ð6Þ

In this work, for each polymer configuration, we takem = 50 dynamic
snapshots from a 5 ns production run on the equilibrated structure in an
NVT ensemble. An average solubility, Si of the configuration is obtained by:

Si ¼
1
m

Xm
j¼1

Sij ð7Þ

For proper convergence and as a measure of standard error, we use
n = 25 polymer configurations and Ssim is obtained by:

Ssim ¼ 1
n

Xn
i¼1

Si ð8Þ

The standarddeviation,σ, and standarderror, SE, are then calculatedas:

σ2 ¼ 1
n

Xn
i¼1

Si � Ssim
� 	2 ð9Þ

SE ¼ σffiffiffi
n

p ð10Þ

Final gas solubility values were screened for a SE of less than 5%.

polyGNN
The predictive model we used was polyGNN, a multitask graph neural
networkmethod that has shown promising results when dealingwith large-
scale multi-property datasets22. Briefly, polyGNN contains three modules:
the Encoder, Message Passing Block, and the Estimator. The inputs to
polyGNN are a polymer repeat unit and a property of interest (or,
equivalently, the property’s associated selector vector). The two outputs of a
polyGNN model are the repeat unit’s fingerprint and the value of the
property of interest. In the Encoder, the repeat unit is first converted to a
periodic graph, with each atom as a node and each bond as an edge. Then,
each node and edge in the graph are given an initial fingerprint. After the
graph elements have been assigned their initial features, the graph is passed
to the Message

Passing Block. Messages between neighboring atoms are iteratively
passed along chemical bonds. After each iteration, every node fingerprint is
updated using themessages, while each bond fingerprint remains the same.

The message passed from atom j to atom i at time step k is calculated
according to Eq. 11.

m kð Þ
i;j ¼ ϕ kð Þ x kð Þ

i ; x kð Þ
j ; ei;j

� �
ð11Þ

where eachϕ(k) is a parameterized function, x kð Þ
i and x kð Þ

j are the encodings of
neighboring ij atoms after time step k, and ei,j is the fingerprint of the bond
that joins atoms i and j.m kð Þ

i;j ¼ 0 if i, j do not share a chemical bond. After
initialization, each node receives messages from all of its neighbors. These
messages are aggregated by some permutation-invariant function f (e.g.,
sum, mean, max). We use the sum in this work. The aggregated message,
along with the current node encoding, is used to update the node encoding.
The node update process is defined in Eq. 12.

x kð Þ
i ¼ χ kð Þ x k�1ð Þ

i ; f mi;j8j 2 1;Np

h in o� �� �
þ x k�2ð Þ

i ð12Þ

where each χ(k) is a parameterized function, p is a polymer, [1,Np] is the set of
integers between 1 andNp,Np is the number of atoms in the repeat unit of p,
and x(k) = 0,∀k < 0. Messages are passed for τ time steps, where τ is also the
capacity in this work. The fingerprint of the entire polymer, xp, is calculated
by the graph aggregation function Ag, as shown in Eq. 13.

xp ¼ Ag x τð Þ
i ; x 0ð Þ

i

� �
¼ 1

Np

XNp

i¼1

x τð Þ
i þ x 0ð Þ

i ð13Þ

Finally, xp and the selector s can be passed to the Estimator. Here, these
inputs aremapped to a polymer property prediction, yp, via a parameterized
function ψ, which represents the multilayer perceptron (MLP) depth, as
shown in Eq. 14.

yp ¼ ψ xp; s
� �

ð14Þ

ψ specifies the number of hidden layers between the input and output
layers, with this depth parameterized to range from2 to 14 layers. During
training, the parameters of all ϕ(k), χ(k), ψ are learned simultaneously.
As shown in Eq. 12, our update step leverages skip connections, which
have been shown to improve the optimization of shallow layers in deep
neural networks.

All neural network architectures used dropout layers, fully connected
layers, andLeakyReLUactivations (with a negative slope equal to 0.01).MC
dropout was implemented by performing 10 forward passes through the
network, each time applying dropout to different subsets of nodes. All
architectures were created using PyTorch and PyTorch Geometric. The
weights of all models were optimized using the Adam optimizer and the
mean squared error loss function.

Training procedure
The training procedure used is similar to that in the polyGNNwork, where
the models are ensemble models, composed of several submodels22. The
output of the ensemble is computed by the average of each submodel’s
output. The data used for training was grouped based on gas transport type
(P, D, & S), gas type, and data source (experiment or simulation). Once
grouped, each data subset was then min-max scaled between 0 and 1. The
polyGNN model training parameters used are detailed below and also
compiled in Supplementary Table S1.

Next, the entire data set was stratified and split into training and test
sets (percentages of test setswere 20%, 40%, 60%, or 80%) based on polymer
SMILES strings three times. Using the NNDebugger package52, the optimal
capacity was found by attempting to overfit (R2 > 0.97) the entire training
data set. If the data was not overfit, then the capacity corresponding to the
highest R2 value was used. The capacity range considered was between two
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and fourteen. The training data set was then divided into an 80% hyper-
parameter (HP) training set and a 20% HP validation set. The remaining
HPs (batch size, learning rate,dropoutpercentage)wereoptimizedusing the
package scikit-optimize53. The set ofHPs corresponding to the lowest RMSE
on the HP validation set was considered optimal.

Finally, the training data set was split into five folds using cross-
validation (CV), producing one CV train data set and one CV validation
data set per fold. For each fold, the model’s HPs were fixed as the optimal
HPs and the model’s learnable parameters were fit to the CV train data set
for 1000 epochs. At the end of 1000 epochs, the model parameters corre-
sponding to the epoch with the lowest RMSE in the CV validation data set
were chosen. After all fivemodels were trained on their respective CV splits,
the models were placed in an ensemble. The ensemble was used to make
predictions of the test set, that were completely unseen by the ensemble
during HP optimization or model training with CV.

Data availability
The experimental sources of data used are reported in the paper. All data,
experimental and simulation, are available free of charge at https://github.
com/Ramprasad-Group/polyVERSE/tree/main/Other/Gas_permeability_
solubility_diffusivity.

Code availability
The Polymer Structure Predictor (PSP) package to create simulation poly-
mer structures is available free of charge at https://github.com/Ramprasad-
Group/PSP. The code used to perform molecular dynamics (MD) and
Monte Carlo (MC) simulations is available free of charge at https://github.
com/Ramprasad-Group/polyVERSE/tree/main/Other/Gas_permeability_
solubility_diffusivity. The code used to train our polyGNN models is
available at https://github.com/Ramprasad-Group/polygnn for aca-
demic use.
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