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AI-assisted discovery of high-temperature
dielectrics for energy storage

Rishi Gurnani 1,6,8, Stuti Shukla2,8, Deepak Kamal1,8, Chao Wu3,7,8, Jing Hao3,
Christopher Kuenneth 1,4, Pritish Aklujkar5, Ashish Khomane2,
Robert Daniels 2, Ajinkya A. Deshmukh6, Yang Cao 3, Gregory Sotzing2,5 &
Rampi Ramprasad 1

Electrostatic capacitors play a crucial role as energy storage devices inmodern
electrical systems. Energy density, the figure of merit for electrostatic capa-
citors, is primarily determined by the choice of dielectric material. Most
industry-grade polymer dielectrics are flexible polyolefins or rigid aromatics,
possessing high energy density or high thermal stability, but not both. Here,
we employ artificial intelligence (AI), established polymer chemistry, and
molecular engineering to discover a suite of dielectrics in the polynorbornene
and polyimide families. Many of the discovered dielectrics exhibit high ther-
mal stability and high energy density over a broad temperature range. One
suchdielectric displays an energydensity of 8.3 J cc−1 at 200 °C, a value 11 × that
of any commercially available polymer dielectric at this temperature. We also
evaluate pathways to further enhance the polynorbornene and polyimide
families, enabling these capacitors to perform well in demanding applications
(e.g., aerospace) while being environmentally sustainable. These findings
expand the potential applications of electrostatic capacitors within the
85–200 °C temperature range, at which there is presently no good commercial
solution. More broadly, this research demonstrates the impact of AI on che-
mical structure generation and property prediction, highlighting the potential
for materials design advancement beyond electrostatic capacitors.

Electrostatic capacitors are critical energy storage components in
advanced electrical systems in the defense, aerospace, energy, and
transportation sectors. Compared with other, more vigorously dis-
cussed, energy storage devices—such as batteries, fuel cells and
supercapacitors—electrostatic capacitors offer unparalleled power
density (107W kg−1)1. This attribute renders electrostatic capacitors
particularly advantageous for deployment in diverse fields, including
wind pitch control (with maximum temperatures around 125 °C),
hybrid, all-electric and rail vehicles (~150 °C), pulsed power systems

(~180 °C), aircraft and aircraft launchers (~300 °C), and space
exploration (~480 °C)2. An existing challenge, however, is to sig-
nificantly enhance the energy density Ue—particularly at high tem-
peratures—of electrostatic capacitors, thereby unlocking substantial
space and weight saving. For example, DC bus capacitors in power
inverters of hybrid vehicles can take up more than 23% of the total
weight and 35% of the overall volume3. Cooling systems, essential to
maintain the stability of temperature-intolerant dielectrics, take up
additional space and volume.
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Today’s high-power capacitors use biaxially oriented poly-
propylene (BOPP) as the dielectric, a material that has served well for
over three decades and one on which the community, industry, and
supply chain have heavily invested. BOPP and similar polyolefins pos-
sess low dielectric loss and a large electronic band gap Eg due, in part,
to the absence of π-stacking moieties. However, these polymers also
have a low dielectric constant ϵ and poor mechanical stability at ele-
vated temperatures, both attributes correlated to the lack of π-π
stacking. The interplay of these various factors results in a situation
where BOPP maintains sufficient Ue at room temperature but then
rapidly degrades with increasing temperature.

Commercial alternatives to BOPP with high thermal stability have
been explored. However, these polymers trade stability for low Eg and,
consequently, a lowUe. Examples of these polymers are polyimide (PI)
or Kapton®), polyethertherketone (PEEK), polyetherimide (PEI), and
fluorene polyester (FPE). Additional features are expected of these
materials, as discussed in subsequent sections, exposing the tightrope
that must be walked to craft functional polymer dielectrics that can
meet the demands of modern and future technologies.

To a large extent, the function of a polymer is governed by its
underlying chemistry. The number of variations that can be produced
by chemical permutations in a single polymer is staggering. For
instance, derivatizing styrene alone through arene functionalization
can lead to 107–1014 possibilities (see Section S1). Within the vast
expanse of chemical possibilities for all polymers, it is likely that a wide
variety of high-performance dielectrics await discovery. Well-trained
and calibrated artificial intelligence (AI), capable of handling large
numbers that challenge human imagination, can help converge on
extraordinary materials rapidly. During the past decade, this powerful
approach has guided the discovery, chemical synthesis, and physical
characterization of materials across domains4–6, including polymer
dielectrics with high energy density up to 100 °C7,8.

Efficient advancement in materials discovery involves selecting
or generating a chemical subspace, estimating the properties of
each material within it, and then selecting—based at least in part on
estimated properties—candidates to synthesize and test. The chal-
lenge lies in (1) creating a subspace that is expansive enough to
uncover interesting unknown materials while (2) constraining false
positives, defined as challenging-to-synthesize hypothetical mate-
rials. Additionally, property estimation must be both (3) accurate
and (4) efficient, with the latter becoming increasingly crucial as the
chemical subspace expands. Addressing all these aspects simulta-
neously is a non-trivial task. This study introduces the polyVERSE
("polymers designed by Virtually-Executed Rule-Based Synthesis
Experiments”) paradigm (Fig. 1a), showcasing its success in
achieving these four attributes in the context of high-temperature
dielectric search. In this AI-driven approach, polymers are gener-
ated from commercially-available monomers using an expert sys-
tem (Fig. 1b) and properties are estimated using multitask graph
neural networks (Fig. 1c). These property estimations are used to
guide the selection (screening) of promising polymers from the
larger population (Fig. 1d).

Here, we report a previously unknown polynorbornene dielectric,
named PONB-2Me5Cl (see Fig. 2d), with high Ue over a broad range of
temperatures. At 200 °C, as shown in Fig. 2a, the polymer has a Ue of
8.3 J cc−1. This value is over an order of magnitude higher than that of
any commercial alternative and places it among the best polymer
dielectrics9–11 ever reported at this temperature. Below 200 °C, PONB-
2Me5Cl also exhibits a high energy density, surpassing all commercial
polymers and trailing only PSBNP-co-PTNI0.029. It is worth noting that,
for PSBNP-co-PTNI0.02, more steps may be involved (compared to
PONB-2Me5Cl) for its synthesis, due to it being a copolymer, and due
to the complexity of its comonomers. It is also likely that theremay be
differences in the measurement protocols used in the previous study
relative to the present one12.

PONB-2Me5Cl was discovered in silico using polyVERSE, and then
subsequently synthesized and characterized. Discovery of the high-
performing PONB-2Me5Cl polymer and the development of the poly-
VERSE paradigm are two outcomes of this work. In addition, we pro-
pose a host of polymer design advancements to be considered in the
future. These include modified versions of PONB-2Me5Cl (achieved
through R-group engineering or the incorporation of nanofillers or
coatings) and selected polyimides, a class we prioritize based on
existing functional high-temperature polymers13,14. These designs dis-
play the potential for boosted high-temperature Ue and reduced loss,
while also allowing for synthesis using green solvents.

Using just one of many polymerization templates, the present
work has shown the power of AI in producing state-of-the-art polymer
dielectrics with remarkable energy storage. Moving on to hundreds of
other known templates, it is fair to assume that even better performing
materials await discovery.

Results
AI-assisted dielectric design
For use in high-temperature applications, the dielectrics in capacitors
must be stable at high operating temperatures (e.g., they must have a
highglass-transition temperatureTg)while simultaneously exhibiting a
high Ue. The maximum Ue of an electrostatic capacitor using a linear
dielectric is determinedby the dielectric’s breakdownfield Ebd and its ϵ
(Eq. (1)).

Ue =
1
2
ε0ϵE

2
bd ð1Þ

where ε0 is the vacuum permittivity. Due to the intricate nature of
dielectric breakdown mechanisms in polymers, direct simulations of
engineering breakdown under realistic conditions are impractical
(although the intrinsic breakdown of perfect, defect-free, crystalline
systems can be handled15–17). A pragmatic alternative approach is to
include a positively correlated proxy such as Eg18 during the design
process. In summary, a polymer with a high Tg (e.g., >100K), large Eg
(>4 eV), and high ϵ (>3) is likely to exhibit a high Ue at high
temperatures.

Regrettably, the simultaneous achievement of all three property
requirements is beyond the capabilities of available polymers. We cast
the search for suitable dielectrics as an optimization problem over the
space of polymer chemical structures. polyVERSE is a three-step for-
malization of the problem, including chemical structure generation,
property prediction, and screening steps. In the first step, polymer
structures are derived from small molecules using established che-
mical reactions. As a result, the requisite monomer(s) and poly-
merization reaction for any generated polymer are determined. This
advantage is absent from the majority of prior work19–24 on polymer
chemical structure generation, where reaction chemistry is not expli-
citly encoded, resulting in a large fraction of structures that lack easily
identifiable monomers and reactions.

Recent works, such as the Open Macromolecular Genome
(OMG)25 and Small Molecules into Polymers (SMiPoly)26, have also
employed known reactions to generate polymer chemical structures
from small molecules. However, it is important to consider certain
constraints when dealing with polymer reactions to increase the like-
lihood of high molecular weight products. Our methodology stands
out by addressing these constraints during the structure generation
process. Another difference is that, while OMG uses generative mod-
eling to populate their monomer database, we currently rely on
commercially availablemonomers. Thesepragmatic choices are aimed
at increasing the probability of synthetic amenability of the proposed
chemical structures.

The starting point of polyVERSE is a set of small molecules,
represented by SMILES strings, derived from the databases ZINC1527
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and ChEMBL28. The tranche of small molecules selected from the
ZINC15 database included those that were readily purchasable and
with standard reactivity. Counterions and chirality were stripped from
the SMILES strings. Finally, SAscore29 was used to remove complex
molecules, whittling the dataset down to ≈8 million unique available
monomers.

The next component of the chemical structure generation pro-
cess is a growing set of handcrafted reaction templates, one per
polymerization reaction. Each template contains a set of transforma-
tions (i.e., bond-breaking and -forming events) and a set of monomer
filters. In AABB-type polycondensation, a polymer is formed through
repeated reactions between so-called AA and BB monomers. This
reaction involves two monomers, so the template has two distinct
monomer filters, each filter containing multiple steps. Figure 1b

describes how these elements are used to produce polymers. First, the
monomer filters are used to select and reject monomers from the
available pool. Then, the selected monomer(s) undergo the transfor-
mation(s), forming a product—a polymer repeat unit—that is deposited
in the polyVERSE database.

As a first pass, we focus on polymers that can be formed by ring-
opening metathesis polymerization (ROMP) since this class contains
polymers with the best reported high-temperature Ue to date9,11. The
ROMP template contains one chemical transformation, i.e., cleavage at
the reactive site’s double bond, depicted in Fig. 2d. The template also
contains one monomer filter, since ROMP can proceed using just a
single type of cyclic olefin. To begin with, the filter checks if a given
molecule is a cyclic olefin. The remaining steps in the filter are moti-
vated by our structure-property models. For simplicity, the models

Fig. 1 | AI-assisted design of polymers for energy storage. aOur four-step design
approach. First, generate a pool of chemical structures. Then, predict the proper-
ties of each. Next, use the predicted properties to screen for the best candidates.
Finally, synthesize and characterize the selected candidates. b Chemical structures
are generated in three steps. First, curate a database of available monomers. Then,
choose a reaction. Use that reaction to select/reject each monomer. Finally, the
selected monomers are chemically-transformed from a monomer into a polymer
repeat unit. c Structure-property models are trained using multitask graph neural
networks33. The starting point is an example dataset containing labeled pairs of the

form [Structure, Properties]. Then, each chemical structure is converted to a
machine-readable graph, with heavy atoms as nodes and covalent bonds as edges.
A model is trained on the data to establish a mapping between a structure’s graph
and each property. An intermediate output, also learned during training, is the
fingerprint. Properties are predicted for each chemical structure in the polyVERSE
database. d Screening is performed using a sequence of carefully chosen, appli-
cation-specific, filters: high glass-transition temperature, band gap and dielectric
constant. In the figure, GNN stands for graph neural network and MLP stands for
multi-layer perceptron.
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assume perfectly repeating polymers with infinite molecular weight.
Because chemical reactions are inherently stochastic, perfect recur-
rence of the repeating unit along each polymer chain is not always
practical. However, this approximation is realistic for polymers with
narrow reaction pathways. Thus, our filter only acceptsmolecules with
one cyclic olefin group. Although infinite molecular weight is also not
possible in practice, the approximation becomes more apt as the
molecular weight of a polymer increases. Thus, our filter only accepts
molecules with olefin-containing rings of 3–5 atoms or 7–11 atoms.
Rings of 6 or 12+ atomsusually arenot sufficiently strained todrive the
ROMP reaction to high conversion30, resulting in lowmolecular weight
chains. Additionally, molecules with strong electrophilic groups (e.g.,
halides, acyl halides, carbonyls, and carboxyls) adjacent to the cyclic
olefin group are discarded due to their tendency to reduce or dis-
tribute the ring strain31.

Now that the discussion on chemical structure generation is
complete, another crucial component of polyVERSE is described,
namely, the mechanism used to model the relationship between
structure and properties. In this work, the properties of interest are Tg,
Eg, and ϵ. Establishing a direct connection between a polymer’s che-
mical structure and anyof theseproperties is highlynontrivial. Instead,
we usedata andML to learn three structure-propertymodels, one each
for the aforementioned properties. We note that, while Tg and Eg may
be modeled with high accuracy using only the chemical structure as
input32,33, ϵ can exhibit a strong dependence on temperature and fre-
quency, in addition to chemistry. Therefore, we focus only on ML
predictions of ϵ at 100Hzand room temperature ϵRT100 in thiswork. Each

of the three models is trained on relatively large data sets using the
Polymer Graph Neural Network (polyGNN) algorithm, as described
elsewhere33. In polyGNN, a polymer is reduced to its repeat unit. This
repeat unit is then converted to a graph with atoms as nodes and
chemical bonds as edges. Polymer descriptors are then learned by the
algorithm during model training. This attribute makes polyGNN effi-
cient at inference time, because polymer descriptors can be computed
on GPUs, rather than on CPUs. On a randomly chosen test set, the
trained polyGNN models achieved good accuracy, with a root-mean-
square error of 32 °C for Tg, 0.5 for ϵRT100, and 0.5 eV for Eg33.

In total, 26,858 ROMP-based polymer chemical structures were
generated from the set of availablemonomersusing our template. This
list was screened for structures with exceptional ML-predicted prop-
erties: Tg > 100 °C, ϵRT100 > 3, and Eg > 4 eV. Next, the remaining struc-
tures were rank-ordered according to the product of their predicted
properties Tg × ϵRT100 × Eg. Finally, five of the top twelve candidate
structures (see Section S2) were selected as synthetic targets on the
basis of raw materials cost and expert evaluation of synthesizability.

Energy storage performance
Of the five candidates, high molecular weight samples of PONB-
2Me5Cl, PNB-2,5dimethyl (PNB-2,5DM), PNB-2Me5Cl, and PNB-3Cl4Me
(see Fig. 2d for the chemical structure of each polymer) were prepared
using ROMP and cast into films. Polymerization of the fifth polymer
was unsuccessful. The resulting films were characterized with differ-
ential scanning calorimetry (DSC) to determine Tg, spectrometry to
determine Eg, and spectroscopy to determine ϵ as a function of

Fig. 2 | Filling the dielectric void. a We find that PONB-2Me5Cl surpasses current
state-of-the-art commercial dielectric materials, especially at elevated tempera-
tures. b, c The high performance of this polymer is related to an improved com-
bination of glass transition temperature, band gap and dielectric constant
compared to commercial polymers. d The chemical structure of PONB-2Me5Cl and
three other polymers discovered in this work. The orange shaded areas in (b) and

(c) denote the desired property value pairs for polymer dielectrics. The glass-
transition temperature, band gap, and dielectric constant of all polymers (whether
commercial or discovered in this work) included in (b) and (c) are characterized
using the same method in the same lab7,34. In the figure, ROMP stands for Ring
OpeningMetathesis Polymerization. Source data are provided as a Source Data file.
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temperature and frequency. In general, there is a close agreement
between our ML predictions and experimental measurements (see
Section S3). The mean absolute prediction error for the four polymers
was 12 °C (or 5% inmean absolute percentage error) for Tg, 0.4 eV (8%)
for Eg, and 0.7 (22%) for ϵRT100.

As predicted by our MLmodels and depicted in Fig. 2b, c, each of
the discovered dielectrics breaks out of the Tg–Eg and ϵ–Eg bounds
exhibited by commercial polymers. The high Tg of each dielectric film
ensures mechanical robustness at high temperatures. PONB-2Me5Cl
has the highest Eg (4.4 eV) of the group of films. The high Eg acts as a
substantial barrier to electron conduction, leading to an unprece-
dented Ebd (>800MVm−1 at 100 °C and 750MVm−1 at 200 °C, see
Fig. 3a). This property is complemented by a moderate, thermally-
stable dielectric constant (see Fig. 4a). The combination, extraordinary
Ebd and moderate ϵ, results in elevated Ue maintained from room
temperature to 200 °C. We emphasize in particular that PONB-2Me5Cl
possesses a Ue of 8.3 J cc

−1 at 200 °C—a Ue value that is 11 × that of any
commercial polymer at this temperature—potentially eliminating the

need to consumeenergy and spacewith cooling systems indemanding
applications such as wind pitch control, hybrid, electric and rail vehi-
cles, and pulsed power systems.

The performance of PONB-2Me5Cl may be understood by con-
trasting its chemical structure with that of other polymers. For exam-
ple, PONB-2Me5Cl possesses bicyclic rings and double bonds that
stiffen the backbone, while its pendant phenyl ring impedes rotation
around the chain axis. These structural features endow PONB-2Me5Cl
with a Tg significantly higher than that of saturated hydrocarbons like
BOPP. Thus, PONB-2Me5Cl remains stable at high temperatures, while
BOPP completely breaks down near 125 °C. Second, PONB-2Me5Cl
contains several π systems per repeat unit while BOPP is completely
devoid of such features. As a result, the Eg of BOPP is over 1.5 eV higher
than that of PONB-2Me5Cl. Despite this, BOPP’s Ebd at room tem-
perature is lower than that of PONB-2Me5Cl (750MVm−1 34 compared
with 825MVm−1, as shown in Fig. 3a). This suggests that breakdown in
BOPP involves more than just electronic factors; thermal and/or elec-
tromechanical effects may also contribute. Third, the presence of π

Fig. 3 | Breakdown field and energy storage performance. a Displacement-
electric field (D–E) loops for PONB-2Me5Cl at four temperatures (including room
temperature, RT). Line colors differentiate between the electric fields applied in
each loop. The field value applied in a particular loop can be ascertained by

observing its maximum x-axis value in the plot. b Discharged energy density vs.
breakdown field at 200 °C for notable commercial and reported polymer-based
dielectrics9–11,35,36,58–60. Source data are provided as a Source Data file.

Fig. 4 | Dielectric constant and dissipation factor. The dielectric constant (a) and dissipation factor (b) of PONB-2Me5Cl as a function of frequency and temperature.
Contour plots are displayed on the bottom wall of each diagram. Source data are provided as a Source Data file.
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systems and polar groups (e.g., C=O), raises the ϵ of PONB-2Me5Cl
aboveBOPPwhilemaintaining a reasonable dielectric loss (see Fig. 4b).

Although significant strides have been made that explain the
interplay between chemical structure and energy storage perfor-
mance, this research reveals other unresolved aspects. First, we
observe that while PNB-2Me5Cl and PNB-2,5DM differ only in the
chemical identity of one aryl substituent R4, this slight difference alters
Ebd by ~30MVm−1 and Ue by about 0.7 J cc−1 at 200 °C (Fig. 3b). Even
more impactful is the backbone chemistry. PNB-2Me5Cl and PONB-
2Me5Cl are identical except for R1, yet PONB-2Me5Cl possesses
increased Eg and ϵ, leading to a striking escalation at 200 °C in Ebd and
Ue of almost 300MVm−1 and over 5.5 J cc−1, respectively (Fig. 3b).

While not yet fully understood, these subtle chemical tweaks can
be utilized to design higher-performing polynorbornenes. For exam-
ple, a straightforward hypothesis is that PONB-2,5DM—containing
oxygen at R1 and methyl groups at R2 and R4—would possess a higher
Ue than any of the polymers studied here. Interestingly, the polyVERSE
database currently lacks PONB-2,5DM—despite its chemical similarity
to the other polymers—due to the absence of its corresponding
monomer in the ZINC database versionwe downloaded. This omission
highlights the usefulness of human ingenuity and supervision in che-
mical structure generation, evenwhenusing current state-of-the-art AI.

Greener pastures
It is appropriate to evaluate and contextualize the environmental
impact of the materials proposed in this work. A few key aspects,
including lightweighting and chemical synthesis, arehighlighted in this
section. A lighter vehicle requires less energy to move, resulting in
improved fuel efficiency and lower greenhouse gas emissions. His-
torically, this objective has driven the adoption of lighter load-bearing
materials like aluminum, carbon fiber, and plastics. Additional savings
may be realized by economizing the capacitor bank, which can
account for over 20% of a vehicle’s weight. For example, the high
thermal stability of each dielectric in Fig. 3b eliminates the need for
capacitor cooling systems. Among these dielectrics, those with higher
Ue are preferred, as this attribute reduces the amount of capacitor
material required to store a fixed amount of energy. Regarding this
matter, PONB-2Me5Cl shows a large improvement over commercial
polymers (e.g., FPE and PI). Further gains are possible. For instance, in
special cases, the Ue and thermal stability of traditional polymers has
been boosted by incorporation of semiconducting nanofillers35,36. It is
therefore also possible that a nanofilled PONB-2Me5Cl composite may
have boostedperformancecompared to theneatpolymer. This typeof
study is left to future work.

We now shift focus from the environmental impacts of light-
weighting to that of chemical synthesis. In this process, each synth-
esis step usually involves (1) energy inputs, (2) rawmaterials—some of
which may originate from natural resources like petroleum-based
feedstocks—and (3) the production of waste, some of which could be
hazardous. Therefore, from an ecological perspective, shorter syn-
thetic pathways are often preferred. Relative to PONB-2Me5Cl, fair
comparisons are o-POFNB11 and PSBNP-co-PTNI0.029, two recently-
discovered polymers with high Ebd and Ue at 200 °C (see Fig. 3b). Each
polymer also happens to be synthesized by ROMP. PONB-2Me5Cl is
synthesized from starting materials in a three-step procedure, two
steps to prepare the monomer and one for polymerization (see Sec-
tion S4). The number of steps is identical for o-POFNB. PSBNP-co-
PTNI0.02, meanwhile, is a binary copolymer, synthesized in six steps
total. One monomer is synthesized from commercially available
starting materials in a four-step procedure and the other in a one-step
procedure. In the final step, the twomonomers are copolymerized. PI-
oxo-iso10 is another recently-discovered polymer that displays an
energy density near that of PONB-2Me5Cl at 200 °C, however it is
unclear how many steps were required to synthesize the polymer and
its monomers. Overall, these comparisons suggest that the

environmental profile of PONB-2Me5Cl is on par with, or better than,
the limited group of known polymers in its class.

Along with short synthetic pathways, raw materials—such as sol-
vents—with low impact are desired. Solvents are used in high volumes,
including in the production of synthetic polymers, which amounts to
30 million tons annually37. Consequently, there has been a heightened
pursuit of polymers compatible with green solvents. The dielectrics
discovered in this work were polymerized in dimethylacetamide
(DMAc) and tetrahydrofuran (THF)—solvents that are decidedly not
green. Traditionally, a solvent is defined as green only if its environ-
mental, health, and safety (EHS) impacts are low and the resources
required to produce the solvent are sustainable38. The importance of
these criteria is well documented. In 1989, as part of the Montreal
protocol, carbon tetrachloride was banned for its contribution to
ozone layer depletion39,40. According to the 2015 World Health Orga-
nization IARC evaluations, chloroform and dichloromethane are likely
to be carcinogenic to humans41. Meanwhile, the current production of
many solvents, especially hydrocarbons, is dependent on petroleum
derivatives.

In this section, we focus on the twogreenest solvents in the ref. 42
guide: water and ethanol. Both solvents have a recommended EHS
profile and are sustainable, with water being a renewable resource and
ethanol being derived from biomass at an industrial scale. While the
solubility of o-POFNBandPSBNP-co-PTNI0.02 inwater and ethanol has
not been reported, we find that our polymer, PONB-2Me5Cl, is inso-
luble in both. Additionally, we found that the polymer is not soluble in
1-butanol, and is only partially soluble in ethyl acetate, the next two
greenest solvents in the42. guide. Motivated by these findings, we
trained a polyGNN model (see Methods for more details) on 26,884
data points to predict the room temperature solubility of a given
polymer in 61 solvents, including water and ethanol. Combining this
Solvent polyGNNwith the previously trained triad of polyGNNmodels,
we screen the polyVERSE for polymers predicted to be soluble inwater
or ethanol while also maintaining good high-temperature dielectric
properties—Tg > 200°C, ϵRT100 > 3, and Eg > 4 eV.

Our initial polyVERSE database, containing only the ROMP-based
structures, yielded zero hits meeting all four criteria. We then turned
our attention to the polyimide family, which contains a handful of
commercially available polymer dielectrics (e.g., Kapton®, Ultem®,
SIXEF-44®, Perflouro polyimide, Upilex-S®) with high Tg43. Polyimides
are synthesized in two steps. First, the condensation of a dianhyride
and diamine yields a polyamic acid prepolymer. Finally, the amic acid
groups on the prepolymer are converted to imide groups, commonly
by heat treatment. A handful of polyamic acids and polyimides have
been reported to be soluble44–47 or partially soluble48 in water or
ethanol. Encouraged by these findings, we crafted a reaction template
for polyimides. Applying this template to the data set of available
monomers yielded 66,103 candidate polyimide structures, whichwere
then deposited into the polyVERSE database. Out of these, a few
hundred chemical structures, depicted as green dots in Fig. 5, were
predicted to meet all four criteria. We further selected those poly-
imides with the most affordable monomers, narrowing the list to four
candidate structures. A proposed synthetic route for each polyimide
candidate is given at the right of Fig. 5.

It should be noted that the four selected polyimides exhibit
slightly lower predicted Tg values than the four ROMP polymers dis-
covered in this work (204–213 °C vs. 220–243 °C), but significantly
higher predicted Eg values (5.4–5.7 eV vs. 4.3–4.4 eV), which implies
higher Ebd for the polyimides. The high band gap is due, in part, to the
absence of aromatic rings in the polyimides. Meanwhile, these poly-
mers can still maintain a relatively high Tg due to an abundance of
aliphatic rings. In fact, previously synthesized fully aliphatic poly-
imides exhibit Tg as high as 423 °C14,49. We present these polymers to
the community in the hope that their promise as high temperature,
high energy density polymer dielectrics is evaluated experimentally.
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Discussion
AI, at least in the field of polymer informatics, has truly come of age in
the chemical design of materials. This transformation has flourished in
the past decade since the Materials Genome Initiative, which has spur-
red the training of materials scientists, widespread data generation and
curation (both computational and experimental), and the proliferation
of materials-specific, open-source, informatics software packages.

Building on that foundation, wepropose the polyVERSE paradigm
for the accelerated intelligent design of polymers rooted in established
chemistry. As an initial step, we demonstrate its practical utility for the
high-temperature dielectric application, a problem entailing multiple
competing material properties. Our approach revealed PONB-2Me5Cl,
an exceptional polymer for electrostatic energy storage, especially in
high-temperature applications such as wind pitch control, hybrid
vehicles and rail, and pulsed power systems. A handful of other pro-
spective dielectrics in the polyVERSE database, including some with
greenprofiles, are recommended. Characterization of thesepreviously
unknown polymers has also revealed important chemical design rules
for high Ue at high temperatures. Considering these outcomes, it is
clear that the current iteration of polyVERSE has revealed the potential
to design synthesizable, functional polymers.We offer this data set51 to
the community, and wish to note that this data set will continue to
grow with new polymers and reaction templates, as they become
available in future work.

Looking ahead, though the polymers discovered in this work are
promising for a number of applications, there remains a lack of high-
performance polymer dielectrics for aircraft and space exploration,
which require a high Ue above 200 °C. A number of strategies should
be explored. High-performance fillers or coatings can be added to the
PONB-2Me5Cl matrix. Or, by applying the design rules established in
this work, the chemical structure of the polymer matrix itself may be
slightly tweaked. Likewise, it is fair to assume that a rapid expansion of
the polyVERSE database—by adding reaction templates (ofwhich there
are likely hundreds), monomer databases, or both—would reveal even
better-performing materials.

Any of these approaches to materials discovery would benefit
from increased accuracy of the polyGNN models—perhaps using stra-
tegies like pretraining51,52—to reduce the amount of time spent on bad
leads. Moreover, significant resources should be dedicated to a new
generation ofAI characterized by human interpretability. For example,

AI should not merely indicate that substituting a chloroarene with an
aryl methyl or replacing a cycloalkane with an alicyclic ether improves
the energy storage of a polynorbornene. It should also provide a
mechanism, which humans can evaluate and build upon, ultimately
leading to a productive human-machine partnership in the quest to
understand and harness nature.

Methods
Materials
Anhydrous toluene, THF, methanol, ethanol, acetic anhydride, and
anhydrous sodium acetate were purchased from Fisher Scientific. Exo-
3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride (Oxanorbornene
anhydride), Dichloromethane Anhydrous, 5-cloro-2-methylaniline, and
ethyl vinyl ether were purchased from TCI America. cis-5-Norbornene-
exo-2,3-dicarboxylic anhydride, 3-chloro-4-methylaniline, and 2.5-
dimethylaniline were purchased fromOakwood Chemical. The Grubbs
Generation 2 catalyst was used for ring-opening metathesis poly-
merization and was purchased from Sigma-Aldrich.

Chemical synthesis
The following monomers were synthesized in this work: ONB-2Me5Cl,
NB-Dimethyl, NB-2Me5Cl, and NB-3Cl4Me. Each monomer was syn-
thesized following a similar two-stepprocedure (Fig. S4). Each reaction
was carried out in 500ml flask under an argon atmosphere. In the first
step, 30.5mmol of the norbornene anhydride with 30ml of toluene
was added to the flask and stirred. Then, the aniline (30.5mmol) was
dissolved in 10ml toluene and added dropwise to the dispersed
solution. The mixture was heated to 40–50 °C for 3 h, then cooled,
yielding an amic acid functionalized norbornene.

In the second step, 6–11 g of the amic acid, 0.8–1.8 g sodium
acetate, and 5–15 g acetic anhydride (excess) were added to the flask
and stirred. The mixture was heated to 60–70 °C for 8 h. The reaction
mixture was cooled to room temperature, and a solid precipitate
crashed out. The precipitate was filtered, washed, recrystallized, and
dried, yielding 3–7 g of pure monomer.

Each monomer was polymerized using ROMP. In a clean and dry
flask, 2 g of the monomer was dissolved in 22 ml dichloromethane
(DCM) under argon at room temperature. Grubbs 2nd generation
catalyst (~22mg) was dissolved in 4–5ml of DCM in a vial and added
dropwise to the monomer solution. The mixture was stirred for 2 h,

Fig. 5 | Predictedperformance, solubility, and synthetic pathways of suggested
polyimides. Out of 66,103 polyimide structures, ~1800 are predicted to exhibit a
glass transition temperature > 200 °C, dielectric constant at 100Hz and room
temperature > 3, and band gap > 4 eV. Roughly half of these chemical structures are
predicted to be insoluble in water and/or ethanol (gray triangles). The others,
represented by green dots, are predicted to be soluble in water and/or ethanol.

Four of these structures with feasible synthetic pathways are proposed. “Available”
denotes that the molecule is readily available commercially. “n step” means the
molecule is predicted to be synthesizable in n steps from availablemolecules. Each
solubility prediction is performed on the polyamic acid precursor to the poly-
imide. Source data are provided as a Source Data file.
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quenched using 4–5ml of ethyl vinyl ether, and then stirred for 20
more min. The solution was then precipitated in cold methanol, pur-
ified, and dried, yielding 1.8–1.9 g of pure polymer.

Material characterization
A Bruker DMX 500MHz Nuclear Magnetic Resonance (NMR) spec-
trometer was used to confirm the structure and purity of each
monomer and polymer. Thermogravimetric analysis (TGA) and dif-
ferential scanning calorimetry (DSC) were used for the thermal char-
acterization of synthesized polymers. TGA was performed using a TA
Instruments TGA Q-500-0188 at a heating rate of 20 °Cmin−1. DSC was
performedusing a TA InstrumentsDSCQ20with a heating and cooling
rate of 10 °Cmin−1. The molecular weight of each polymer was deter-
mined using the Waters GPC system, where DMAc was used as the
mobile phase and polystyrene standards were used. The band gap of
each polymer was calculated by performing UV–Vis spectroscopy on
PerkinElmer’s Lambda 1050 UV/Vis/NIR spectrometer.

Electrical characterization
The dielectric constants and dissipation factors were measured using
the commercial dielectric spectroscopy instrument Solartron SI 1260
with the dielectric interface Solartron 1296.Measurement temperature
was controlled by placing the sample in the oven Delta Design 9015. A
15mm gold/palladium film, serving as the electrode, was coated on
both sides of each dielectric film. High-field D–E loop measurements
were carried out using a developed Sawyer-Tower polarization loop
tester by applying a half-sinusoidal voltage with a frequency of 100Hz,
while measuring the polarization current through the film. The high-
voltage amplifier Trek Model 10/40 was used in the system to apply a
voltage with a maximum amplitude of 10 kV. For D-E loop measure-
ment, gold/palladium was coated on both sides of the film as elec-
trodes with a diameter of 3mm by the sputter coating method.

Generating polyimide structures
polyVERSE polyimides were generated using twomonomer filters, and
a set of chemical transformations. One filter looked for suitable dia-
mines and the other for suitable dianhydrides. Both filters require the
presence of exactly two functional groups, each with similar reactivity
to one another. Estimating reactivity is difficult, and so we use the
Gasteiger charge53 as a proxy. The chemical transformations in this
reaction are represented by the following SMARTS patterns: [C:1]
(=[O:2])[O:3][C:4](=[O:5]).[NH2:6][Ch:7]>>[C:1]
(=[O:2])[NH:6]([Ch:7])[C:4](=[O:5]) followed by [C:1]
(=[O:2])[O:3][C:4](=[O:5])>[N:6]>[C:1](=[O:2])[N:6]
([C:4](=[O:5]))[#0] followed by [NH2:1][Ch:2]>>[Ch:2]
[#0]. To minimize the chance of backbiting, we reject proposed
polymers inwhich the shortest path between atomsat each repeat unit
edge is fewer than eight atoms.

Training structure-property models with polyGNN
polyGNN is an approach to training structure-property models. The
key elements are multitask learning, neural message passing, and
invariance to polymer-specific transformations. By training models to
simultaneously learn multiple tasks at once, the risk of generating
overfitted predictions for any one specific target property is reduced54.
As a result, the accuracy of each property is improved. Neuralmessage
passing dynamically learns fingerprints during training instead of
predefining them. Although an infinite number of features can theo-
retically be created, themodel is incentivized to learnvaluable features
by minimizing the target property loss through backpropagation.
Architectural choices are made to ensure system invariance to trans-
lation, addition, and subtraction. These constraints further enhance
the quality of learned features. Translation refers to the shift of the
periodicity window, resulting in equivalent periodic repeat units such
as (-OCC-), (-COC-), and (-CCO-) in polyethylene glycol. Addition

(subtraction) involves extending (reducing) a repeat unit by one or
more minimal repeat units, as seen in (-COCO-) and (-COCOCO-),
which are equivalent repeat units differing only in the addition (or
subtraction) of the minimal repeat unit (-CO-).

Using polyGNN, the Tg of polymers was predicted by a four-task
model, with the thermal properties melting temperature, decom-
position temperature, and thermal conductivity as the supporting
tasks. Training data for the band gap model comes from density
functional theory (DFT) calculations onbothpolymer chain and crystal
structures. In thiswork, Egwas predicted at the crystal level. In addition
to these two tasks, electron affinity and ionization energy were used as
supporting tasks. ϵRT100 was predicted using a twelve-task model. This
model incorporates the following supporting tasks: room-temperature
ϵ at nine frequencies, DFT-computed zero-frequency ϵ, and refractive
index from two sources (experiment and DFT). These models are
available at https://github.com/Ramprasad-Group/polygnn.

The solubility of dilute polymer-solvent pairs was predicted using
a 61-task polyGNN model, one task per solvent. More specifically, the
model classifies a polymer-solvent pair as being soluble, partially
soluble, or insoluble. The model architecture is identical to the other
models, except that the final linear layer outputs a 3-dimensional
vector (one dimension per class) instead of a scalar. In addition, a
softmax layer is appended to this layer so that the output is in the form
of a probability distribution over each class. The weights of this model
were optimized using the Adam optimizer and a class-weighted cross-
entropy loss function. All weights were initialized according to a Xavier
uniform distribution55 with a gain of one.

The predictions displayed in Fig. 5 were made using a production
version of the solubility model trained on 26,884 data points56. The
productionmodel is available at https://github.com/Ramprasad-Group/
sol_polygnn. Before training the production model, we trained an
identical model on two-thirds of the polymer-solvent pairs and tested it
on the remaining third. Thismodel achieved an F1-score of 0.724 and an
accuracy of 89.7% on all test data (see Section S10 for the confusion
matrix and accuracy curves). A subset of the test data is made up of
polymers not seen during training. This subset contains 800 polymer-
solvent pairs and 587 unique polymers in total. Of these 800 pairs with
unseenpolymers, 30have ethanol as the solvent and 29havewater. The
model achieved an F1-score of 0.738 and an accuracy of 94.9% on all
800 pairs, an F1-score of 1.0 and an accuracy of 100% on the 30 ethanol
pairs, and an F1-score of 0.759 and an accuracy of 75.4% on the 29water
pairs. The last two scenarios, unseen polymer and water or ethanol,
represent the primary use case of the model in the wild.

Data availability
The polymer chemical structures generated in this workmay be found
at https://github.com/Ramprasad-Group/polyVERSE/tree/main/
Virtual-Polymer/VFS/ROMP_and_polyimide50. This represents the first
version of the polyVERSE database. The database will grow in future
versions, to include polymers and reaction templates beyond those
considered in this work. Source data are provided in this paper.

Code availability
The code used to generate the polymer chemical structures may be
found at https://github.com/Ramprasad-Group/polyVERSE/tree/main/
Virtual-Polymer/VFS/ROMP_and_polyimide50. The training code and
modelweights for thepolyGNNTg, Eg, and ϵRT100 modelsmaybe foundat
https://github.com/Ramprasad-Group/polygnn33. The training code
and model weights for the polyGNN solubility model may be found at
https://github.com/Ramprasad-Group/sol_polygnn57.
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