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ABSTRACT: Additive manufacturing (AM) can be advanced by
the diverse characteristics offered by thermoplastic and thermoset
polymers and the further benefits of copolymerization. However,
the availability of suitable polymeric materials for AM is limited
and may not always be ideal for specific applications. Additionally,
the extensive number of potential monomers and their
combinations make experimental determination of resin compo-
sitions extremely time-consuming and costly. To overcome these
challenges, we develop an active learning (AL) approach to
effectively choose compositions in a ternary monomer space
ranging from rigid to elastomeric. Our AL algorithm dynamically
suggests monomer composition ratios for the subsequent round of
testing, allowing us to efficiently build a robust machine learning
(ML) model capable of predicting polymer properties, including Young’s modulus, peak stress, ultimate strain, and Shore A hardness
based on composition while minimizing the number of experiments. As a demonstration of the effectiveness of our approach, we use
the ML model to drive material selection for a specific property, namely, Young’s modulus. The results indicate that the ML model
can be used to select material compositions within at least 10% of a targeted value of Young’s modulus. We then use the materials
designed by the ML model to 3D print a multimaterial “hand” with soft “skin” and rigid “bones”. This work presents a promising
tool for enabling informed AM material selection tailored to user specifications and accelerating material discovery using a limited
monomer space.
KEYWORDS: additive manufacturing, 3D printing, photopolymers, material discovery, active learning

1. INTRODUCTION
Thermoplastic and thermoset polymers offer a wide range of
material characteristics that are useful for additive manufactur-
ing (AM).1−3 For instance, copolymerization with multiple
monomers leads to millions of possible materials. Currently,
polymeric material selection for AM is predominantly limited
to those with well-documented material characteristics, which
may not be entirely appropriate for desired applications.4,5

Moreover, due to the tremendous number of possible
combinations of monomers, lengthy and costly experimental
characterization has become impractical for the discovery of
new AM material chemistries.6,7 Machine learning (ML)-based
informatics approaches offer a promising avenue for targeted
design via accelerated data-driven polymer property prediction
and guiding successive rounds of experimentation.8−10

However, a major bottleneck for the wide adoption of ML in
AM -as well as in many subfields of material research - is the
need for sufficiently large and, more importantly, diverse,
datasets.11,12

A solution to this problem that has made major inroads in
recent years is active learning (AL), which is a process to build
an ML model (and dataset) iteratively from a small starting set
of training points using the principles of Bayesian optimization
(BO).13−16 This creates a path to obtain informed

recommendations for successive experiments, minimizing the
number of experiments required (to meet a target material or
performance metric) and thus expediting the development of
new materials. AL has been used to accelerate material design
problems in polymers, alloys, and ceramics.17−21 Within the
AM space, ML has been used to enhance in situ process
monitoring to improve print quality through optimizing
printing parameters, resin composition, and component
attributes.19,22−24 AL has been used to accomplish such tasks
with automated decision making.22,23,25 A small subset of
recent literature deals with the modeling of acrylates for several
properties, albeit in a limited capacity. Notable contributions
include the modeling of glass transition temperatures for
copolymers, tested on an expansive acrylate dataset, and the
application of physics-constrained BO to enhance tensile
strength and toughness of thermoplastic polymers.26,27 The
expanding literature highlights the potential for further
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investigation into optimizing multiple acrylate properties in
data-scarce situations using novel data recommendation
approaches and ML algorithms. Additionally, the variability
of experimental data is often disregarded in the AL cycles of
previous studies, especially within the data recommendation
method, which selects the next set of experiments. Choosing
experiments without accounting for the variability across trials
can be risky.28 Novel data recommendation methods, such as
Noisy Expected Hypervolume Improvement (NEHVI), have
been proposed to account for this variability during sample
selection in BO and tested theoretically in other domains.29,30

NEHVI has not been explored in material design but holds
promise for AL to search material design spaces with high
variability.

In this work, we introduce an AL approach to efficiently
recommend multimonomer resins to provide improvement of
desired material properties that surpasses improvement from
uninformed experiments. Our method seeks to build an
accurate predictive model while minimizing the number of
experiments required to explore a composition space for
targeted material design. To test our approach, we select a
design space consisting of three free radical polymerizing
monomers (Figure 1a) ranging from rigid to elastomeric
(Section 2.1). The properties of interest are Young’s Modulus
(E), peak engineering stress (σ), ultimate strain (ε), and Shore
A hardness. Our AL approach detailed in Figure 1b begins with
an initial training dataset, which are used to train a Gaussian
Process Regression (GPR) model.31 The GPR model is used
to predict the specified material characteristics of all possible
monomer compositions in the design space (Section 2.2).
Next, we used NEHVI to select several high-quality
compositions to synthesize and characterize (Section 2.3).
The selected compositions are then added to the dataset, and
the cycle is repeated for five iterations, followed by a final
uncertainty-based exploration selection to preclude regional
inconsistencies. Moreover, we demonstrate the ability to
accurately predict and subsequently recommend monomer
compositions using fine-tuned hierarchical ML models and an
exploitation recommendation (Section 2.4). This method
recommends compositions with desired numerical values of

Young’s moduli within 10% accuracy. Finally, we demonstrate
a potential application of this technique to additive
manufacturing through the multimaterial fabrication of a
hand with “skin” and “bones”.

2. EXPERIMENTAL METHODS AND MATERIALS
2.1. Chemical Space. In this work, we use three acrylate

monomers to test our methodology: isodecyl acrylate (IDA),
isoborynol acrylate (IBOA), and poly(ethylene glycol) diacrylate
(PEGDA) (Sigma-Aldrich, St. Louis, MO, USA). These monomers
were selected for their diversity of properties. Specifically, IDA
exhibits elastomeric behavior due to its long 12 carbon chains, IBOA
is highly rigid due to a high-molecular-weight and bulky functional
group, and PEGDA acts as a cross-linker. Additionally, these polymers
have a high compatibility when forming cross-linked heteropolymers.
These monomers were mixed at specific weight composition ratios
with 1 wt % photo initiator Irgacure 819 (bis(2,4,6-trimethylbenzoyl)-
phenylphosphineoxide) (Sigma-Aldrich). The structures can be found
in Figure 1a. The molecular weights for IBOA, IDA, and PEGDA are
208.3, 212.33, and 250 g/mol, respectively. Compositions with
PEGDA greater than 60 wt % were not considered in this study
because excessive cross-linking diminishes the contributions of other
monomers, resulting in undesirable homogeneity in the character-
ization space.

2.2. ML Model. The ML model used in AL cycles is Gaussian
Process Regression (GPR) due to its low training cost, ability to
provide inference with fewer data points, and Bayesian interpreta-
tion.17,31,32 Inference as a distribution is a crucial part of BO,16 which
will be elaborated in Section 2.3. We build models for four properties:
E, ε, σ, and Shore A hardness; the model inputs are the monomer
composition ratios. In this Bayesian approach, each property is
modeled as a function of the monomer composition ratio. This
underlying function is learned by the GPR model when trained on the
experimentally obtained property values of the selected monomer
compositions and the errors of the experiments. For new, unseen
composition ratios, the GPR gives the posterior distribution of the
underlying function. The mean of the posterior distribution can be
used as the predicted value for the property, while the variance
quantifies its uncertainty. A higher variance of the posterior
distribution indicates a higher uncertainty for the prediction.

Each iteration of the AL cycle starts with training the GPR models
on measured values of the properties of the considered compositions.
Given a vector that contains the percentage composition of IDA,
IBOA, and PEGDA, the models predict property values for unknown

Figure 1. Input materials and active learning loop. (a) Structure of investigated monomers: isodecyl acrylate (IDA), isoborynol acrylate (IBOA),
and poly(ethylene glycol) diacrylate (PEGDA). Properties characterized were Young’s modulus, peak engineering stress, ultimate strain, and Shore
A hardness for every composition ratio. (b) Flowchart outlining the active learning process.
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samples. Given these predictions, a recommendation method is used
to find promising compositions, based on which samples are
synthesized and characterized (see Section 2.3 for details). The
property values for these samples and their uncertainties are added to
the dataset for the ML model training in the next AL iteration cycle.

For quantifying the errors of the ML models, we use Root Mean
Squared Error (RMSE) for linear scaled properties (hardness),
whereas we use the Order of Magnitude Error (OME) for log-scaled
properties such as E, σ, and ε (discussed in Section 2.4). The OME is
calculated as the Mean Absolute Error of the log-scaled values.

2.3. Composition Recommendation Methods. Data quality is
fundamental to ML; therefore, it is vital to use the right
recommendation method to collect the highest quality data points
for the best results from AL. We consider four classes of
recommendation methods: (i) random sample, (ii) exploration, (iii)
exploitation, and (iv) expected improvement (EI).18,32 For the
random sample method, the model randomly selects the sample
points for each iteration. The exploration method uses the variance of
the posterior distribution of GPR to identify compositions for which
the model is most uncertain, ignoring the mean of the model’s
posterior.18 Alternatively, the exploitation method relies heavily on
the model being well informed. The use of exploitation also requires
desired conditions for compositions to achieve such as a target
property value or a need to maximize or minimize a property. The
compositions that the model predicts closest to this goal are selected.
Exploitation ignores the variance component of the model posterior.
Finally, the EI method balances the exploration and exploitation
methods and locates samples with high uncertainty, which have a
higher likelihood of achieving usable material characteristic goals. This
is accomplished by finding compositions with high expectation for
property value improvement relative to the best performing
composition in the dataset of the present AL cycle. The EI criterion
for maximizing a property, given a predicted value with mean
(ypred(x)) and variance (σ2(x)) for a composition x, is defined as the
expectation of improvement (E[I(x)]) of the predicted value from the
best property value seen in the dataset (ybest),

= [ ] = [ + ]

=

E I x x u x u x u x

u x

EI ( ) ( ) ( ) ( ( )) ( ( )) ;

( )
y x y

x

( )

( )
pred best

(1)

where Φ(·) is the cumulative distribution function of the standard
normal distribution and ϕ(·) is the standard normal density
function.33

Our goal requires a recommendation based on four property
objectives; however, the conventional EI eq (eq 1) is only suitable for
one objective. As a result, past research has expanded EI approaches
to many objectives using a recommendation method known as
expected hypervolume improvement (EHVI).30 The hypervolume
represents the overall quality of a sample and is calculated by the
multiplication of each objective value scaled between 0 and 1.
Therefore, a composition, which has a greater hypervolume than data
points in the current AL cycle, has a higher likelihood of increasing
the hypervolume. However, in our case, experimental error in the
dataset affects the true value of hypervolume criteria. To account for
this, we can treat the experimental error as a random variable with a
normal distribution. Recall that the GPR provides the posterior
distribution of a property, which is normally distributed. Integrating
EHVI over these normal distributions yields a quantity defined as
noisy expected hypervolume improvement (NEHVI).29 However,
NEHVI of a composition x is not analytically solvable, so a Monte
Carlo approximation (α̂NEHVI(x)) is used and presented in eq 2:29

= |
=

x
N

HVI y x P( )
1

( ( ) )
t

N

t tNEHVI
1

pred, (2)

where for t =1···N, a set of possible characteristic values (N = 100) is
sampled from predicted normal distributions (ypred,t(x)) and
experimental normal distributions. Pt is the group of measured
dataset values in the current AL cycle, in which no objective can be
improved without sacrificing another (formally known as the pareto

front). Intuitively, the composition ratios in Pt maximize the
hypervolume of the dataset and are analogous to ybest in eq 1.
α̂NEHVI(x) is calculated by averaging over the hypervolume improve-
ments (HVI) of every set of ypred,t(x) against its given Pt.

29 The
NEHVI recommendation method represents an intuitive approach to
choose compositions for our context by accounting for multiple noisy
properties in experimental data.29

2.4. Approach for Targeted Property Predictions. For specific
use cases, we might want to achieve a specific numerical value for a
property that we call a “target value” (ytarget). To account for
experimental error, we set a tolerance (εtol) range that extends above
and below the ytarget. For example, the ytarget and εtol used in Section
3.2 are E = 1100 ± 100 MPa.

A limitation of the current implementation of the NEHVI
recommendation method is that it is focused on maximizing the
hypervolume of objectives but does not explicitly account for targeted
objectives. To use the NEHVI recommendation when one or more
objectives have targeted values, we can transform ypred to center
around the ytarget. In other words, we want to minimize

| |y ytarget pred

To use this as an objective for hypervolume, we apply a Gaussian
transformation to obtain the targeted objective function ( f target(ypred)),
which we want to maximize,

=f y
y y

e
( ) exp

( )

2( /3)target pred
target pred

2

tol
2

i

k

jjjjjjjj
y

{

zzzzzzzz
Intuitively, this function is shaped like a bell curve, where

f target(ytarget) = 1. As ypred moves away from ytarget, f target(ypred) gradually
decreases to 0. etol determines how quickly or slowly this decrease
occurs, controlling the “width” of the bell curve. Smaller etol values
lead to a sharper decline, while larger values create a more gradual
descent, as predictions deviate from the target. Tuning f target in this
way allows one or more targeted objectives to be used in hypervolume
and NEHVI calculations.

We also change our process of predicting ypred of characteristics
with targeted objectives. As our composition space consists of rigid
and elastomeric materials, the material characteristics of interest often
span several orders of magnitude. This results in a data distribution
that is skewed toward lower orders of magnitude. Using a linear scale
for this type of data may impact the performance of the GPR model,
which can be rectified by transforming the dataset.34 For this study,
material characteristic values for E, σ, and ε are logarithmically scaled,
improving GPR accuracy on the overall dataset. However, to target a
particular numerical value of a material characteristic, GPR
predictions need to be accurate in ranges close to this target value,
which is difficult to achieve using logarithmically scaled values. Thus,
we use a two-stage hierarchical approach (detailed in Figure S1) to
make fine-tuned predictions on compositions that are predicted to
have a property near the target value. The first stage uses a GPR
model trained on the complete logarithmically scaled property set to
make predictions for all possible compositions. The compositions that
have a predicted property value near the target value are selected from
the initial composition set. The second stage uses a GPR model to
predict the property values of the selected compositions. This second
GPR is trained on a linear scale on only compositions that are close to
the target value. This method of obtaining ypred yields more accurate
predictions near ytarget. In Section 3.2, we demonstrate the use of this
strategy.

2.5. Code Implementation. This work is implemented by using
Python 3.8.7. The BoTorch library, a BO framework built on Pytorch,
includes the NEHVI function implementation used in this study. We
employ the GPyTorch library, a Gaussian Process framework also built
on Pytorch, for the GPR model training. Because of the large
computational cost of NEHVI, a GPU with CUDA 11.0 is used to
execute the active learning loop.

2.6. Mechanical Characterization. Tensile samples were
prepared by incrementally adding liquid resin into silicone molds
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and subjected to 5 s of UV irradiation with light intensity of 50 mW/
cm2. This incremental procedure was repeated four times to ensure
the sample was fully cured throughout. We performed tensile tests (n
= 8) using a universal mechanical testing machine (Criterion, MTS,
Eden Prairie, MN, USA) for each composition to characterize
mechanical properties of the resins: Young’s modulus (E), peak
engineering stresses (σ), ultimate strain (ε), and Shore A hardness. In
this pilot study, we elected to perform experiments using solely cast
dogbone samples to control for potential property variability
introduced during the printing process including layer inhomogeneity
or voids caused by toolpath motion.

2.7. Multimaterial 3D Printing. Separate 3D models represent-
ing the “skin” and “bone” of the multimaterial hand were created
using SolidWorks (Dassault System̀es SE, Veĺizy-Villacoublay,
France) computer-aided design (CAD) software. The two models
corresponding to different materials were imported into the
computer-aided manufacturing (CAM) software, Repetier (Hot-
World GmbH & Co. KG, Willich in North Rhine-Westphalia,
Germany) where they were positioned relative to one another in the
desired print configuration. Each model was assigned a separate
extruder, and therefore material, and were sliced into discrete layers.
The printing parameters used are as follows: an extrusion pressure of

70−75 kPa, a layer thickness of 0.4 mm, a layer UV cure time of five
seconds, and an extrusion nozzle deposition speed of 10 mm/s.

Selected liquid resins were mixed with fumed silica (Sigma-Aldrich)
as a rheological modifier to facilitate shear-thinning behavior
necessary for direct ink write 3D printing. Once prepared, the inks
were loaded into syringes and mounted to a custom 3D printer, and
the material deposited onto a glass substrate.35

3. RESULTS AND DISCUSSION
Our AL iterations involved three major phases: dataset
building, validation, and application. The first phase executed
AL iterations using the parallel NEHVI recommendation
method to build a dataset. In the second phase, we collected
additional data to validate our approach and compared it to an
uninformed recommendation method. The third phase used a
targeted approach to select samples with a specific E for a
specific use case. Figure S2 outlines every round of data
collection and their purposes. We discuss the results from each
phase in the proceeding sections.

3.1. AL Iterations for Dataset Building and Valida-
tion. We started with an initial set of 11 discrete monomer

Figure 2. Building the dataset via AL using our informed recommendation approach. (a) Procedure for model building over six iterations.
Experimental data space evolution was observed at (b) round 1, (c) round 3, (d) round 5, and (e) round 6.
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Figure 3. Effectiveness of the informed recommendation (Figure 2) is evaluated by comparing the average measured property values of the
compositions added to the dataset with those added by random uninformed methods during the virtual experiments. The results show that the
informed recommendation builds a dataset, which has (a) a maximized E, (b) a maximized σ, (c) a minimized ε, (d) and a maximized hardness.
Shaded areas convey the standard deviations of values for 20 virtual experiments.

Figure 4. Contour maps of mechanical characteristics predicted by the model after the sixth iteration of the active learning cycle when sufficient
data have been accumulated for (a) E, (b) σ, (c) ε, and (d) Shore A hardness.
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compositions. The remaining dataset was built over six AL
iterations (Figure 2a), with five monomer compositions
recommended at each iteration. All five multimonomer
compositions were created and characterized; however, some
recommended compositions were unable to cure to the degree
required for mechanical characterization. Therefore, these
composition ratios could not be added to the dataset. The first
five iterations used the parallel NEHVI recommendation (eq 2,
Figure 2b−d), followed by a final iteration using an exploration
recommendation method using only uncertainty values (Figure
2e). This final iteration was conducted to put emphasis on any
regimes of compositions that remain in high uncertainty. We
measured the quality of a collected dataset using two criteria:
accuracy of the trained ML model (measured with RMSE and
OME) (Figure S4) and average value of properties added to
the dataset (Figure 3). The GPR model error exhibited an
overall linear decrease across all four measured material
characteristics (R2 = 0.81, 0.99, 0.83, and 0.55 for E, σ, ε, and
hardness, respectively). Indeed, model error decreased by 44,
50, 46, and 20% from iteration 1 to 6 for E, σ, ε, and hardness,
respectively.

After iteratively obtaining a dataset through our informed
model building approach, we obtained a total of 30
recommended composition ratios, of which we were able to
create and characterize 27, thus having a dataset of 39 data
points, in addition to five randomly picked data points for
validation. This prompts us to compare our approach to an
uninformed technique, such as a grid search or a manual
handpicking approach. To establish the validity of our
approach against a method we term “random grid search”
(detailed and described in Figure S3), we conducted a set of
virtual experiments. In these experiments, we initiated a new
GPR model and employed AL with the random grid search
recommendation method to collect five compositions per

iteration over six iterations. Since this was a purely virtual
demonstration, we did not physically recharacterize new
compositions. Instead, we exposed the GPR model to the
previously characterized compositions within our candidate set
of compositions and their properties. This set included the 45
compositions acquired during model building, alongside 11
hand-picked selected for characterization (Figure S2). The
hand-picked points served to mitigate the bias of solely
collecting from our existing well-informed data points
proposed during the model building approach. We ran 20
trials of the virtual experiments for random grid search and a
naiv̈e random selection of compositions. Figure 3 presents a
comparison between the mean and standard deviations of
accuracy on validation points for both virtual experiments and
our model building approach.

As a demonstration, our NEHVI approach was used to
recommend compositions with rigid properties for structural
applications. Thus, we chose NEHVI targets that are high E,
high Shore A hardness, high σ, and low ε. In Figure 3,
compositions recommended by NEHVI on average had 38.4,
47.7, and 6.9% higher E, σ, and hardness, respectively, and a
37.7% lower ε than the compositions recommended by
random grid search. This provides an example of how the
NEHVI recommendation approach can be used to find
compositions with the desired characteristics in a design space.

Figure S4 compares the mean and standard deviations of
accuracy on validation points between virtual experiments of
random grid search and our model building approach. After six
iterations of every virtual experiment, the average accuracy of
the random grid selection method appears to be on par with or
slightly better than that of our approach upon initial
inspection. However, this is based on a series of 20 trials,
revealing a notable variance in outcomes. In practice, we would
have only one set of experiments to fully explore a space.

Figure 5. Results of targeted Young’s moduli studies and 3D printing. (a) Selected results of predictions versus experimentally obtained Young’s
moduli values. (b) Predicted compositions superimposed on Young’s modulus character space. (c) Mechanical properties of rigid and soft inks and
schematic of the structure to be printed after processing in a slicing program. (d) Multimaterial printing of the hand using syringes containing rigid
(left) and soft (right) inks. (e) Final printed structure (left) and deformation (right).
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Under this constraint, achieving a usable level of model
accuracy across all four properties and a dataset with desired
material characteristics using an uninformed approach is
improbable compared to our informed approach.

The culminated prediction spaces for each material
characteristic after the sixth iteration are presented in Figure
4. Compositions with greater concentrations of IBOA, located
in the bottom left corner, exhibit more rigid behavior, with the
greatest Young’s moduli, σ, and hardness but inferior ε
(Figures 4a−d). This is attributable to the IBOA monomer
structure (detailed in Figure 1a), which consists of a bulky,
high-molecular-weight functional group, which inhibits chain
motion and rotation in addition to its comparably short two
carbon contribution to the polymer chain backbone length.
Interestingly, as the IDA concentration increases to near 35%,
we observe an abrupt decline in E, σ, and hardness (Figures
4a,b,d), with an increase in ε (Figure 4c). This indicates that
the long 12 carbon IDA monomers begin to dominate the
chain structure at this concentration, which allows for greater
chain elongation, leading to more elastomeric polymers. This
transition becomes less pronounced with the introduction of
PEGDA due to its chain cross-linking effects. Cross-linking
effects are also observable in ε, which drops even in the relative
absence of rigid IBOA (Figure 4c). Moreover, while the
hardness contour map (Figure 4d) generally geometrically
correlates with the E contour map (Figure 4a), the hardness
exhibits a consistently acute increase when PEGDA is
introduced. This implies that hardness is closely related to E
at lower concentrations (<20 wt %) of PEGDA. Ultimately, the
developed predictive models are superior for extracting insights
like the ones discussed versus merely interpolations between
experimental results. From Figure S5, we can see that a
Cartesian interpolation implemented through the plotly library
offers a limited view of the characterization space due to more
erratic contours, resulting in critical insights potentially being
overlooked.

3.2. Targeting of Specific Material Characteristic
Values (Discovery). We demonstrate the utility of our
hierarchical approach to quantitatively suggest compositions
meeting target property criteria, detailed in Section 2.4, by
applying it to obtain material compositions that exhibit a
specified E value with up to 10% variability. Simultaneously, we
can also account for maximizing or minimizing the ε, ultimate
stress, and Shore A hardness. First, we start with a set of
candidate compositions. For all compositions, we use the
hierarchical approach to predict E and a standard GPR model
to predict the other three characteristics. Using these predicted
bulk characteristics of candidates, we employ exploitation
recommendation to obtain five suitable compositions. The
predicted material characteristic values versus experimentally
obtained values for the recommended compositions are
detailed in Figure 5a. For these recommendations, raw
predictions and predictions versus experimental values can be
found in Tables S1 and S2, respectively. The first material
selected has a target of E = 1100 ± 100 MPa, with a high σ,
high peak strain, and high Shore A hardness, to obtain a
composition with high toughness and strength. For compar-
ison, sets of composition predictions for E = 1100 ± 100 MPa
were generated by using both the logarithmically scaled and
hierarchical techniques detailed in Section 2.3. Of the five
logarithmically obtained predictions (Table S1, blue), only
three had E values within the desired range; two predictions
were up to 14% away from the E = 1100 MPa target (average

8.15%). In contrast, all hierarchically obtained predictions fell
within the desired range and averaged within 0.7% of the
targeted E. Experimental data corroborated the superiority of
the hierarchical predictions, which exhibited a 92% reduction
in the RMSE versus the logarithmic predictions (8.06 and
102.2 MPa, respectively). Our most accurate E prediction was
1093.6 ± 48.9 MPa, which yielded an experimental E of 1087.7
± 78.3 MPa. Additionally, compared to other compositions
that had a predicted E of 1100 ± 100 MPa, the selected
compositions had a 55.7% higher average hypervolume of
maximizing Shore A hardness, σ, and ε. The greater
hypervolume indicates that our recommended samples have
a higher probability of fitting the overall desired characteristics,
even when other compositions are within the E = 1100 ± 100
MPa range. Despite this, we still find a large discrepancy in the
predictions of other characteristics. Notably, the predicted
ultimate strain deviates by up to 43.9%. We attribute this to
not fine-tuning the other characteristics as we did for Young’s
Modulus. This would lead to a decrease in relative accuracy,
especially given that the ultimate strains within the dataset
span several orders of magnitude. Next, we attempted a target
of E = 3 ± 0.3 MPa, with maximized σ, ε, and minimized Shore
A hardness to obtain a tough, elastomeric material. Three out
of five hierarchically obtained compositions were predicted to
fall within the desired range and averaged within 1.1% of the
targeted E. Indeed, Figure 5b indicates the suggested
experimental composition predictions closely align with
appropriate contours in the model’s E prediction space.
Moreover, these contours also align with composition values
that have a greater predicted hypervolume (Figure S6a, b),
specifically 26.8% higher than other compositions with E = 3 ±
0.3 MPa, indicating that the Gaussian transformation in
Section 2.4 can be used to target certain regions. Interestingly,
while the composition predictions have very similar Young’s
moduli, they exhibit a diversity of σ and ε values (Figure S6c−
e). For example, two compositions in the E = 1100 MPa space
have nearly identical predicted moduli (E = 1093.6 ± 48.9
versus 1093.6 ± 47.9 MPa) yet have a 12% difference in σ (σ =
24.0 ± 2.0 versus 27.1 ± 2.0 MPa) and a 30% difference in ε (ε
= 15.8 ± 1.2% versus 12.2 ± 0.9%). Likewise, a similar case can
be observed in the E = 3 MPa space (E = 2.99 ± 0.17 vs 2.99 ±
0.19 MPa), with a 35% difference in σ (σ = 0.31 ± 0.03 vs 0.23
± 0.01 MPa) and an 88% difference in ε (ε = 18.8 ± 1.2% vs
10.0 ± 0.8%). Intriguingly, the two acquired compositions
have radically different material ratios. Despite the far greater
percentage of elastomeric IDA in the second composition, the
ε is considerably lower than the first (Figure S6d). This is
attributable to the observed trend in the prediction space
discussed in the previous section wherein ε decreases as IBOA
concentration increases when the concentration of PEGDA
cross-linker is the same. Conversely, hardness predictions
remained highly consistent with E, a trend evidenced by the
previously discussed similarity of the E and hardness prediction
space contour map geometries (Figure S6c,f).

Finally, to demonstrate a potential application for this AL
methodology, we used experimentally validated E = 1100 and 3
MPa compositions to 3D print a multimaterial “hand” (Figure
5c−e). The soft E = 3 MPa material (white) allows the
structure to bend about the finger joints, while the rigid E =
1100 MPa material (green) acts as a support, thereby defining
distinct joints and maintaining a flat palm area. This
demonstrates the viability of our approach as a powerful tool
for AM by enabling an informed material selection tailored to
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user specifications. Material characterization of printed samples
will be essential to further demonstrate the validity of predicted
materials when applied to resin vat- or extrusion-based
photopolymerization 3D printing techniques.

4. CONCLUSIONS
In this study, we illustrate the efficacy of incorporating active
learning alongside a versatile recommendation method,
capable of managing noisy training data, for the design of
complex, multimonomer polymeric materials tailored for
additive manufacturing. Through a systematic and iterative
process, we successfully construct a robust dataset and develop
advanced machine learning models that can accurately predict
the Young’s modulus, peak engineering stress, ultimate strain,
and Shore A hardness of 3-component cross-linked polymers.
By following a hierarchical approach using a fine-tuned model
in regions of interest, we found that we could select
compositions within 10% of a desired target value of E,
while the most optimal candidates fell within 1.1% of the
targeted value. Furthermore, the final compositions selected for
experimental validation differ by less than 5% from the
predicted value. Intriguingly, our predictive model devised
resins with an unexpectedly wide range of monomer
composition ratios to satisfy the targeted E criteria. As a
result, predicted resins had noticeable variations in nontargeted
characteristics such as peak stress and ultimate strain. The
observed combinations of just three monomers demonstrate a
wide range of material characteristics, spanning orders of
magnitude. Considering the vastness of potential monomer
design spaces, future work will be needed to incorporate
additional material chemistries. Moreover, this work has
potential to engineer materials with superior toughness and/
or elastomeric performance; therefore, future work in this
direction will involve deeper evaluation of proposed material
compositions including hysteresis of cross-linked polymers. We
must be careful not to naively apply our approach to these
larger design spaces, as our current recommendation assumes
that all compositions are realizable. The three monomers
studied have relatively high realizabilities, but this may not be
the case in expanded design spaces. Therefore, we seek to use a
modified approach in which a proxy to composition
realizability is predicted and included in the recommendation
method. Nevertheless, this study serves as a proof of concept
that suggests active learning is a promising method to explore a
multimonomer design space, revealing new materials that can
satisfy a breadth of applications.
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