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ABSTRACT: Materials containing B, C, and O, due to the
advantages of forming strong covalent bonds, may lead to materials
that are superhard, i.e., those with a Vicker’s hardness larger than
40 GPa. However, the exploration of this vast chemical,
compositional, and configurational space is nontrivial. Here, we
leverage a combination of machine learning (ML) and first-
principles calculations to enable and accelerate such a targeted
search. The ML models first screen for potentially superhard B−
C−O compositions from a large hypothetical B−C−O candidate
space. Atomic-level structure search using density functional theory
(DFT) within those identified compositions, followed by further
detailed analyses, unravels on four potentially superhard B−C−O
phases exhibiting thermodynamic, mechanical, and dynamic stability.
KEYWORDS: superhard, Vicker’s hardness, B−C−O chemical space, machine learning (ML), DFT, crystal structure search,
elastic moduli

1. INTRODUCTION
A wide variety of practical applications require superhard
materials,1−4 defined as materials with a Vicker’s hardness
value exceeding 40 GPa. For reference, the hardness of
diamond is 93 GPa, and that of Aluminum is 0.167 GPa.
Hardness (H) is measured by the amount of surface
deformation upon indentation originally developed by Smith
and Sandland in 1921.5 It is typically performed by a specially
designed tip that indents the material to evaluate its ability to
resist deformation.6,7 These experiments are intricate and
expensive to perform. Although diamond is the hardest known
material, it has several limitations, such as instability to
oxidation above 800 °C, and reactivity towards iron-containing
compounds.1,8 These drawbacks have fueled ongoing efforts to
find newer superhard materials with improved thermal and
chemical stability.
Compounds containing light elements, such as B, C, N, and

O are some of the most promising candidates in this regard.
These elements can form strong covalent bonds, which are
critical for superhard materials. Several B−C−O phases and
BCx, and BCxN materials with Vicker’s hardness greater than
30 GPa have been synthesized successfully at high pressure and
temperature.9−14 In particular, recently synthesized ternary
B1C2N1 with a hardness of 76 GPa is the second hardest
known material.15−18 Similar to B−C, C−N, C−C, and B−N
covalent bonds in superhard B−C−N compounds, strong B−
O and C−C covalent bonds can also form in B−C−O
compounds.12,14,19 Indeed, several B−C−O compounds have
been proposed using density functional theory (DFT) based
computational approaches to display high hardness, including

B2CxO (x = 1, 2, 3, 5), B4CO4, two-dimensional (2D) B−C−O
alloys, and BxO. Nevertheless, exhaustive searches of the B−
C−O space and ascertaining that these compounds display
thermodynamic, mechanical, and dynamical stability are
nontrivial using purely DFT methods.
Data-driven machine learning (ML) approaches have proven

to be exceptionally efficient in exploring large chemical and
configurational spaces of materials. ML and/or DFT
approaches have been extremely successful in identifying
inorganic and organic materials with various physical and
chemical properties, such as band gaps, conductivities, good
catalytic performances, high/low thermal conductivity materi-
als, and many more.20−42 ML models have also been developed
to predict hardness by utilizing structural information such as
volume, crystal symmetry, elemental information such as
melting point and other input such as cohesive energy.43−46

Obtaining these inputs for a new search space requires
additional prior knowledge. These drawbacks were overcome
by Chen et al. by using features derived purely from the
chemical composition to predict the hardness, which has led to
the discovery of a few superhard B−C−N compounds.47 Their
study used the elastic moduli, such as the bulk modulus (K)
and shear modulus (G), as proxy properties to overcome the
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difficulty of obtaining hardness directly from DFT. Although
these models do not capture the influential factors such as load
dependency on the hardness, thus offering an opportunity for
improvement.48 The utilization of elastic moduli as surrogate
properties has demonstrated promising potential as an
alternative approach to address the challenges associated
with predicting hardness.
The elastic moduli are correlated to Vicker’s hardness45,46

and can reliably be determined through first-principles
calculations. The linear correlation between elastic moduli
and hardness was well-established by several empirical models
that serve as alternatives to challenging estimations of
hardness. Such empirical models include Teter’s model,
Chen’s model, and Tian’s model.49−51 Teter’s model, based
on the observed correlation between shear modulus and
hardness, offers valuable insights; however, it lacks the
consideration of plastic deformation, crucial for understanding
hardness. Tian’s model incorporates considerations of plastic
deformation through Pugh’s ratio (G/K). Pugh’s ratio includes
both bulk (K) and shear (G) moduli, which are the measure of
resistance to uniform compression and shear deformation,
respectively. This inclusion is particularly important, as it
provides a more accurate representation of material behavior
under stress. While Teter’s and Chen’s models yield physically
inaccurate hardness, particularly for ductile materials, Tian’s
model has shown reasonable accuracy in determining hardness
for ductile and brittle materials. Tian’s model is a revised
formula based on microscopic evaluation of hardness. In
addition, the hardness obtained from Tian’s model exhibits
good agreement with experimental values.50−56 The mathe-
matical form of the model is

=H k G0.92 1.137 0.708 (1)

where k is known as Pugh’s ratio (G/K), representing plastic
deformation.
In the present work, we demonstrate a design framework for

identifying novel superhard B−C−O compounds, as shown in

Figure 1. This framework integrates the development of two
machine-learning models to predict bulk and shear moduli of
materials given just their compositions, the estimation of
hardness by using Tian’s model, and employing a crystal
structure prediction algorithm (USPEX) in conjunction with
first-principles calculations for structure prediction and
validation of the ML identified compositions. In this study,
Tian’s model is used for defect-free systems. Although the
methodology is not entirely novel, this study is distinctively
focused on exploring the B−C−O phases. Existing models
were not as effective in this area, prompting us to develop new
models that more accurately capture the distinct chemical
properties of the B−C−O systems. The initial data set to train
the ML models comprises bulk and shear moduli computed
using DFT for 13,148 compounds. From this initial pool,
10,448 compounds were selected based on the formation
energy and elastic modulus as the guiding criteria, as depicted
in Figure 1(a). Subsequently, two ML models were developed
using the chemical compositions of these chosen compounds
as input features, as illustrated in Figure 1(b). These models
were employed on a set of unexplored BxCyOz compositions,
revealing several B−C−O compositions possessing a predicted
hardness of more than 40 GPa, qualifying them as potential
superhard compositions. A total of 19 unique compositions
were identified by applying three filters, as displayed in Figure
1(c). Further, the equilibrium atomic symmetries of these
chosen compositions were determined, followed by an
exhaustive evaluation of their thermodynamic, dynamic, and
mechanical stability, combined with the determination of their
elastic properties, as demonstrated in Figure 1(d). Finally, four
superhard compositions with a hardness of more than 40 GPa,
namely, B1C10O1, B4C8O4, B2C9O1, and B2C8O2 were
identified, which are mechanically and dynamically stable and
exhibit relatively low formation energy. Furthermore, we
implemented SHAP analysis, which provided both global and
local insights into the impact of various features on predicted
hardness, as detailed in the Supporting Information through

Figure 1. Schematic workflow for the data-driven discovery of superhard B−C−O compounds: (a) Data acquisition of 13148 compounds having
DFT computed elastic moduli and three applied criteria to select a suitable training set, (b) regression-based ML model using cross-validation and
chemical formula derived features on a set of 10448 compounds, (c) employed models on a set of B−C−O composition, leading to 335 B−C−O
compositions with hardness more than 35 GPa, and (d) three high-throughput filters enforced superhard B−C−O compositions.
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various SHAP plots. It is hoped that these superhard B−C−O
compositions will go through validation by physical synthesis
and characterization.

2. METHODS
An overview of the steps followed in this work, including data
curation, development of ML models, atomic structure determination,
and stability assessment, are explained in this section.
2.1. Data Set and Features. The properties of interest in this

study that are correlated to hardness are bulk and shear moduli.
Initially, 13,116 samples were collected from Materials Project
containing DFT calculated bulk and shear moduli values in the
ranges of 0−550 GPa.47,57 Previously developed ML models using
these training data by Chen et al. show inaccurate predictions of bulk
and shear modulus when applied to not-so-well-explored B−C−O
compounds. For instance, the previous models predict bulk and shear
moduli of 174.3 and 102.1 GPa, respectively for B2C3O1, which are
considerably different from the previously reported DFT calculated
values of 322 and 302 GPa, respectively.58 Recognizing the lack of
relevant ML-training data, we have augmented the data set by adding
32 DFT computed elastic constants for certain poorly predicted B−
C−O compositions and those which are available in the previous
reports.13,58,59 The DFT modulus values demonstrate the Voigt-
Reuss-Hill average moduli. In order to manage the accuracy of the
models, training data were selected by setting a few criteria. These
include samples with formation energy less than 0.2 eV/atom, Voigt−
Reuss modulus difference larger than 50 GPa, and k (G/K) to be
within 0.25 to 4, as shown in Figure 1(a). These yield a total of 10,448
samples out of a total of 13,148 samples for developing the ML
model. The features derived from the chemical composition (Figure
1(b)) are elemental, orbital, and electronic levels information. These
include mean, range, and fraction weighted atomic weight, row, and
column number in the periodic table, atomic number, atomic radius,
electronegativity, and the number of s and p orbital electrons. There
are a total of 60 features utilized in training the models.47

2.2. ML Model. ML models were developed for bulk (K) and
shear (G) moduli using a random forest algorithm. The models were
trained on 90% of the total data set with 20 random trials. The
training samples were divided into training and validation sets. These
models were tested on the remaining 10% of the data. Further, the
predictions were made on the final production models and used to
estimate the hardness (H) subsequently using eq 1. The training
validation set was used for the grid search with 10-fold cross-
validation, which resulted in a tree depth of 30 and 40 layers (with
160 estimators) for bulk and shear modulus models, respectively. The
performance of these developed models was evaluated by using
regression metrics, namely root-mean-square error (rmse) and the
coefficient of determination (R2). The best-performing model was
selected based on the highest R2 and the lowest train/test rmse after
optimizing the hyperparameters over all of the random trials.
2.3. Crystal Structure Prediction. The compositions with

predicted hardness of over 35 GPa were considered further for a
structure search. In order to make the structure search robust, the
Universal Structure Predictor: Evolutionary Xtallography (USPEX)

was used, which has been successful in finding out energetically
favorable structures from given compositions.60,61 USPEX finds stable
and metastable phases of given compositions by using the ab initio
free energy of the locally optimized structure as the fitness value. The
evolutionary optimization creates new structures by using random
(20%), mutation (30%), and heredity (50%) operators. In order to
focus on discovering superhard compounds, an external pressure of 15
GPa was applied during the structure search. A small but finite
pressure helps to avoid low-hardness graphite-like structures.

The optimized structures obtained from the USPEX search were
fully relaxed by using DFT without external pressure. DFT
calculations were performed using the projector augmented wave
(PAW) method and generalized gradient approximation (GGA)
functional in Perdew−Burke−Ernzerhof (PBE) formalism as
implemented in VASP.62,63 The kinetic energy cutoff was kept at
520 eV, and the kpoints were sampled by a centered Monkhorst−
Pack mesh with a resolution of 0.04. The convergence criteria for
structure relaxation and self-consistency calculations were set to 10−5

eV.
2.4. Stability Assessment for Predicted Structures. For the

fully relaxed structures, the strain−stress method was utilized as
implemented in VASP to obtain the elastic tensor. More stringent
energy criteria of 1 × 10−8 eV were used to ensure a well-converged
elastic tensor. The eigenvalues of the elastic tensor and the Voigt-
Reuss-Hill (VRH) averaged bulk (K), and shear (G) were computed
via the MechElastic library.64 The dynamic stability of the structures
was analyzed by calculating the minimum eigenvalue of the dynamical
matrix obtained from the Phonopy package.65 The required
interatomic force constants were calculated using a supercell size of
1 × 4 × 2. To obtain well-converged phonon dispersion, a k-grid of 6
× 6 × 7 and an energy cutoff of 500 eV with a strict energy
convergence criterion of 10−6 eV were used. The long-range
electrostatic interactions were considered by calculating the Born
effective charges, as implemented in density functional perturbation
theory.

3. RESULTS
3.1. Identifying Superhard B−C−O Compositions.

The hardness of any material is closely correlated to the
elastic properties, such as the bulk and shear moduli of the
system. Therefore, this study considers ML predictions of
elastic moduli as proxy properties, which were further used to
estimate the hardness by utilizing Tian’s model. The
histograms of DFT computed bulk (KDFT) and shear (GDFT)
moduli are shown in Figure 2(a) for 10,448 samples. These
samples are thermodynamically favorable (i.e., formation
energy <0.2 eV), and they possess k (G/K) between 0.25
and 4.0. k > 0.25 ensures the resulting hardness will not be very
small. Structures with k > 4 indicate exceptional hardness,
surpassing 200 GPa, which necessitates high-pressure con-
ditions for their accurate computation and, therefore, have
been excluded from this study. Next, two prediction models
were developed for bulk and shear modulus, for which the

Figure 2. Distribution of the samples and performance evaluation of random-forest-based training models: (a) Histogram of bulk (K) and shear
(G) moduli for 10,448 samples, scatter plots of (b) bulk and (c) shear moduli predictions using chemical composition derived features.
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model parameters were tuned during the learning process.
Optimized hyperparameter values for the developed RF
models are listed in Table S1. The optimized training model
for the bulk modulus results in the lowest train/test rmse of
12.3/22.9 GPa with R2 0.98/0.94, as shown in Figure 2(b).
The second training model for predicting shear modulus also
shows reasonable performance with the lowest train/test rmse
of 8.7/15.3 with R2 0.97/0.91, as shown in Figure 2(c). The
estimation of the hardness was done by using the ML-
predicted elastic moduli, for which the performance is shown
in Figure 3(a). Relatively poor accuracy with R2 of 0.77 can be
attributed to the fact that the prediction of hardness was not
directly obtained but rather determined from the empirical
formula, as shown in eq 1. We note that developing a single
prediction model for hardness can be limited by available
experimental data, and using an empirical model directly can
affect the accuracy of the model.
After obtaining the optimized prediction models, we next

employ these models on a set of B−C−O compositions, which
were generated by enumerating a series of BxCyOz with x, y, z
∈ 1,2,···9. In Figure 3(b), the ternary plot showcases the
predicted hardness for the B−C−O compositions, where the
vertices correspond to elemental compounds. Notably, the
pure carbon phase exhibits a predicted hardness of 93 GPa,
indicating its resemblance to the cubic diamond phase. The
corresponding zoomed-in portion of Figure 3(c) focuses on
compositions with a 1:1 B:O ratio and higher carbon content,
wherein hardness values exceeding 40 GPa are observed. For
instance, the predicted hardness values for compounds B2C3O1
and B2C5O1 are 36.1 and 55.5 GPa, respectively. These
predictions align well with findings reported in previous
studies.58 The targeted search resulted in the identification of
335 compositions with hardness values exceeding 35 GPa. The
plot also reveals high hardness predictions near the pure
oxygen phase. This phenomenon can be attributed to the
characteristic behavior of oxygen-dominated compounds,
which often exhibit a small bulk modulus, resulting in an
amplified k = G/K. As a consequence, these predictions may
give a misleading impression of higher hardness stemming
from an apparent overestimation rather than an accurate
representation.
3.2. Atomic Structure Prediction and DFT Validation.

Next, an atomic-level structure search was performed by using
USPEX. The structure search was primarily focused on the
fixed compositions around the B:O ratio ∼1:1, characterized
by the predicted hardness exceeding 35 GPa, leading to a total
of 335 compositions.
To address computational constraints, three high through-

put filters were employed to narrow the selection to the most

promising compositions. First, compositions with an even
number of total valence electrons were screened, ensuring the
stability and insulating nature of the resulting phases. The
rationale behind prioritizing an insulating phase primarily
stems from the bonding characteristics. Short and strong
covalent bonding, where electrons are tightly bound, inherently
leads to insulating behavior due to the restricted mobility of
electrons, unlike in conductive materials. Simultaneously, such
bonding results in higher hardness by ensuring a rigid and
stable crystal structure. Second, to prioritize structures
resembling diamond, the total number of atoms within the
compositions was restricted to 4n (n = 2, 3, and 4).
Additionally, the maximum number of atoms considered for
the structure search was limited to 8, 12, and 16 atoms per unit
cell. Additionally, to avoid redundancy within the selected
compositions, only one representative structure was chosen
from similar compositions, such as those with identical ratios
(e.g., B2C4O2 and B4C8O4). These employed filters led to the
identification of 19 unique B−C−O compositions having
number of atoms 12 and 16, meeting the desired criteria and
exhibiting promising characteristics for further analysis and
exploration. The down-selection process is demonstrated in
Figure S1. Based on the insights provided by the ML model,
which indicated that a higher carbon content in the
compositions results in increased hardness, two compositions
were excluded from the initial set of 19. These two
compositions had lower carbon content compared to the
elements B or O. Two of the compositions within the data set
had been previously studied58 and were included in the
training set of the ML model. Consequently, these
compositions were excluded from the analysis to ensure an
independent validation. As mentioned previously, the ML
predictions aligned with the hardness of these two
compositions, further validating the accuracy and reliability
of the ML model. By excluding these compositions, the focus
was narrowed to compositions that align more closely with the
desired carbon content for enhanced hardness. Among the
remaining 15 B−C−O compositions (listed in Table S2), a
structure search was conducted to explore, identify, and
validate the most promising crystal structures within these
compositions. The structure selection criteria are summarized
in SI.
The USPEX structure search was carried out by applying a

small and finite pressure of 15 GPa. This facilitated the
identification of more stable structures with reduced volumes,
thereby favoring phases with higher hardness. We start the
structure search for fixed compositions consisting of 12 atoms.
Leveraging the prior knowledge of B1C10N1 compositions
exhibiting high hardness, as established by Chen et al.,47 we

Figure 3. ML predicted hardness for the hypothetical B−C−O candidate space: (a) Scatter plot showing the predicted and true hardness as
obtained from Tian’s formula with K and G as inputs, (b) B−C−O ternary graphs for hardness (H) as estimated from predicted K and G, and (c)
an organized ternary graph indicating a 1:1 B−O ratio can lead to several superhard compositions, for instance, B1C10O1 (Hpred = 52.71 GPa).
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explored the potential candidacy of B1C10O1. Although it does
not meet the criteria set by the high-throughput (HT) filters,
we conducted a structure search for B1C10O1 utilizing a single-
formula unit cell, motivated by its potential relevance and
significance in the context of our study. The structure search
demonstrated an energetically metastable nonlayered B1C10O1,
which crystallizes in a monoclinic phase, as shown in Figure
4(a). The DFT-calculated hardness of 55.5 GPa agrees well
with the ML-predicted hardness of 52 GPa.
To explore the ML-informed 12-atom compositions (Table

S2), we utilized the stable reference structure of B1C10O1 and
derived six compositions by replacing carbon with additional
boron and oxygen. After conducting symmetrization and
geometric optimization, only three structures, namely, B2C9O1,
B2C8O2, and B4C7O1 were successfully obtained. Despite
conducting additional structure searches using USPEX, we did
not discover any structures with lower enthalpy compared to
the identified ones. All three structures exhibit sp3 bonding and
crystallize in the monoclinic phase, as depicted in Figures
4(d,g), and S2(a). The ML-predicted hardness for these
compounds was further validated by calculating the hardness
using DFT. The calculated and ML-predicted bulk and shear
moduli and estimated hardness for these compounds are
summarized in Table S3. B2C9O1 and B2C8O2 are classified as
superhard compounds with the calculated hardness of 57.4 and
40.4 GPa, respectively, while B4C7O1 has a relatively lower
calculated hardness of 30.9 GPa.
Next, we redirected our investigation towards compositions

composed of 16 atoms. Motivated by the exceptional hardness
of the second hardest known material, B1C2N1, we embarked
on an exploration of compositions within the B−C−O system
that exhibit a similar ratio. Thus, leveraging the promising

compositions identified through our ML model, we first
considered the search for B4C8O4 with 16 atoms in the unit
cell. In a recent study, a superhard B1C2O1 material was
investigated, derived from a novel three-dimensional (3D)
carbon allotrope m-C8.

66 Building upon this discovery, we
constructed a B4C8O4 structure from a 1 × 1 × 2 supercell of
diamond and introduced substitutions by replacing eight
carbon atoms with four boron and four oxygen atoms. Among
the structures generated through USPEX and atomic
substitution, we observed that the one with atomic substitution
exhibited a lower enthalpy compared with the structures
generated solely through USPEX. This prompted us to
prioritize the structure with atomic substitutions for further
analysis and exploration. The optimized structure (Figure 4(j))
revealed sp3 bonding within the monoclinic phase. After DFT
calculations were performed for elastic constants, a hardness of
45.9 GPa was obtained, closely aligned with the ML-predicted
hardness value of 41.19 GPa. These promising results indicate
the potential of this superhard material for various applications
and warrant further exploration and investigation. Upon
employing the rule of atomic substitution, we generated
structures corresponding to eight compositions consisting of
16 atoms. However, our search within the explored space did
not yield any other stable configurations.
3.3. Determining the Stability of the Identified

Phases. For practical applications, assessing thermodynamic,
dynamic, and mechanical stabilities is crucial. To evaluate these
properties, the formation energy, phonon spectra, and elastic
constants are calculated for these compounds. The formation
energies for these compounds range from 0.11 to −0.49 eV/
atom as listed in Table S3, which are comparable or relatively
less than previously studied B−C−N and B−N−O superhard

Figure 4. Evolutionary algorithm and first-principles calculations based structure search, stability assessment, and electronic structure properties for
identified superhard compositions: (a, d, g, j) crystal structures (left panels), (b, e, h, k) phonon dispersions (middle panels), and (c, f, i, l)
electronic band structures (right panels) for ML predicted compositions i.e B1C10O1, B4C8O4, B2C9O1, and B2C8O2, respectively. The structures are
represented along the b-axis (with the b-axis perpendicular to the page).
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compounds.47,67 The absence of imaginary frequencies in
phonon dispersions, as shown in Figures 4(b,e,h,k) and S2(b),
implies these structures as dynamically stable. The electronic
band structures with atomic contributions for the four
superhard compositions are shown in Figure 4(c,f,i,l). All
these compounds are mechanically stable, which was verified
by Born’s criteria, as explained in SI. These systems are novel
and show potential. While these four compositions demon-
strating good stability are emphasized, all 15 B−C−O
compositions listed in SI provide a resource offering potential
candidates for further exploration. Recent experimental
pathways for synthesizing superhard B−C−N and other B−
C−O phases open up the possibility for successfully realizing
such B−C−O compounds.17,59,68−70

The findings presented here also highlight the importance of
employing elements characterized by larger electronegativity,
smaller atomic radius, and a lower number of valence electrons
in the p and d orbitals in designing superhard compounds to
enhance the likelihood of achieving high hardness in the
designed materials. Further details and insights obtained by
using SHAP analysis are provided in the SI.

4. CONCLUSIONS
In summary, we demonstrate a machine-learning approach to
accelerate the discovery of new superhard compounds
comprising boron, carbon, and oxygen. Random forest models
for the prediction of two proxy properties, i.e bulk and shear
moduli, were developed, and the predictions were used to
estimate the hardness using Tian’s empirical formula. The ML
models were applied further to screen promising superhard
candidates from a large set of hypothetical BCO compositions.
More than 300 BCO compositions were identified to be
potentially superhard, exhibiting a predicted hardness of more
than 35 GPa. Applying the atomic-level structure search
method, DFT computation, and stability-based filters, a
handful of BCO compositions were selected. Four identified
new and promising superhard compounds display superhard-
ness and mechanical, thermodynamic, and dynamic stability.
Additionally, key parameters influencing hardness have been
identified. The approach adopted in this work can be extended
easily to expand the chemical search space to discover other
superhard compounds.
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