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Polyethylene (PE), the most commonly used plastic, has a sim-
ple molecular structure with a repeat unit of�)H�� � H����,
making it an ideal and signicant polymer or computational
studies. PE is commercially classified based on density,
molecular weight, and processing conditions that impact its
microstructural phases. In its manufactured form, PE is typi-
cally semicrystalline, containing both crystalline and amor-
phous regions.[1] The equilibrium crystalline phase of PE is
orthorhombic; however, when subjected to external stress, it
undergoes a martensitic phase transformation, transitioning into
the metastable monoclinic phase. This phase transition has been
extensively documented as early as 1957.[2–4] Consequently,
when conducting computational studies on PE, it is crucial to
employ methods capable of accurately capturing the behavior
of all three phases.
Density Functional Theory (DFT)[5,6] and classical force

eld (FF) based molecular dynamics (MD) simulations[7] are
two widely utilized tools for modeling material behavior. DFT
calculations are considered highly accurate but computation-
ally expensive. On the other hand, classical FF simulations are
more computationally efcient, enabling the study o larger and
more intricate systems. This is because classical FFs circum-
vent the rigorous quantum mechanical calculations needed for
DFT by being parameterized based on experimental or DFT
data. Numerous studies have validated classical FFs against
DFT results, investigating various material systems such as
ice,[8] MOFs,[9] and polymers,[10] however a comprehensive
comparison o these methods specically or PE with a ocus
on its non-equilibrium phases has not yet been conducted.
This study aims to assess the ability of four classical FFs

to reproduce the outcomes of DFT calculations concerning
various phases of PE. The four FFs under consideration are

Optimized Potentials for Liquid Simulations (OPLS),[11,12] the
Polymer Consistent Force Field (PCFF),[13] Transferable Poten-
tials for Phase Equilibria United Atom (TraPPE-UA),[14] and
the Reactive Force Field (ReaxFF).[15,16]

OPLS and PCFF are two of the most commonly used FFs
for MD simulations involving polymers. They are both trained
on experimental data, utilize well-established parameterized
functional forces to accurately represent atomic interactions,
and have a relatively low computational cost. TraPPE-UA is
a united atom FF, where groups of H�� atoms are treated as
a single pseudo-atom.[17] This approach signicantly reduces
the computational cost by decreasing the number of individual
atoms that need to be explicitly considered. TraPPE-UA is
trained on a combination of experimental data and electronic
structure calculations. Similar to OPLS, it employs Coulomb
and Lennard–Jones potentials in a 12–6 form to parameterize
non-bonded interactions.[14]

The three aforementioned FFs (OPLS, PCFF, and TraPPE-
UA) are classied as nonreactive FFs, meaning that the chemi-
cal bonds dened at the beginning o the simulation remain
xed throughout the simulation. In contrast, ReaxFF is a reac-
tive FF capable of handling bond breakage and formation dur-
ing the simulation, making it suitable for modeling chemical
reactions. The parameters of ReaxFF are typically derived from
rst-principles calculations, such as DFT.[15,16,18] Consequently,
ReaxFF has higher computational costs compared to the other
FFs examined in this study.
This study also aims to assess the predictive capability of

the four FFs in determining the melting point of bulk PE. The
melting point of a material corresponds to the temperature
at which it transitions from a solid to a liquid state, typically
accompanied by a signicant decrease in density, such as in the
case of PE. Previous investigations comparing experimental
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and FF-calculated melting points have been conducted for
poly(vinylidene fluoride) (PVDF)[19] and perfluorinated
alkanes.[20] These studies measured the density of the materials
over increasing temperatures and found that the FF predictions
overestimate the melting temperature as compared to experi-
mental values. Several factors could account for this outcome.
First, the movement of very long polymer chains is constrained
by periodic boundary conditions, making it more challenging
for the simulated material to undergo melting. Second, surface
and interace eects that exert signicant control over the melt-
ing process may not be fully captured by the simulations.
The primary objective of this study is to determine whether

classical FFs produce results comparable to DFT calculations
and experiments or PE spanning diverse and extreme congu-
rations. To achieve this, several steps are undertaken. First, ab-
initioMD simulations are conducted to generate orthorhombic,
monoclinic, and amorphous structures of PE. These simulations
start rom their respective equilibrium congurations and are
run at room temperature, generating numerous congurations
for each phase. The DFT energies, forces, and stresses of these
congurations are obtained rom the ab-initio MD run. Sub-
sequently, the classical FF energies, forces, and stresses are
calculated by applying the FF parameters and performing a
static, classical MD calculation on the same congurations.
A comparison is then made between the classical FF results
and the “ground truth” DFT results obtained. In addition to the
comparative analysis, a pressure–temperature phase diagram
is constructed using classical MD simulations with each FF.
These simulations are carried out over a range of pressures and
temperatures to determine the melting point of the orthorhom-
bic PE equilibrium conguration. The obtained melting behav-
ior of the orthorhombic phase is then compared to experimental
results. These calculations serve as a foundational reference
for future, more complex simulations, such as classical MD
runs involving high-pressure shock compression studies on PE.
Such simulations are expected to generate atomic congura-
tions signicantly deviating rom equilibrium.

Ldsgncr
Rsqtbstqd�fdmdq‘shnm+�CES�‘mc bk‘rrhb‘k�
EE�b‘kbtk‘shnmr
To initiate the study, orthorhombic and monoclinic unit cells
were constructed for PE using their crystalline lattice parame-
ters (space groups Pnam and C2/m, respectively). Each unit cell
contains 4H�� groups. These structures were then expanded to
a 1×2 × 5 supercell size, resulting in a total of 120 atoms per
structure. These congurations served as the initial structures
for the respective phases.
For the generation of the initial amorphous structure,

the orthorhombic supercell was used as a starting point. A
classical MD simulation was performed using OPLS with
Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS).[21] The MD run consisted of three stages:
an NVT-MD run (constant Number of particles, Volume, and

Temperature) at 600 K for 1 ns, followed by an NPT-MD run
(constant Number of particles, Pressure, and Temperature) at
600 K or 1 ns, and nally, another NPT-MD run at 300 K or
5 ns. The resulting density o the structure was veried to be
close to experimental values (~0.85 g/cm3) and was adopted
as the initial amorphous structure.
Using the initial structures for each phase, DFT-based (ab-

initio) NPT-MD simulations were carried out at 300 K for
a total of 100 fs. The structure at each of the 200 timesteps
were recorded for each phase. The DFT energy values, three
force components, and six stress components were obtained
or each conguration during this ab-initio MD run. Vienna
Ab initio Simulation Package (VASP)[22,23] was employed for
all the ab-initio MD simulations. The calculations utilized
the Perdew–Burke–Ernzerhof (PBE) functional,[24] Projector
Augmented Wave (PAW) potentials, and plane-wave basis
unctions with a kinetic energy cuto o 400 eV[25] and used
4×2×1 k-point meshes. The vdW-DF functional was employed
for van der Waals calculations.[26]

Classical FF results were obtained using LAMMPS with
all four FFs: OPLS, PCFF, TraPPE-UA, and ReaxFF. The 200
structures of each phase were subjected to static calculations.
This process yielded classical FF energy values, three force
components, and six stress components per structure. Since
the LAMMPS calculations are static, the structures obtained
are directly comparable to those used in the DFT calculations,
and the only dierence lies in the parameterization employed
within the FFs.
In order to test how the orce elds perorm under non-zero

pressure conditions, a similar procedure as mentioned above
was performed. First, NPT-MD simulations were carried out
at 300 K and 0.6 GPa or a total o 100 s. Then, ve structures
from each phase were selected to examine. In this step, the
energy, forces, and stresses of each high pressure structure was
calculated using DFT and compared with results from the four
orce elds examined.

Og‘rd�ch‘fq‘l
To construct the pressure–temperature (P–T) phase diagram
of orthorhombic PE, the melting point of the structure (repre-
senting the transition from the solid to the liquid phase) was
calculated at various pressures. The methodology employed is
based on the approach outlined in Chen.[27] Each of the four
FFs was applied to a 4×2×15 supercell of orthorhombic PE
(containing 720 atoms), the model size for which a conver-
gence of the phase diagram is reached. NPT-MD simulations
were performed for a duration of 0.5 ns, maintaining a pres-
sure of 1 atm while varying the temperature within the range
of 300–700 K. Throughout the simulation, the density of the
system was recorded, and the nal density value was deter-
mined by averaging the values over the last 100 ps of the run.
A signicant decrease in density with increasing temperature
was indicative of the occurrence of melting. This process
was repeated for additional pressures of 250, 500, 750, and
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1000 atm. The melting temperature from each pressure was
used to generate a P–T phase diagram.

Qdrtksr�‘mc chrbtrrhnm
Dmdqfx
The energies of the generated structures were computed at
P= 0 and P= 0.6 GPa using both DFT and the selected clas-
sical FFs and were compared using parity plots shown in

Fig. 1. To facilitate a comprehensive comparison, the energy
values were adjusted relative to the perfect orthogonal crys-
tal structure. The ideal scenario is for the FF results to align
perfectly with the DFT results, represented by the dashed
parity line with a root mean square error (RMSE) value of
0, indicating perfect replication. The RMSE and the deter-
mination coefcient R2 values for all of the calculations are
shown in Tables I and II, respectively. Based on the RMSE
values, the performance of the FFs can be ranked from best

Ehftqd 0-� �Bnlo‘qhrnm�ne�CES�dmdqfx�‘mc�NOKR+�OBEE+�Sq‘OOD,T@+�‘mc�Qd‘wEE�’eqnl�kdes�sn�qhfgs(�dmdqfx-�Sgd�dmdqfx�hr�fhudm�enq�d‘bg�
ne�sgd�bqxrs‘k�rsqtbstqd�bnmftq‘shnmr�‘s�O�<�/�FO‘�’h-d-+�‘lnqog�enq�‘lnqogntr+�nqsgn-�enq�nqsgnqgnlahb+�‘mc�lnmn-�enq�lnmnbkhmhb(�‘mc�
O�<�/-5�FO‘�’h-d-+�ghfgO�nqsgn�‘mc�ghfgO�lnmn(-�Sgd�c‘rgdc�khmd�hr�‘�o‘qhsx�khmd+�‘mc�‘anud�‘mc�sn�sgd�qhfgs�‘qd�chrsqhatshnm�oknsr+�rgnvhmf�
sgd�eqdptdmbhdr�ne�d‘bg�dmdqfx�sg‘s�nbbtqr+�vghbg�hr�chebtks�sn�sdkk�eqnl�itrs�sgd�o‘qhsx�oknsr-

S‘akd�H-� �QLRD�u‘ktdr�enq�sgd�dmdqfx+�enqbd+�‘mc�rsqdrr�b‘kbtk‘shnmr-

The data in parentheses are or the high pressure calculations and are colored to match the gures.
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to worst as follows: PCFF, OPLS, ReaxFF, and TraPPE-UA.
The poor performance of TraPPE-UA can be attributed to
its treatment of each H�� group as a pseudo-atom, result-
ing in lower accuracy compared to the other FFs. However,
it is worth noting that all FFs exhibit RMSE values below
or around 0.1 eV/H�� , indicating a generally strong agree-
ment between the FF and DFT energy values. The R2 values
show similar trends, with PCFF having a value of almost 1
and TraPPE-UA having the lowest value. However, the R2

values of the high pressure structures show that TraPPE-UA
cannot capture the desired behavior, though the other three
orce elds can.
The distribution plots, located above and to the right of the

parity plots, illustrate the energy distributions for each phase.
These plots reveal that none of the methods is capable of dis-
tinguishing between the equilibrium (orthorhombic) and meta-
stable (monoclinic) crystalline structures. Despite experimental
evidence supporting the orthorhombic phase as the equilibrium
structure, both DFT and the four FFs calculate the monoclinic
phase to have lower energy. It is known, however, that the
energy dierence between the two phases is expected to be
small,[28] thus it is not unexpected that the methods cannot
dierentiate the equilibrium phases. Additionally, the RMSE
values do not significantly differ among the three phases,
indicating that all FFs demonstrate similar accuracy regard-
less of whether the structure is orthorhombic, monoclinic, or
amorphous.

Enqbd
Figure 2 displays the parity plots depicting the comparison
between the forces calculated using DFT and those computed
using the selected FFs. Unlike energy, which is a global quan-
tity dened or the entire system, the orce is experienced by an
individual atom, dened as the negative o the rst derivative
of the energy with respect to the atomic position. Each atom
has three force components (x, y, and z) associated with it. To
ensure a fair comparison between the all-atom and united-atom
approaches, the presented results represent the net forces acting
on eachH�� unit. This was achieved by grouping the individual
atoms into the sameH�� clusters employed by TraPPE-UA and
summing the forces along the x, y, and z directions.
For the zero-pressure structures, as Fig. 2 demonstrates,

PCFF exhibits excellent performance, closely followed by
OPLS which only slightly deviates from the ideal parity line.
Unlike the results for energy, TraPPE-UA performs better than
ReaxFF. The force distribution of ReaxFF appears more dis-
persed, with a slope that deviates from the parity line, indi-
cating lower accuracy when compared to the DFT results (as
evidenced by the higher RMSE values). The reason TraPPE-UA
appears to be better than ReaxFF may come from the united-
atom model o TraPPE-UA. To be more specic, all the atomic
forces between the “real” atoms, which are generally “not
good” using empirical orce elds, are ignored in the case o
TraPPE-UAwhile they are explicitly computed and contributed

S‘akd�HH-� �Q1�u‘ktdr�enq�sgd�dmdqfx+�enqbd+�‘mc�rsqdrr�b‘kbtk‘shnmr-

The data in parentheses are or the high pressure calculations and are colored to match the gures.
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to the displayed results of ReaxFF. Therefore, when “not good”
results are suppressed, TraPPE-UA articially appears to be
better than ReaxFF. The forces from the high-pressure struc-
tures, however, are not well-aligned with the DFT results. This
indicates that the orceelds have a difcult time replicating the
orces ound in high pressure congurations.

Rsqdrr
The stress tensor has nine components, but it is often reduced
to just six (each of three normal and shear components) due to
symmetry restrictions. Therefore, the stress tensor becomes:

Figure 3 presents parity plots depicting the agreement
between the six stress components calculated using DFT and
the corresponding values obtained from the FFs. In the top row,
representing the normal stress components ��� and ��� , OPLS
demonstrates the closest replication of the DFT behavior, with
PCFF performing slightly less accurately. Although ReaxFF
exhibits a larger spread of stresses, it still captures the trend
of the DFT results. On the other hand, the �yy� �zz� �y� � and �z�
stress components computed using TraPPE-UA do not show
correlations with DFT results, and thus TrapPPE-UA is the least
accurate among the FFs for these two components. Notably, the
��� and ��� components for the monoclinic phase can be distin-
guished from the orthorhombic phase with all of the FFs, except
for OPLS. In these cases, the RMSE values for the orthorhombic
phase are generally lower than those for the monoclinic phase.
The ��� stress component (middle row), aligned along the

polymer chain direction, is the most challenging to capture accu-
rately, likely due to the larger and more exible range o motion
in that direction. The three shear stress components (�y� , �z� ,
�z�) shown in the bottom row are indistinguishable rom each
other and are combined in a single plot for each FF. Remarkably,
the shear stress components exhibit better agreement with the
DFT values compared to the other stress components. PCFF
and OPLS show the closest correspondence to the DFT results
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for the shear stress components, while TraPPE-UAand ReaxFF
demonstrate comparatively poorer performance. These trends
are also exhibited with the high pressure structure results.
Below are the data tables containing RMSE and R2 values

for the energy, force, and stress calculations.

Og‘rd�ch‘fq‘l
In Fig. 4, the P–T phase diagram is presented, constructed based
on the method described in Chen.[27] The density of orthorhombic
PE is plotted at various pressures and temperatures for the four
FFs, along with the experimental data[29] and thermodynamic
integration simulations data obtained from[30] for comparison.
The experimental values for density at temperatures above room
temperature were not reported. Figure 4(a) shows the example
of the density of PE at 1 atm from 300 to 700 K as calculated
by the four FFs. From this graph, the melting temperature can
be identied by the sharp decrease in density, indicated by the
dashed vertical lines. These melting temperatures were deter-
mined for each of the four FF methods over a range of pressures
(1, 250, 500, 750, 1000 atm) and plotted as a P–T phase diagram
[Fig. 4(b)], where the experimental values are also displayed.
From the results, it can be observed that PCFF, TraPPE-

UA, and ReaxFF are closest in temperature to the experimen-
tal values. PCFF and ReaxFF also capture the shape of the
experimental curve more accurately. All of the FF methods,
however, tend to overpredict the experimental values. There
is about a 50–100 K error on these predictions compared
to experimental and simulation data. Among the FFs, OPLS
deviates the most from the experimental data. Overall, while
the FF methods do not perfectly replicate the exact experi-
mental melting temperatures, they are able to capture the gen-
eral trend of melting. This discrepancy between FF predic-
tions and experimental results is not unexpected, as previous
studies on other systems, such as PVDF and peruorinated
alkanes, have also shown overestimation of melting tempera-
tures by FF methods compared to experimental data. This
discrepancy can be attributed to surface tension and interface
eects that are more pronounced at the molecular scale but
not fully captured in experiments. It can be concluded that

Ehftqd 1-� �Bnlo‘qhrnm�ne�CES�enqbdr�’w+�x+�‘mc�y(�‘mc�NOKR+�OBEE+�Sq‘OOD,T@+�‘mc�Qd‘wEE�’eqnl�kdes�sn�qhfgs(�enqbd�enq�d‘bg�ne�sgd�bqxrs‘k�
rsqtbstqd�bnmftq‘shnmr�‘s�O�<�/�FO‘�’h-d-+�‘lnqog�enq�‘lnqogntr+�nqsgn-�enq�nqsgnqgnlahb+�‘mc�lnmn-�enq�lnmnbkhmhb(�‘mc�O�<�/-5�FO‘�
’h-d-+�ghfgO�nqsgn�‘mc�ghfgO�lnmn(-�Sgd�c‘rgdc�khmd�hr�‘�o‘qhsx�khmd-
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PCFF, TraPPE-UA, and ReaxFF perform reasonably well
under these circumstances, while OPLS falls short in repli-
cating the experimental behavior.

Bnmbktrhnmr
In this study, we have conducted a comprehensive compari-
son o our dierent classical orce elds (FFs) to assess their
ability to replicate the behavior of non-equilibrium structures

of polyethylene (PE) using density functional theory (DFT) as
a benchmark. The FFs are primarily parameterized based on
equilibrium structures, and our goal was to investigate their per-
formance in simulating structures away from equilibrium. Our
analysis focused on energy, force, and stress calculations for
the generated structures using each FF. The results indicate that
the FFs can eectively replicate the energy values, with PCFF
showing the best performance, closely followed by OPLS. This
suggests that PCFF and OPLS can be trusted for accurate energy

Ehftqd 2-� �Bnlo‘qhrnm�ne�CES�rsqdrr�‘mc�NOKR+�OBEE+�Sq‘OOD,T@+�‘mc�Qd‘wEE�’eqnl�kdes�sn�qhfgs(�rsqdrr�enq�d‘bg�ne�sgd�bqxrs‘k�rsqtbstqd�
bnmftq‘shnmr�‘s�O�<�/�FO‘�’h-d-+�‘lnqog�enq�‘lnqogntr+�nqsgn-�enq�nqsgnqgnlahb+�‘mc�lnmn-�enq�lnmnbkhmhb(�‘mc�O�<�/-5�FO‘�’h-d-+�ghfgO�
nqsgn�‘mc�ghfgO�lnmn(-�Sno9�����‘mc�����+�Lhcckd9�����+�‘mc�Anssnl9��y��+��z��+��z��-�Sgd�c‘rgdc�khmd�hr�‘�o‘qhsx�khmd-
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calculations in simulations involving non-equilibrium structures
of PE.
When it comes to force and stress calculations, the accuracy

decreases, however PCFF and OPLS still demonstrate favora-
ble performance compared to TraPPE-UA and ReaxFF.Among
the four FFs, ReaxFF stands out as the only one capable of
capturing bond breaking and chemical reactions. Although the
overall performance of ReaxFF is not as strong as PCFF and
OPLS, it outperforms TraPPE-UA and can be a suitable choice
for simulations involving reactive processes in PE.
Based on the results, PCFF and OPLS emerge as the top

choices for accurate simulations of non-equilibrium struc-
tures of PE. The capabilities of ReaxFF in handling chemi-
cal reactions and bond breaking make it a viable option for
reactive simulations o PE. The ndings o this study pave
the way for future investigations involving non-equilibrium
structures of PE, particularly in high-pressure shock-com-
pression or high-strain-rate deformation scenarios. The prom-
ising performance of PCFF and ReaxFF will be instrumental
in advancing simulations of such complex phenomena.
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