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ABSTRACT: Ring-opening enthalpy (ΔHROP) is a fundamental
thermodynamic quantity controlling the polymerization and
depolymerization of an important class of recyclable polymers,
namely, those created from ring-opening polymerization (ROP).
Highly accurate first-principles-based computational methods to
compute ΔHROP are computationally too demanding to efficiently
guide the design of depolymerizable polymers. In this work, we
develop a generalizable machine-learning model that was trained on
experimental measurements and reliably computed simulation
results of ΔHROP (the latter provides a pathway to systematically
increase the chemical diversity of the data). Predictions of ΔHROP

using this machine-learning model require essentially no time while
the prediction accuracy is about ∼8 kJ/mol, approaching the well-
known chemical accuracy. We hope that this effort will contribute to the future development of new depolymerizable polymers.

1. INTRODUCTION
The superior stability, adaptability, and cost-effectiveness of
polymers have led them to widespread use,1,2 but, on the other
hand, have also created an enormous challenge for modern
human civilization.3−8 As of 2021, only 5% of about 51 million
tons of plastic created in the United States was successfully
recycled,7 leaving the remaining material for landfilling as the
main method of “storing” polymer/plastic waste. The difficulty
of polymer recycling is largely due to their inherent
thermodynamic, thermal, chemical, and mechanical stability.
However, this hurdle has motivated a great deal of recent
research activities in designing and developing recyclable
polymers.9−12

Chemical recycling, in which polymer waste is depoly-
merized back to monomers before purifying and repolymeriz-
ing them, is a preferable approach.13−16 A main advantage of
chemical recycling (compared to mechanical recycling) is that
polymers produced from the recovered monomer feedstocks
can preserve their purity and all of their original properties.
Among numerous families of polymers, those created by
opening cyclic monomers and polymerizing them are, in
principle, depolymerizable and thus being particularly suitable
for chemical recycling.10−12,15,17 This affinity for chemical
recycling seen for polymers polymerized via ring-opening
polymerization (ROP) is owed to the preferable thermody-
namics these polymerizations tend to have.15 Furthermore, the
polymerizability/depolymerizability equilibrium of such poly-

mers may be adjusted by controllable parameters, such as ring-
elemental chemistry, side group functionalization, and the
monomer ring size. Therefore, research and development
activities aiming at understanding, engineering, and designing
(depolymerizable) polymers via ROP have been very active in
the context of sustainability.10,12,15,17−19

Perhaps the most important readily tunable ROP quantity is
the enthalpy of polymerization (ΔHROP), defined as the
difference between the internal energies of the resulting
polymers and the monomers used in the polymerization
process. This thermodynamic quantity, which is closely related
to the monomer ring size and the ring strain, can be
measured19,20 and computed18,21−25 at reasonable levels of
fidelity. Traditionally, ΔHROP was computed by opening a ring
monomer atomic configuration (believed to be its ground
state), passivating the dangling bonds by suitable end groups,
and then computing the energies using first-principles
computations.21−25 This procedure is simple, but reaching
acceptable accuracy is challenging.18 The main reason could be
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traced back to the soft-material nature of polymers, which are
certainly not locked into any single atomic configuration,
especially at and above room temperatures. Therefore, another
method has recently been developed18 that adequately samples
the space of polymer and monomer atomic configurations at
the level of first-principles computations for better estimation
of ΔHROP. While this advanced method is significantly more
robust and accurate than the traditional method, it is also very
computationally demanding.18

The main objective of this paper is to utilize machine-
learning (ML) approaches26−28 to build predictive models of
ΔHROP trained on data from experiments and the newly
developed computational method, i.e., ΔHexpt

ROP and ΔHcomp
ROP .

The reason for using two sources of data, experiments and
computations, is the following: while experimental data
constitute the ground truth, it is typically limited and tends
to grow slowly. On the other hand, computational data,
although full of built-in approximations owing to practicality,
can be produced at scale, grown rapidly, and span new
chemical spaces not seen in experimental investigation. As the
training data of the model comes from two different sources, a
multitask machine-learning approach29,30 was utilized. The
main motivation of a multitask learning algorithm/model is
that by simultaneously learning multiple targets, ΔHexpt

ROP and
ΔHcomp

ROP , the underlying correlations between them can be
exploited and transferred to the model,31 making it more
robust and generalizable (to new chemical spaces) than an ML
model trained on just the ground-truth experimental data set
independently, otherwise known as a single-task model. Such
ML approaches have helped design new-to-the-world polymers
possessing attractive properties in the past.2,32,33 Toward this
goal, we have generated and/or curated a comprehensive
database of experimentally measured and computed ΔHROP,
namely, ΔHexpt

ROP and ΔHcomp
ROP , and developed an ML model to

instantly predict ΔHexpt
ROP for new chemistries. This work focuses

particularly on ROP chemistries as this class of polymers has
repeatedly shown promise in producing polymers that can be
recycled chemically.10,12,15,17−19 Figure 1 shows the overall
pipeline enabled by the newly developed ML model. In the
subsequent part of Section 2, we describe all of the critical
components of the machine-learning approach to ΔHROP,

including data generation and capture, polymer fingerprinting,
and learning architectures and evaluations.
Going forward, the ΔHROP prediction model will (1) be

extended to handle progressively more novel chemistries as
newer data become available, (2) inform the next rounds of
experiments and computations with attractive ΔHROP and
other property values, and ultimately, (3) aid in the accelerated
design of depolymerizable and functional polymers.

2. METHODOLOGY
2.1. Experimental ΔHexpt

ROP Data Capture. Capturing
experimental data from the scientific literature is generally
nontrivial, requiring significant time and human effort. Thus, in
order to significantly reduce the time required to curate a
comprehensive ΔHexpt

ROP data set, a natural language processing
(NLP) based information extraction (IE) technique to get
ΔHexpt

ROP data from literature was employed, building on recent
work.34 Starting from millions of HTML/XML formatted
articles, the procedure then occurred in four steps, including
(1) document parsing, converting original documents to a
format that is suitable for NLP, (2) coarse-grained filtering,
where appropriate keywords were used to downselect several
to thousands of articles from the initial set, (3) extracting
useful information from the downselected papers, and (4)
validating the extracted data by domain experts.
In this procedure, step 3 includes three substeps, i.e., (3a)

target sentence identification, (3b) material name identifica-
tion, and (3c) linking material to property. In (3a), heuristic
rules were employed to identify candidate sentences. They
included searching for sentences containing property names,
e.g., enthalpy of polymerization, and units, e.g., kJ/mol or kcal/
mol. In (3b), two models were used to identify the compound
names. The first model is ChemDataExtractor,35 an open-
source Python library that extracts chemical names using
regular expression (i.e., regex patterns), and the second model
is a BERT-based named entity extraction model36 trained on a
data set of sentences with manually labeled polymer names.
Linking the identified material names to property values, which
can be formulated as a relation extraction task, was performed
in (3c). In this substep, the last material appearing before the
property name is regarded as the owner of the property. These
methods resulted in an NLP augmented literature search that
greatly improved the speed of the data extraction and, as a
result, the amount of ΔHexpt

ROP data. With the aid of these
methods, the ΔHexpt

ROP data set was expanded from 88 manually
collected data points to 109 data points, resulting in an
approximate 24% increase of ΔHexpt

ROP data.
2.2. Computed ΔHcomp

ROP Data Generation. In this work,
ΔHcomp

ROP was generated using the multistep procedure
developed in ref 18. First, a series of closed loops comprised
of L monomer repeat units were constructed using Polymer
Structure Predictor.37,38 These loops are representations of
polymers. As L → ∞, the loop approaches the true polymer
limit, and L = 1 represents the monomer. The computations
were generally performed for L = {1, 3, 4, 5, 6}. A classical
molecular dynamics (MD) simulation using an empirical Reax
force field39 was performed for each monomer/polymer model,
thoroughly exploring the configuration space while preserving
the atomic connectivity. Using classical MD, trajectories of
over 1 ns were generated and thousands of snapshots were
obtained and sampled to maximize the diversification of the
sample set to then be used in ab initio MD simulation. The
purpose of this step, using classical MD, is to provide a set of

Figure 1. Flowchart describing the overall computational workflow:
an initial data set of both ΔHexpt

ROP and ΔHcomp
ROP is vectorized in such a

way that the data source (ΔHexpt
ROP or ΔHcomp

ROP ) as well as the chemistry
present are machine readable. Next, the multitask model to predict
ΔHROP is trained. Then, with this ML model and chemical intuition,
the ROP chemical space can be further explored, and the most
promising polymers can be suggested to perform additional ab initio
computations generating new ΔHcomp

ROP data. Then these data can be
fed back into training to improve the ML model.
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maximally diverse initial atomic structures on which to run ab
initio MD. None of the data generated by classical MD are
used to calculate ΔHcomp

ROP , and thus, no data resulting from
classical MD are part of the ΔHcomp

ROP data used in subsequent
multitask learning. For further information regarding the exact
parameters used to run the classical MD simulation to generate
initial structures for ab initio MD, see Supporting Information.
Next, a room-temperature ab initio MD simulation was

performed for each sample, obtaining the lowest-energy
equilibrated trajectory. The L-dependent estimation of ΔHcomp

ROP

was then computed as =H E EL L L
ROP 1

1 , where EL and
E1 are the potential energies at equilibration of the ab initio
MD trajectories of the polymer model (L > 1) and monomer
model (L = 1), respectively, while ⟨···⟩ stands for the average
over the ensemble of the microstates. Finally, ΔHcomp

ROP was
defined and computed as the L → ∞ (or, equivalently, 1/L →
0) limit of ΔHL

ROP, that is ΔHcomp
ROP ≡ limL→∞ ΔHL

ROP. In ref 18,
ΔHcomp

ROP was computed by assuming that ΔHL
ROP depends

linearly on 1/L and then making suitable extrapolations to the
limit of 1/L → 0. For the development of our target ML model
in this work, ΔHL

ROP data will be used directly as training data,
i.e., the dependence of ΔHL

ROP on L will be learned implicitly
by the selected ML algorithms. Technical details of this plan
can be found in Section 2.4.
The central idea of this computational scheme is that

polymers are soft materials; thus, they are naturally not locked
at any specific atomic configuration but rather switch across
multiple microstates continuously and rapidly. Therefore, this
scheme was designed to thoroughly explore the configuration
space at two levels: The first is in a “coarse-grained” fashion,
using a Reax force field with Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS).40 The second is
using Density Functional Theory (DFT) with Vienna Ab initio
Simulation Package (VASP).41,42 The energies relevant to
ΔHcomp

ROP are computationally averaged over an ensemble of
microstates at the DFT level. While it has been shown that
these methods can lead to very accurate predictions for ΔHexpt

ROP

via linear extrapolation,18 it should be noted that the type of
long-range polymer dynamics necessary to predict ΔHexpt

ROP with
certainty cannot fully be accounted for with DFT alone. More
details on the computational scheme can be found in ref 18.

2.3. Data Summary. Table 1 provides a summary of our
data set, which contains 193 unique ROP polymers and

corresponding ΔHexpt
ROP and/or ΔHcomp

ROP . Among them, 109 ROP
polymers have been studied experimentally with ΔHexpt

ROP values
available, while for the remaining 84 polymers, only ΔHcomp

ROP

data are available. Within the first subset (of 109 ROP
polymers for which ΔHexpt

ROP data are available), ΔHcomp
ROP was

computed for 68 polymers, leaving 41 polymers with ΔHexpt
ROP

only. The “overlap” of 68 polymers that have both ΔHexpt
ROP and

ΔHcomp
ROP is important for our work because, as revealed in

Figure 2, experimental data and computed data are strongly
correlated (with the correlation increasing with increasing L
value). The main objective of multitask learning is to learn and
incorporate such correlations implicitly in the ML model
targets (ΔHexpt

ROP and ΔHcomp
ROP ), making the ML model more

robust for cases for which ΔHexpt
ROP is not available.

The subset of ΔHcomp
ROP contains 84 + 68 = 152 unique ROP

polymers and 428 data points, which can be broken down to
199 data points for ΔHL = 3

ROP, 78 data points for ΔHL = 4
ROP, 86 data

points for ΔHL = 5
ROP, and 65 data points for ΔHL = 6

ROP. Given the
nature of our first-principles computational scheme, the
generation of ΔHcomp

ROP can be performed in a high-throughput,
consistent, and targeted manner, i.e., ΔHcomp

ROP can be generated
for certain polymers so that the training data can be diversified
and the target ML model can become progressively more
robust with respect to new chemistries.

2.4. Polymer Data Fingerprinting. The generated/
curated polymer data must be represented (fingerprinted) in
machine-readable numerical form before they can be used to
train the targeted ML model.27,28,43 Our data of ΔHROP

contain three classes of information, including the chemical
structure of the polymers, usually given in terms of a SMILES
string,28,44 the nature of ΔHROP, i.e., whether the data point is
from experimental or computed sources (specified as (1, 0) or
(0, 1), respectively), and the loop size specified as

L
1 (with

= 0
L
1 for all ΔHexpt

ROP data). Using the hierarchical finger-
printing procedure that was developed27,28,43 during the past
decade and currently used in Polymer Genome27,28 the
polymer SMILES is converted into a numerical vector of
over 200 dimensions (or columns) to represent the chemical
structure of the polymers. The three classes of information
(chemical, data source, and

L
1 ) were stacked into a composite

fingerprint that was then mapped onto the target properties,
i.e., ΔHexpt

ROP and ΔHcomp
ROP . Feature engineering, namely,

permutation feature engineering, was subsequently used for
each machine-learning algorithm tested in Section 3.1 to
reduce the number of dimensions of the overall fingerprint to
80. This procedure is generic and can be used to prepare
training data emerging from multiple sources. Consequently, it
has been widely used for multitask learning efforts within the
area of Materials Informatics.31,32,45−47 With a scheme for
creating the training data fingerprints for multitask ML, a
suitable algorithm is needed to map the composite fingerprints
onto the targeted property values. Four algorithms that are
suitable for small training data sets, including Support Vector
Machine (SVM), Random Forest (RF), Boosted Random
Forest (BRF), and Gaussian Process Regression (GPR), were
tested to determine the best learning technique for our data.
The results for each learning algorithm are described in the
following sections.

3. RESULTS AND DISCUSSION
3.1. Machine-Learning Models and Validation. The

four algorithms considered were evaluated in a customized
leave-one-out cross-validation (LOOCV) protocol in which a
held-out polymer, for which ΔHexpt

ROP is available, is targeted and
predicted by the ML models trained with four different
training set schemes (also referred to as “cases”). These cases
were designed to systematically examine and reveal the role of
ΔHcomp

ROP , the subsequent benefit of multitask learning, and the
performance of the developed models. These four cases are

Table 1. Summary of the ΔHROP Data Generated,
Accumulated, and Used Herein

category number ΔHL=3
ROP ΔHL=4

ROP ΔHL=5
ROP ΔHL=6

ROP

polymers w/ΔHexpt
ROP only 41

polymers w/ΔHcomp
ROP only 84 83 26 28 25

polymers w/both ΔHexpt
ROP &

ΔHcomp
ROP

68 66 42 45 35

polymers w/either ΔHexpt
ROP

or ΔHcomp
ROP

193 149 68 73 60
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summarized in Table 2. In the first case, only the available
experimental data were used for training, so the model is

“effectively” a single-task (ST) model, and so, this case is
named ST. The next three cases are MT1, MT2, and MT3,
which are designed to gradually supply the (multitask) learning
algorithms with selected subsets of computational data, i.e.,
ΔHcomp

ROP , and, consequently, gradually improve ML models.
Among three multitask (MT) cases, MT1 does not include
computed data of any size (L) for the held-out polymer. This
simulates the case when there is no computational data
available for the polymer of interest being predicted. The MT2
case assumes that there is minimal computational data
available, i.e., just corresponding to L = 3, in the training
data for the held-out polymer. Finally, the MT3 case represents
the situation where plenty of computational data are available
for the held-out polymer being predicted.
Table 3 shows two error metrics, i.e., the root-mean-square

error (RMSE) and the determination coefficient (R2) obtained
by using SVM, RF, BRF, and GPR for all 4 cases, namely ST,
MT1, MT2, and MT3. The presented results were obtained by
(1) selecting a held-out polymer for which ΔHexpt

ROP is available,
(2) preparing the training data for the four cases as defined in
Table 2, (3) using a learning algorithm to train an ML model
for each training data set, (4) making predictions on the held-
out polymer, and (5) screening over all the possible (68) held-
out polymers to get the prediction metrics (i.e., RMSE and
R2). Hyper-parameters for a given ML algorithm were chosen

using 5-fold cross-validation and a grid approach, where all
permutations of a list of hyper-parameters were tested prior to
the LOOCV scheme described above. In step (5), for the sake
of a fair comparison, the held-out polymer was selected in the
subset of 68 unique polymers for which both ΔHexpt

ROP and
ΔHcomp

ROP are available.
The obtained results, which are shown in Table 3,

demonstrate that by combining computed data and exper-
imental data, the trained (multitask) ML models are improved
in accuracy. In terms of RMSE and R2, the best algorithm to
learn our ΔHexpt

ROP data is GPR, as has widely been shown in the
literature for small data sets, especially polymer
data.27,28,46,48−51 Using GPR, RMSE is reduced from 12.2
kJ/mol for ST (trained only on experimental data) to 9.2 kJ/
mol for MT1, 8.8 kJ/mol for MT2 and 8.0 kJ/mol for MT3.
This MT3 value comes close to the desired chemical accuracy,
which is about 5 kJ/mol. Therefore, GPR52 was selected for
the eventual development of the predictive ML “production”
model of ΔHexpt

ROP. Figure 3 visualizes the predictions performed
for all the possible (68) held-out polymers in all four cases,
given with respect to the ground truth, i.e., ΔHexpt

ROP for each of
the four algorithms tested (RF, SVM, BRF, and GPR).
Some valuable notes can be drawn from the LOOCV

analysis. First, the performance of ST models for all algorithms
does not show satisfactory enough accuracy. We attribute this
to be due to data scarcity, and it is the motivation for why such
a large ΔHcomp

ROP data set was developed and multitask learning
was employed. Next, in the case of GPR, adding in computed
data that are not associated with the held-out polymer (MT1)
improves the model’s accuracy for predicting the unseen
polymer. This is seen in the improvement of both RMSE and
R2 seen from ST to MT1. We believe this improvement from
ST to MT1 is due to greater generalizability of the model as a
result of greater chemical coverage represented in the
computational data and thus evidence of the benefit of
multitask learning. Second, significant improvement is seen
from MT1 to MT2 where only the computationally least
expensive ab initio MD computation is performed. This
suggests that computed ΔHcomp

ROP , especially ΔHL = 3
ROP, can be

Figure 2. Correlations between ΔHexpt
ROP and ΔHL = N

ROP , shown for (a) L = 3, (b) L = 4, (c) L = 5, (d) L = 6, and (e) L = ∞. In the plots, r
corresponds to the Pearson correlation between ΔHexpt

ROP and ΔHcomp
ROP and indicates how well-correlated the variables are for a given L.

Table 2. Summary of Four Cases Used in Evaluating the ML
Algorithms, Which Are Different in the Training Data

case training data

ST experimental data only
MT1 experimental data + computed data, excluding all ΔHcomp

ROP computed
for the held-out polymer

MT2 experimental data + computed data in which only ΔHL = 3
ROP computed

for the held-out polymer is included
MT3 experimental data + all computed data, including ΔHL = N

ROP for all N
computed for the held-out polymer

Table 3. RMSE, Given in kJ/mol, and R2 Obtained from SVM, RF, BRF, and GPR for Different Cases Described in the Text

ST MT1 MT2 MT3

model type RMSE R2 RMSE R2 RMSE R2 RMSE R2

RF 8.3 0.89 10.7 0.87 10.0 0.85 8.8 0.88
SVM 17.1 0.55 11.2 0.81 10.5 0.83 9.2 0.88
BRF 9.3 0.87 9.4 0.87 9.7 0.86 9.0 0.88
GPR 12.2 0.77 9.2 0.87 8.8 0.88 8.0 0.90
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done in a high-throughput manner, in order to develop a
multitask model that can predict ΔHexpt

ROP for the cases of
interest with satisfactory accuracy. Lastly, for all algorithms
except for RF we see yet another improvement on going from
MT2 to MT3, which shows that additional ΔHcomp

ROP of various
sizes helps the ML models improve their ability to extrapolate
to the experimental case.

3.2. Production Model. Given the analysis described in
Section 3.1, we concluded that GPR is the algorithm of choice
to develop a production multitask ML model that is trained on
all ΔHcomp

ROP and ΔHexpt
ROP data. The main objective of this model

is to predict the ΔHexpt
ROP from the chemical structure, or the

SMILES, of the polymer that is obtained by opening a ring
monomer. Because GPR returns not only the target value
prediction but also an intrinsic measure of the prediction
uncertainty,52 the selection of GPR for the production model
has an extra advantage. Given a new polymer, a large
prediction uncertainty clearly indicates that the chemistry of
the polymer is not very well represented in the training data,
and in this case, performing some computations for ΔHcomp

ROP ,
especially ΔHL = 3

ROP, can not only significantly improve the
prediction but also improve the production model in general.
To assess potential overfitting, a preproduction model was

considered in which 10 ΔHexpt
ROP data points (10% of the

experimental data set) were randomly withheld from training,
such that 5 of the data points had ΔHcomp

ROP in the training set
and 5 data points did not have ΔHcomp

ROP available. The obtained

model had a training RMSE of 2.9 and a test RMSE of 8.2 kJ/
mol. These results are visualized in Figure 4, which includes
ΔHcomp

ROP and ΔHexpt
ROP data. Further the test mean absolute error

(MAE) is in line with 7 kJ/mol, which is significant as this is

Figure 3. Predicted ΔHexpt
ROP, given in a comparison with the ground truth, i.e., the actual values of ΔHexpt

ROP, of 68 polymers for which both ΔHexpt
ROP

and ΔHcompt
ROP are available. Results obtained from cases ST, MT1, MT2, and MT3 are shown in (a)−(d), respectively.

Figure 4. Parity plot for the preproduction model where 10% of the
ΔHexpt

ROP data were withheld. Blue data points represent the test data,
while gray data points represent the train data (which contain both
ΔHcomp

ROP and ΔHexpt
ROP).
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the approximate accuracy reported when linearly extrapolating
from multiple ΔHcomp

ROP of different sizes to the case of an
infinite-sized model.18

For all cases of testing the model, it seems due to data
scarcity that data performance is limited. This can be seen as a
large difference between test and train RMSEs and in the fact
that there is no leveling of the test curves for any case of
ΔHcomp

ROP data availability in Figure 5. To generate Figure 5, test

train splits that varied from 10% train and 90% test to 99%
train and 1% test were randomly split among the ΔHexpt

ROP data.
In each of these splits, the split was done randomly and 100
times in order to collect statistics for how different random
splits could affect the accuracy of the trained ML model,
allowing for the error bars to be plotted. In this random
splitting of ΔHexpt

ROP, the ΔHcomp
ROP data subsequently added to the

training was intentionally modified so the same cases outlined
in Table 2 were tested in the learning curve as well. Figure 5
shows the importance of continued data expansion, and while
experimental data are the highest fidelity data that can be used
for model training and evaluation, the expansion of DFT data
is much easier and faster to perform. Further, from the results
of the LOOCV analysis specifically for the GPR algorithm
shown in Figure 3 and Table 3, it seems evident that loop size
3 DFT data, i.e., ΔHL = 3

ROP, the cheapest data to gather from a
time and computational resource standpoint, are significantly
helpful in obtaining better predictions. Thus, in an effort to
continue to improve the models, the ROP chemical space will
continue to be searched first with ΔHL = 3

ROP computations in an
effort to best create an ML model that can generalize to diverse
chemistries.
Finally, the production model was developed using GPR and

the choice of kernel was discovered to be optimal during
LOOCV. Just prior to this, a 10-fold cross-validation was
performed to achieve an average train RMSE of 1.55 kJ/mol
and an average test RMSE of 8.80 kJ/mol. It is evident that

overfitting is still present, but this is a common problem with a
training data size of a few hundred as we have in this work.
This work will continue and the production model will
constantly be updated by training on new ΔHcomp

ROP data that is
generated.

4. CONCLUSIONS
In this work, we have developed a largest-of-its-kind data set of
ΔHROP, which consists of data from both experimental
measurements and high-throughput computations using a
recently developed first-principles scheme.18 This data set was
then leveraged to develop a multitask ML model that can
predict the experimental value of ΔHROP with an accuracy of 8
kJ/mol that approaches the (gold standard) chemical accuracy
of about ≃5 kJ/mol. Given its high accuracy, this model is
expected to contribute to the development of depolymerizable
polymers via ROP. Polymers synthesized via ROP are focused
on particularly in this work due to their shown potential in
literature to create polymers that have the necessary polymer-
ization thermodynamics to be depolymerized. Data from future
experiments and computations will be used to further improve
this model.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05870.

In addition, all experimental and computational data are
also provided in excel format along with chemical
structures and SMILES strings in two different formats
(“long” and “wide”). All codes and the data files may
also be found in the Ramprasad github at https://github.
com/Ramprasad-Group/enthalpy_ml_paper_code
(ZIP)
A table in PDF format detailing the experimental data
collected from the literature is provided as part of the SI
(PDF)

Special Issue Paper
Published as part of The Journal of Physical Chemistry A virtual
special issue “Machine Learning in Physical Chemistry Volume
2”.

■ AUTHOR INFORMATION
Corresponding Author

Rampi Ramprasad − School of Materials Science &
Engineering, Georgia Institute of Technology, Atlanta,
Georgia 30332, United States; orcid.org/0000-0003-
4630-1565; Email: rampi.ramprasad@mse.gatech.edu

Authors
Aubrey Toland − School of Materials Science & Engineering,

Georgia Institute of Technology, Atlanta, Georgia 30332,
United States; orcid.org/0009-0006-1755-2276

Huan Tran − School of Materials Science & Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States; orcid.org/0000-0002-8093-9426

Lihua Chen − School of Materials Science & Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States

Yinghao Li − School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta,
Georgia 30332, United States

Figure 5. Learning curve for the different cases as described in the
Table 2. Here, each case is indicated by a different color. The shape of
the marker indicates between test and train performance, where the x
indicates train and the dots indicate test.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c05870
J. Phys. Chem. A XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/10.1021/acs.jpca.3c05870?goto=supporting-info
https://github.com/Ramprasad-Group/enthalpy_ml_paper_code
https://github.com/Ramprasad-Group/enthalpy_ml_paper_code
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c05870/suppl_file/jp3c05870_si_001.zip
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.3c05870/suppl_file/jp3c05870_si_002.pdf
https://pubs.acs.org/page/virtual-collections.html?journal=jpcafh&ref=feature
https://pubs.acs.org/page/virtual-collections.html?journal=jpcafh&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rampi+Ramprasad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4630-1565
https://orcid.org/0000-0003-4630-1565
mailto:rampi.ramprasad@mse.gatech.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aubrey+Toland"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0006-1755-2276
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Huan+Tran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8093-9426
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lihua+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yinghao+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chao+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05870?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05870?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05870?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05870?fig=fig5&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c05870?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Chao Zhang − School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta,
Georgia 30332, United States

Will Gutekunst − School of Chemistry and Biochemistry,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.3c05870

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors are grateful for the financial support from the
Office of Naval Research through a Multidisciplinary
University Research Initiative (MURI) Grant (N00014-20-1-
2586). This work also used Expanse at SDSC through
allocation DMR080044 from the Advanced Cyberinfrastruc-
ture Coordination Ecosystem: Services & Support (ACCESS)
program, which is supported by National Science Foundation
grants #2138259, #2138286, #2138307, #2137603, and
#2138296.

■ REFERENCES
(1) Huan, T. D.; Boggs, S.; Teyssedre, G.; Laurent, C.; Cakmak, M.;
Kumar, S.; Ramprasad, R. Advanced polymeric dielectrics for high
energy density applications. Prog. Mater. Sci. 2016, 83, 236−269.
(2) Wu, C.; Deshmukh, A. A.; Chen, L.; Ramprasad, R.; Sotzing, G.
A.; Cao, Y. Rational design of all-organic flexible high-temperature
polymer dielectrics. Matter 2022, 5, 2615−2623.
(3) Borrelle, S. B.; Ringma, J.; Law, K. L.; Monnahan, C. C.;
Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G. H.;
Hilleary, M. A.; et al. Predicted growth in plastic waste exceeds efforts
to mitigate plastic pollution. Science 2020, 369, 1515−1518.
(4) Rochman, C. M.; Browne, M. A.; Halpern, B. S.; Hentschel, B.
T.; Hoh, E.; Karapanagioti, H. K.; Rios-Mendoza, L. M.; Takada, H.;
Teh, S.; Thompson, R. C. Classify plastic waste as hazardous. Nature
2013, 494, 169−171.
(5) Li, W. C.; Tse, H. F.; Fok, L. Plastic waste in the marine
environment: A review of sources, occurrence and effects. Sci. Total
Environ. 2016, 566−567, 333−349.
(6) Verma, R.; Vinoda, K. S.; Papireddy, M.; Gowda, A. N. S. Toxic
Pollutants from Plastic Waste - A Review. Procedia Environ. Sci. 2016,
35, 701−708.
(7) Greenpeace Circular Claims Fall Flat Again. 2022. https://www.
greenpeace.org/usa/wp-content/uploads/2022/10/GPUS_
FinalReport_2022.pdf (accessed: July 19, 2023).
(8) Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman,
M.; Andrady, A.; Narayan, R.; Law, K. L. Plastic waste inputs from
land into the ocean. Science 2015, 347, 768−771.
(9) Fortman, D. J.; Brutman, J. P.; De Hoe, G. X.; Snyder, R. L.;
Dichtel, W. R.; Hillmyer, M. A. Approaches to sustainable and
continually recyclable cross-linked polymers. ACS Sustainable Chem.
Eng. 2018, 6, 11145−11159.
(10) Hong, M.; Chen, E. Y.-X. Completely recyclable biopolymers
with linear and cyclic topologies via ring-opening polymerization of γ-
butyrolactone. Nat. Chem. 2016, 8, 42−49.
(11) Hong, M.; Chen, E. Y.-X. Chemically recyclable polymers: a
circular economy approach to sustainability. Green Chem. 2017, 19,
3692−3706.
(12) Olsén, P.; Odelius, K.; Albertsson, A.-C. Thermodynamic
presynthetic considerations for ring-opening polymerization. Bio-
macromolecules 2016, 17, 699−709.
(13) Lange, J.-P. Sustainable development: efficiency and recycling
in chemicals manufacturing. Green Chem. 2002, 4, 546−550.

(14) Lange, J.-P. Managing plastic waste- sorting, recycling, disposal,
and product redesign. ACS Sustainable Chem. Eng. 2021, 9, 15722−
15738.
(15) Coates, G. W.; Getzler, Y. D. Y. L. Chemical recycling to
monomer for an ideal, circular polymer economy. Nat. Rev. Mater.
2020, 5, 501−516.
(16) Schyns, Z. O. G.; Shaver, M. P. Mechanical recycling of
packaging plastics: A review. Macromol. Rapid Commun. 2021, 42,
2000415.
(17) Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y.
Radical ring-opening polymerization: scope, limitations, and applica-
tion to (bio) degradable materials. Chem. Rev. 2017, 117, 1319−1406.
(18) Tran, H.; Toland, A.; Stellmach, K.; Paul, M. K.; Gutekunst,
W.; Ramprasad, R. Toward Recyclable Polymers: Ring-Opening
Polymerization Enthalpy from First-Principles. J. Phys. Chem. Lett.
2022, 13, 4778−4785.
(19) Stellmach, K. A.; Paul, M. K.; Xu, M.; Su, Y. L.; Fu, L.; Toland,
A. R.; Tran, H.; Chen, L.; Ramprasad, R.; Gutekunst, W. R.
Modulating Polymerization Thermodynamics of Thiolactones
Through Substituent and Heteroatom Incorporation. ACS Macro
Lett. 2022, 11 (7), 895−901.
(20) Duda, A.; Kowalski, A. Handbook of Ring-Opening Polymer-

ization; John Wiley & Sons, Ltd., 2009; Chapter 1, pp 1−51.
(21) Dudev, T.; Lim, C. Ring strain energies from ab initio
calculations. J. Am. Chem. Soc. 1998, 120 (18), 4450−4458.
(22) Katiyar, V.; Nanavati, H. Ring-opening polymerization of L-
lactide using N-heterocyclic molecules: mechanistic, kinetics and DFT
studies. Polym. Chem. 2010, 1, 1491−1500.
(23) Blake, T. R.; Waymouth, R. M. Organocatalytic ring-opening
polymerization of morpholinones: New strategies to functionalized
polyesters. J. Am. Chem. Soc. 2014, 136 (26), 9252−9255.
(24) Wang, Y.; Li, M.; Chen, J.; Tao, Y.; Wang, X. O-to-S
substitution enables dovetailing conflicting cyclizability, polymer-
izability, and recyclability: dithiolactone vs. dilactone. Angew. Chem.,
Int. Ed. 2021, 60, 22547.
(25) Zhu, N.; Liu, Y.; Liu, J.; Ling, J.; Hu, X.; Huang, W.; Feng, W.;
Guo, K. Organocatalyzed chemoselective ring-opening polymer-
izations. Sci. Rep. 2018, 8, No. 3734.
(26) Chen, L.; Pilania, G.; Batra, R.; Huan, T. D.; Kim, C.;
Kuenneth, C.; Ramprasad, R. Polymer Informatics: Current Status
and Critical Next Steps. Mater. Sci. Eng., R 2021, 144, 100595.
(27) Kim, C.; Chandrasekaran, A.; Huan, T. D.; Das, D.; Ramprasad,
R. Polymer Genome: A Data-Powered Polymer Informatics Platform
for Property Predictions. J. Phys. Chem. C 2018, 122 (31), 17575−
17585.
(28) Tran, H. D.; Kim, C.; Chen, L.; Chandrasekaran, A.; Batra, R.;
Venkatram, S.; Kamal, D.; Lightstone, J. P.; Gurnani, R.; Shetty, P.;
et al. Machine-learning predictions of polymer properties with
Polymer Genome. J. Appl. Phys. 2020, 128, No. 171104.
(29) Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl.

Sci. Rev. 2018, 5, 30−43.
(30) Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE

Trans Knowl and Data Eng. 2022, 34, 5586−5609.
(31) Kuenneth, C.; Rajan, A. C.; Tran, H.; Chen, L.; Kim, C.;
Ramprasad, R. Polymer informatics with multi-task learning. Patterns
2021, 2, No. 100238.
(32) Kuenneth, C.; Lalonde, J.; Marrone, B. L.; Iverson, C. N.;
Ramprasad, R.; Pilania, G. Bioplastic design using multitask deep
neural networks. Commun. Mater. 2022, 3, No. 96.
(33) Baldwin, A. F.; Ma, R.; Mannodi-Kanakkithodi, A.; Huan, T.
D.; Wang, C.; Tefferi, M.; Marszalek, J. E.; Cakmak, M.; Cao, Y.;
Ramprasad, R. Poly(dimethyltin glutarate) as a Prospective Material
for High Dielectric Applications. Adv. Mater. 2015, 27, 346−351.
(34) Shetty, P.; Rajan, A. C.; Kuenneth, C.; Gupta, S.; Panchumarti,
L. P.; Holm, L.; Zhang, C.; Ramprasad, R. A general-purpose material
property data extraction pipeline from large polymer corpora using
natural language processing. npj Comput. Mater. 2023, 9, No. 52.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c05870
J. Phys. Chem. A XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Will+Gutekunst"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c05870?ref=pdf
https://doi.org/10.1016/j.pmatsci.2016.05.001
https://doi.org/10.1016/j.pmatsci.2016.05.001
https://doi.org/10.1016/j.matt.2022.06.064
https://doi.org/10.1016/j.matt.2022.06.064
https://doi.org/10.1126/science.aba3656
https://doi.org/10.1126/science.aba3656
https://doi.org/10.1038/494169a
https://doi.org/10.1016/j.scitotenv.2016.05.084
https://doi.org/10.1016/j.scitotenv.2016.05.084
https://doi.org/10.1016/j.proenv.2016.07.069
https://doi.org/10.1016/j.proenv.2016.07.069
https://www.greenpeace.org/usa/wp-content/uploads/2022/10/GPUS_FinalReport_2022.pdf
https://www.greenpeace.org/usa/wp-content/uploads/2022/10/GPUS_FinalReport_2022.pdf
https://www.greenpeace.org/usa/wp-content/uploads/2022/10/GPUS_FinalReport_2022.pdf
https://doi.org/10.1126/science.1260352
https://doi.org/10.1126/science.1260352
https://doi.org/10.1021/acssuschemeng.8b02355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.8b02355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nchem.2391
https://doi.org/10.1038/nchem.2391
https://doi.org/10.1038/nchem.2391
https://doi.org/10.1039/C7GC01496A
https://doi.org/10.1039/C7GC01496A
https://doi.org/10.1021/acs.biomac.5b01698?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biomac.5b01698?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/b207546f
https://doi.org/10.1039/b207546f
https://doi.org/10.1021/acssuschemeng.1c05013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.1c05013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41578-020-0190-4
https://doi.org/10.1038/s41578-020-0190-4
https://doi.org/10.1002/marc.202000415
https://doi.org/10.1002/marc.202000415
https://doi.org/10.1021/acs.chemrev.6b00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00995?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00995?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmacrolett.2c00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmacrolett.2c00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja973895x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja973895x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/c0py00125b
https://doi.org/10.1039/c0py00125b
https://doi.org/10.1039/c0py00125b
https://doi.org/10.1021/ja503830c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja503830c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja503830c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.202109767
https://doi.org/10.1002/anie.202109767
https://doi.org/10.1002/anie.202109767
https://doi.org/10.1038/s41598-018-22171-6
https://doi.org/10.1038/s41598-018-22171-6
https://doi.org/10.1016/j.mser.2020.100595
https://doi.org/10.1016/j.mser.2020.100595
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0023759
https://doi.org/10.1063/5.0023759
https://doi.org/10.1093/nsr/nwx105
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1016/j.patter.2021.100238
https://doi.org/10.1038/s43246-022-00319-2
https://doi.org/10.1038/s43246-022-00319-2
https://doi.org/10.1002/adma.201404162
https://doi.org/10.1002/adma.201404162
https://doi.org/10.1038/s41524-023-01003-w
https://doi.org/10.1038/s41524-023-01003-w
https://doi.org/10.1038/s41524-023-01003-w
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c05870?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(35) Swain, M. C.; Cole, J. M. ChemDataExtractor: a toolkit for
automated extraction of chemical information from the scientific
literature. J. Chem. Inf. Model. 2016, 56, 1894−1904.
(36) Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. In BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding,
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota, 2019; pp 4171−4186.
(37) Huan, T. D.; Ramprasad, R. Polymer Structure Predictions
from First Principles. J. Phys. Chem. Lett. 2020, 11, 5823−5829.
(38) Sahu, H.; Shen, K. H.; Montoya, J.; Tran, H.; Ramprasad, R.
Polymer Structure Predictor (psp): a Python Toolkit for Predicting
Atomic-Level Structural Models for a Range of Polymer Geometries.
J. Chem. Theory Comput. 2022, 18 (4), 2737−2748.
(39) Wood, M. A.; Van Duin, A. C.; Strachan, A. Coupled thermal
and electromagnetic induced decomposition in the molecular
explosive αHMX; a reactive molecular dynamics study. J. Phys.
Chem. A 2014, 118 (5), 885−895.
(40) Plimpton, S. Fast parallel algorithms for short-range molecular
dynamics. J. Comput. Phys. 1995, 117, 1−19.
(41) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy
Calculations for Metals and Semiconductors Using a Plane-Wave
Basis Set. Comput. Mater. Sci. 1996, 6, 15−50.
(42) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab
initio total-energy calculations using a plane-wave basis set. Phys. Rev.
B 1996, 54, 11169−11186.
(43) Huan, T. D.; Mannodi-Kanakkithodi, A.; Ramprasad, R.
Accelerated materials property predictions and design using motif-
based fingerprints. Phys. Rev. B 2015, 92, No. 014106.
(44) Weininger, D. SMILES, a Chemical Language and Information
System. 1. Introduction to Methodology and Encoding Rules. J. Chem.
Inf. Comput. Sci. 1988, 28, 31−36.
(45) Kuenneth, C.; Schertzer, W.; Ramprasad, R. Copolymer
Informatics with Multitask Deep Neural Networks. Macromolecules
2021, 54, 5957−5961.
(46) Zhu, G.; Kim, C.; Chandrasekarn, A.; Everett, J. D.; Ramprasad,
R.; Lively, R. P. Polymer genome−based prediction of gas
permeabilities in polymers. J. Polym. Eng. 2020, 40, 451−457.
(47) Tuoc, V. N.; Nguyen, N. T. T.; Sharma, V.; Huan, T. D.
Probabilistic Deep Learning Approach for Targeted Hybrid Organic-
Inorganic Perovskites. Phys. Rev. Mater. 2021, 5, No. 125402.
(48) Kamal, D.; Tran, H.; Kim, C.; Wang, Y.; Chen, L.; Cao, Y.;
Joseph, V. R.; Ramprasad, R. Novel high voltage polymer insulators
using computational and data-driven techniques. J. Chem. Phys. 2021,
154, No. 174906.
(49) Barnett, J. W.; Bilchak, C. R.; Wang, Y.; Benicewicz, B. C.;
Murdock, L. A.; Bereau, T.; Kumar, S. K. Designing exceptional gas-
separation polymer membranes using machine learning. Sci. Adv.
2020, 6, No. eaaz4301.
(50) Chen, L.; Kim, C.; Batra, R.; Lightstone, J. P.; Wu, C.; Li, Z.;
Deshmukh, A. A.; Wang, Y.; Tran, H. D.; Vashishta, P.; et al.
Frequency-dependent dielectric constant prediction of polymers using
machine learning. npj Comput. Mater. 2020, 6, No. 61, DOI: 10.1038/
s41524-020-0333-6.
(51) Nistane, J.; Chen, L.; Lee, Y.; Lively, R.; Ramprasad, R.
Estimation of the Flory-Huggins interaction parameter of polymer-
solvent mixtures using machine learning. MRS Commun. 2022, 12,
1096−1102.
(52) Rasmussen, C. E.; Williams, C. K. I., Eds. Gaussian Processes for

Machine Learning; The MIT Press: Cambridge, MA, 2006.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c05870
J. Phys. Chem. A XXXX, XXX, XXX−XXX

H

https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.6b00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01553?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c01553?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00022?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp406248m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp406248m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp406248m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/physrevb.54.11169
https://doi.org/10.1103/physrevb.54.11169
https://doi.org/10.1103/PhysRevB.92.014106
https://doi.org/10.1103/PhysRevB.92.014106
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.1c00728?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.1c00728?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1515/polyeng-2019-0329
https://doi.org/10.1515/polyeng-2019-0329
https://doi.org/10.1103/PhysRevMaterials.5.125402
https://doi.org/10.1103/PhysRevMaterials.5.125402
https://doi.org/10.1063/5.0044306
https://doi.org/10.1063/5.0044306
https://doi.org/10.1126/sciadv.aaz4301
https://doi.org/10.1126/sciadv.aaz4301
https://doi.org/10.1038/s41524-020-0333-6
https://doi.org/10.1038/s41524-020-0333-6
https://doi.org/10.1038/s41524-020-0333-6?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41524-020-0333-6?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1557/s43579-022-00237-x
https://doi.org/10.1557/s43579-022-00237-x
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c05870?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

