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A deep learning framework to emulate density functional
theory
Beatriz G. del Rio1,2✉, Brandon Phan 2 and Rampi Ramprasad 2✉

Density functional theory (DFT) has been a critical component of computational materials research and discovery for decades.
However, the computational cost of solving the central Kohn–Sham equation remains a major obstacle for dynamical studies of
complex phenomena at-scale. Here, we propose an end-to-end machine learning (ML) model that emulates the essence of DFT by
mapping the atomic structure of the system to its electronic charge density, followed by the prediction of other properties such as
density of states, potential energy, atomic forces, and stress tensor, by using the atomic structure and charge density as input. Our
deep learning model successfully bypasses the explicit solution of the Kohn-Sham equation with orders of magnitude speedup
(linear scaling with system size with a small prefactor), while maintaining chemical accuracy. We demonstrate the capability of this
ML-DFT concept for an extensive database of organic molecules, polymer chains, and polymer crystals.
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INTRODUCTION
Density functional theory (DFT)1,2 has become one of the most
valuable computational tools for the materials research commu-
nity. It has guided the discovery of new catalysts3,4, the design of
materials for energy storage5–8, and the exploration of material
behavior under extreme conditions9–11, among other applications.
The success of DFT lies in the transformation of the cumbersome
many-electron many-nuclear problem of quantum mechanics to
an effective one-electron Kohn–Sham (KS) equation2. Solving the
KS equation for a material with a given atomic configuration
provides information about the ground state electronic structure
of the system in the form of one-electron wave functions (or
charge density) and one-electron eigenvalues (or density of
states). These quantities, i.e., either the wave functions and
eigenvalues or the charge density and density of states, are the
most essential and complete information of the material from
which a host of properties can be computed, such as the potential
energy, atomic forces, and stress tensor. DFT-based research has
seen several advancements over the last several decades in the
areas of theory, algorithms, and computational infrastructure,
instrumental in the above-mentioned discoveries. Nevertheless,
practical and routine DFT calculations of complex materials
involving several thousands of atoms to probe phenomena that
occur over timescales of the order of nanoseconds or longer
remain inaccessible.
Over the last decade, machine learning (ML) based approaches

are actively being considered in various ways to meet the length-
and time-scale demands encountered during DFT computations.
ML provides a powerful pathway to replace a cumbersome or
expensive “input–output” problem with a cheap “surrogate”
model. The accuracy and versatility of such models depend on
the number and diversity of input–output examples the model
has seen before and the internal architecture of such models. The
past decade has seen several successful ML efforts applied to
various material properties and application spaces12–26.
The present contribution attempts to provide an efficient

emulation of DFT by treating the KS equation itself as an

input–output problem. Of relevance to the present contribution
are our own past work27,28, in which the problem in question was
addressed to a limited level, and the recent work by Brockherde et
al.29. The latter work attempts to bypass explicitly solving the KS
equation using a plane-wave basis representation of the electron
density. While the accuracy of the model was demonstrated for
small molecules, it was not transferable to large systems. Since this
first attempt, two main methodologies have been investigated to
predict the charge density: grid-based schemes27,30–32 and atom-
based representations in terms of basis functions33–37. The main
advantage of a grid-based approach is the high accuracy obtained
and general applicability to localized and delocalized electron
densities. However, no information about individual atomic
charges can be retrieved, and the high computational cost
hinders its applicability to large databases. On the other hand,
predicting the charge density as atomic contributions in terms of a
basis set significantly reduces the computational cost and
provides information on the individual atomic charges at the cost
of lower accuracy, especially in systems with a delocalized electron
density. One important advantage of atom-based representations
is the higher transferability to new and larger systems, which is
essential for a successful deployment of the model. Nevertheless,
challenges still remain with respect to achieving comparable
model performance for larger systems relative to smaller systems
used during the training phase. Although methods have been
developed to varying degrees of success to predict either the
electronic structure or basic atomic properties such as total
potential energy, atomic forces, or stress tensor, there is yet no
scheme that has successfully unified simultaneous prediction of
both types of properties in a comprehensive KS-DFT emulation.
In this work, the KS equation is handled in an alternative

manner using a deep learning scheme, both in terms of
methodological advancements and applicability, which predicts
the electron density first and then employs it as an additional
descriptor of the material to further predict other electronic and
atomic quantities. The electronic quantities predicted other than
the charge density are the density of states, valence band
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maximum (VBM), conduction band minimum (CBM), and band
gap (Egap). The atomic or global quantities predicted are the total
potential energy, atomic forces, and stress tensor, essential for
molecular dynamics (MD) simulations. Our scheme also expands
the flexibility and transferability of the model, allowing for training
on molecules, 2D, and 3D systems within a large chemical space
composed of carbon (C), hydrogen (H), nitrogen (N), and oxygen
(O). Overall, the present contribution allows for a near-complete
DFT emulation within a practical context, surpassing previous
works27,33,34,37,38 in terms of methodological advancements as
well as expanding the portfolio of predicted quantities.
Figure 1 shows several critical components which are part of

our ML workflow. We created a reference, or “training,” data
composed of molecules, polymer chains, and polymer crystal
structures containing C, H, N, and O, and their corresponding
properties computed using traditional DFT. Each reference atomic
configuration is then represented using an ML-friendly atomic
fingerprinting scheme. In this work, we used the atom-centered
AGNI fingerprints39,40, which represent the structural and atomic-
level chemical environment of each atom in a machine-readable
form such that it is translation, permutation, and rotation invariant.
Because not all properties predicted are rotation invariant, i.e.,
electron density, atomic forces, and stress tensor, we define an
intermediate internal reference system that allows us to easily
transform any quantity to its value in the reference system of
choice. To establish a direct (and nonlinear) mapping of the
fingerprints (the “input") to the spectrum of properties mentioned
earlier (the “output"), we used deep neural networks.
Inspired by DFT, we give particular prominence to the electronic

charge density and follow a two-step learning procedure. The first
learning problem (step 1) involves predicting the electronic charge
density given just the atomic configuration. Our protocol employs
Gaussian-type orbitals (GTOs) as descriptors of the electronic
charge density, but we do not use a predefined basis set; the
model learns the most optimal basis from the data examples, thus
expanding the flexibility of the model. Once the electronic charge
density descriptors have been predicted, they are supplied as an
auxiliary input (along with the atomic configuration fingerprints) to
predict all other properties (listed as step 2 of Fig. 1). This strategy
is consistent with the core concept underlying DFT (that the
electronic charge density determines all properties of the system),
and is aligned with the first rudimentary ML attempt almost a
decade ago in which a variety of properties were predicted given
just the electronic charge density41. Furthermore, in practice, this
2-step route also leads to more accurate and transferable results, as
we will show below.

RESULTS
Database
In this work, we focused on organic materials composed of four
atoms: C, H, N, and O. We created a database containing 67
molecules, 178 polymer chains, and 55 polymer crystals composed
of C-C single, double, and triple bonds, as well as aromatic rings.
To provide the neural network with sufficient examples of
configurational diversity, we procured random snapshots of each
type of structure from DFT-based MD runs at high temperatures.
For the molecules and polymer chains, the MD runs were
performed at 300 K, and for the polymer crystals, the MD runs
involved temperatures from 100 to 2500 K. In total, we used over
118,000 structures for the training and testing of ML-DFT. For each
type of structure, we divided the selected configurations into
training and test sets, following a 90:10 split. Additionally, the
models were trained using an 80:20 split of the training set
between training and validation. All performance results were
computed using the independent test set. More details can be
found in the Supplementary Information (SI). All the DFT reference

data calculations were performed using the Vienna Ab Initio
Simulation Package (VASP)42,43.

Fingerprinting
Within this work, we have employed two different types of
fingerprints or descriptors: atomic (or structural) fingerprints and
electron charge density descriptors. The atomic descriptors are the
AGNI atomic fingerprints, which describe the structural and
chemical environment of each atomic configuration. These
previously developed AGNI atomic fingerprints have been used
to create ML potentials and force fields44–46 for a variety of
materials as well as in our previous work on predicting the grid-
based electronic structure27 and the atom-based density of
states28. The atomic fingerprints, computed for each atom,
combine scalar, vector, and tensor-like expressions by summing
over various Gaussian functions, resulting in translation, permuta-
tion, and rotation invariant descriptors.
The predicted electronic charge density descriptors constitute the

second type of fingerprints used in this work. Once all the
configurations have been fingerprinted, the AGNI atomic finger-
prints are used as input for the charge density model, which predicts
the decomposition of the atomic charge density in terms of GTO
basis functions. The set of optimal GTO basis functions is selected by
the model in terms of the exponent of the Gaussian along with the
constant multiplying the GTO; no initial decomposition of the
reference charge density in terms of GTOs is performed. The error
made during the training of the model is computed by projecting
each set of atomic GTO basis functions onto the same grid points
used for the reference DFT charge density. As the input atomic
fingerprints are translation, permutation, and rotation invariant, the
predicted constants and exponents of the GTO basis functions
decomposition are within the internal reference system of the atom.
Because the reference electron charge density is not rotation
invariant, a transformation from each atom’s internal reference
system to the global reference system of the electron charge density
(the Cartesian system) is required before projecting the predicted
charge density onto the grid points. The vectors for the
transformation matrix of each atom are defined using the two
nearest neighbors (independent of the element type): the first
vector is the one pointing to the first nearest neighbor, and the
second vector is defined as perpendicular to the plane containing
the central atom and its two nearest neighbors, and the third vector
is perpendicular to the first two vectors. All vectors are normalized to
obtain an orthonormal reference system (more details in the SI). The
resulting transformation matrix is used to convert from the
orthonormal internal reference system of each atom onto the
Cartesian reference system, allowing the transformation of any
rotation-invariant value of a property (such as the decomposition
onto GTOs) onto the Cartesian reference system. Because of the
computational cost of projecting the GTOs onto grid points, we
restricted the training to structures with up to 50 atoms per element.
Once the model is trained, the predicted constants and exponents
for each atomic fingerprint will be referred to as charge density
descriptors. Unlike atomic fingerprints, which are determined by a
set of predefined equations, these charge density descriptors are
learned by the neural network and provide an electronic description
of the system. More details on the charge density model can be
found in the SI.

Charge density prediction
To study the performance of the charge density model, we
computed the mean absolute percentage error (ϵρ) for each
configuration as

ϵρð%Þ ¼ 100 �
P

jjρDFTðrjÞ � ρMLðrjÞjP
jρDFTðrjÞ

(1)
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where ρDFT(rj) and ρML(rj) are, respectively, the reference DFT
charge density and ML-DFT charge density at grid point j, for the
same configuration.

The accuracy of the charge density model can be observed in
Fig. 2a, where ϵρ for the test configurations of the training set
ranges mainly from 1.0% to 3.0%, with a few cases extending up

Fig. 1 ML-DFT database and two-step workflow. a The reference database contains DFT data from organic molecules, polymer chains, and
polymer crystals. After creating the database, the atomic configurations are fingerprinted to describe the structural and chemical environment
of each atom (b). Within step 1 (c), the resulting atomic fingerprints are used as the input layer to predict the electronic charge density in
terms of various Gaussian-type orbitals (GTOs) descriptors. The projection of these GTOs onto grid points provides the charge density. In step
2 (d), the combined atomic fingerprints and charge density descriptors serve as input for the prediction of other DFT properties such as
potential energy, atomic forces, stress tensor, density of states, valence band maximum, conduction band minimum, and the bandgap.
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to 5.0%. Most notably, the performance on the new structures
(more than 50 atoms per element) not included during training is
very similar to those structures used for training. An overall
performance value can be calculated as the mean ϵρ computed by
summing ϵρ for all configurations and normalizing by the number
of electrons in each configuration. For the test configurations, ϵρ is
1.75%, increasing slightly to 1.97% for the new structures. Figure
2b presents the valence charge density difference between the
reference DFT and predicted ML-DFT for various atomic structures:
the cyclobutane molecule, three different polymer chains, and two
polymer crystals. The cyan and yellow isosurfaces refer to an error
of ± 0.005 e bohr−3. The isosurfaces occupy a very small volume
due to the high accuracy of the predicted ML-DFT charge density.
Various other charge–density dependent properties can be

calculated from the predicted charge density and charge density
descriptors, such as the partial atomic charges, the reduced
density gradient for the analysis of non-covalent interactions, and
the dipole moment. Examples and comparisons with DFT results
are included in the SI. In addition, to further extend the
applicability of our method to situations requiring the full electron
density, ML-DFT also provides the core electron density by
mapping it to the DFT reference using 1s orbitals, with an
accuracy of around ϵρ;coreð%Þ ¼ 5 � 10�5. When the full electron
density is used, the error of the predicted total electron density is
reduced by 27% overall, with ϵρ;full ¼ 1:28% on test configurations
and ϵρ;full ¼ 1:44% on new structures. More details in the SI.

Important previous ML work to predict the charge density-
based atomic contributions required an initial decomposition
onto predefined basis sets, introducing an additional error34.
The ML model was trained to predict the components of the
decomposition for each atom, resulting in good predictions of
the charge density for cases within the training space but
leading to a lack of transferability to new cases. The authors
used the full charge density instead of only the chemically active
valence charge density used in our work. This difference results
in their work presenting lower errors in the charge density
prediction, as the high-valued core charge density is easily
predicted and effectively lowers the percentage errors. More-
over, the requirement for already available basis sets to
decompose the charge density can become a hindrance to the
applicability of this method to some elements. Comparison with
more recent work predicting the valence electron density using
an atom-centered approach35,36, shows our method has better
accuracy. Another important comparison with recent work is the
high error cases within the training space, which in this study
extend up to a maximum of 5.02%, whereas in37 they reach up
to 11%. Overall, our ML-DFT charge density surpasses previous
methods in terms of accuracy and/or methodology, simplifying
the protocol and, in the process, extending the applicability and
transferability.

Fig. 2 Performance of ML-DFT charge density model. a Histogram of the mean absolute percentage error, ϵρ, for the charge density on the
test configurations of the training and for new larger structures. The amount of structures in each bar is indicated as a percentage with respect
to the total in each set. b Charge density difference between DFT and ML-DFT for a molecule (cyclobutane), three polymer chains, and two
crystalline polymers (Cryst). Cyan and yellow isosurfaces refer to an error of ± 0.005 e bohr−3.

B.G. del Rio et al.

4

npj Computational Materials (2023)   158 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Total potential energy, atomic forces, and stress tensor
DFT posits that the ground state charge density has a one-to-one
mapping with the ground state potential energy. Similarly, in our
ML-DFT emulator, once the atomic charge density descriptors are
predicted, they can be used as input (along with the AGNI atomic
fingerprints) to predict the potential energy, atomic forces, and
stress tensor. To evaluate the improvement in the accuracy and
transferability of the potential energy model by including the
charge density descriptors in the input layer, we considered three
different options: using the atomic fingerprints only, the charge
density descriptors only, and the atomic fingerprints and charge
density descriptors together. We only used the polymer chains for
training and left the polymer crystals to test the transferability to
new structures. We performed fivefold cross-validation and
evaluated the performance on test configurations for the polymer
chains used during training (a.k.a. new configurations), for new
polymer chains (a.k.a. new polymers), as well as for polymer
crystals (a.k.a. new structures).
Figure 3a shows the histogram with the mean and standard

deviation of the mean absolute error (MAE) value of the total
potential energy per atom of each type of descriptor on the test
configurations. The combined atomic fingerprints and charge
density descriptors not only improve the accuracy and transfer-
ability but also reduce the deviation of the predictions, resulting in
more robust models. As can be seen in the principal component
analysis plots in Fig. 3b, c, the addition of the charge density
descriptors results in a better separation of the structures with
different potential energies, thus improving the prediction
capabilities of the model.
In our approach, the potential energy, atomic forces, and stress

tensor components are each predicted directly (without using one
to derive the others) by employing the same transformation
matrix from the charge density model to transform the atomic
forces and stress tensor components into the Cartesian reference
system. This allows a significant reduction of errors in the atomic
forces and stress tensor components while also improving the
transferability to new structures. More details on the model and a
quantitative test showing the improved performance can be
found in the SI.
After confirming the advantage of employing the fingerprints

and the charge density descriptors together, we trained the
energy, forces, and stress tensor model on the entire training set
of molecules, chains, and crystals. Figure 4 shows the performance
of the model on the test configurations for the atomic potential
energy per atom (Fig. 4a), the stress tensor components (Fig. 4b),

and the atomic forces (Fig. 4c). Both the potential energy and
stress tensor components are predicted with great accuracy, with
an MAE of 3.3 meV atom−1 for the potential energy, and a mean
root-mean-squared error (RMSE) of 6.42 kB for the diagonal stress
components. However, the predicted atomic forces present a
mean RMSE of 0.759 eVÅ−1, with the C atomic forces presenting
larger deviations from the reference DFT values than the other
elements studied. This deviation is mainly observed in the
polymer crystals, as observed in Fig. 4d; from the histogram of
the error in the predicted forces, most of the errors are contained
within ±1 eV Å−1. There are very few instances with errors larger
than ±3 eVÅ−1, with the highest error obtained at ~11 eVÅ−1.
Some possible reasons behind these high errors in the atomic

forces could be attributed to the insufficient sampling of highly
disordered structures present in the crystal polymers, as well as
the inability to capture non-local effects, such as the long-range
van der Waals dispersion forces, using local atomic fingerprints.
Similar results with large errors in the atomic forces have been
reported in other previous studies on machine-learned atomic
potentials and force fields for pure carbon structures47–49 and
carbon-containing structures50, where various methods of data-
base optimization are used, such as active learning. These
methods could be used with ML-DFT to improve the performance
of the atomic forces but are out of the scope of this study.

The density of states predictions
As previously mentioned, the solution of the KS equation in DFT
describes the electronic structure of the system in the form of the
charge density and the DOS. This last property is essential for
computing multiple electronic properties of the system, such as
the VBM, CBM, and Egap. Using a similar approach as previously
described for the potential energy, the ML-DFT DOS predictor also
employs as input both atomic fingerprints and charge density
descriptors. Following previous work from our group27,28, the
reference DOS curve is previously shifted with respect to the
reference energy of vacuum and discretized every 0.1 eV from
−33 eV to 1 eV. Due to this constraint, we only trained the model
using vacuum-containing structures: molecules and polymer
chains. To achieve the highest accuracy in the VBM and CBM,
and consequently the bandgap, their DFT reference values are
obtained directly from the (shifted) eigenvalues and not from the
smeared DOS. Due to the intensive nature of the VBM and CBM,
the entire DOS/VBM-CBM model first predicts the smeared DOS
curve as the sum of each atomic contribution, normalizes the total

Fig. 3 Effect of using charge density descriptors along with atomic fingerprints. a Histogram of MAE from the fivefold cross-validation for
the potential energy prediction with three different input descriptors: (1) the atomic fingerprints (FP); (2) the charge density descriptors (CHG);
(3) the atomic fingerprints along with the charge density descriptors (FP+ CHG). Plots of the two main principal components (PC) from only
using b the atomic fingerprints and using c both the atomic fingerprints and the charge density descriptors. The points are colored with
respect to the total potential energy.
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DOS with respect to the number of valence electrons, and feeds it
to a second sub-neural network which predicts the VBM and CBM
(additional details in the SI). Figure 5a–f displays six different DOS
for test configurations of different molecules and polymer chains.
As can be observed, the test cases possess a large variety of DOS
curves. Nevertheless, the ML-DFT DOS model can accurately
predict them. Also, the accuracy of the predicted DOS is high
enough to evaluate differences due to the atomic movement (see
details in SI).
As with electron density prediction, previous works on

predicting the DOS are divided between a grid-based scheme27,32

and an atom-centered approach28,51–53. Focusing on the more
recent studies, Ellis et al.32 predict the DOS through the LDOS for
liquid and solid Al using a grid-based approach. The DOS obtained
from the predicted LDOS shows very good accuracy, but the DOS
of Al presents a smooth shape with very small variations, even
from solid to liquid. However, the computational cost of using a
grid-based approach significantly hinders the use of the method
for large databases. Kong et al.53 use a significantly different and
much more advanced method to represent the atomic structure
based on graph neural networks along with an encoder–decoder
technique. The method learns the similarity between crystalline
structures, which is then translated into the DOS. One advantage
of this technique is probably the lower cost when applied to
diverse chemistries. However, it seems focused on crystalline
structures, and its application to slightly unrelaxed structures is
dependent upon the atomic coordinates being sufficiently similar
to any of the DFT-relaxed structures used during training.
Figure 5a–f also includes the DFT and ML-DFT VBM and CBM.

Due to the use of the DFT eigenvalues for VBM and CBM along
with the smeared DOS as a reference, the locations of DFT and ML-

DFT VBM and CBM are not at zero-valued DOS. As can be
observed from the parity plots between the DFT reference and the
predicted ML-DFT values of VBM, CBM, and Egap, in Fig. 5g–i, the
ML-DFT values are in agreement with the reference DFT
eigenvalues within MAEs of 0.069, 0.051, and 0.08 eV, respectively.
As a final note, in Fig. 6, we compare the computational cost of

DFT with our ML-DFT approach for various structures of different
sizes. Both types of calculations (DFT and ML-DFT) were performed
in serial mode on one core of a Ryzen 9 5900X node. The total CPU
time cost of DFT is significantly higher and has a cubic
dependence on the system size. However, the total time for the
electronic structure prediction with our ML-DFT is orders of
magnitude lower than DFT with a linear dependence on system
size. The ML-DFT model depends on the number of element types
in the system: the red squares represent cases with only carbon
and hydrogen; the red star is for a polymer chain with three
elements (carbon, hydrogen, and oxygen); and the red cross
represents the case of a polymer crystal with all four elements.

DISCUSSION
This work represents an important step toward a physically-
informed ML-based DFT emulator, which successfully, accurately,
and simultaneously reproduces many of the outputs of the KS
equation. Following the essence of DFT, material properties are
determined by the descriptors of the structure and the predicted
charge density, resulting in increased accuracy with respect to
traditional ML potentials for a fraction of the computational cost of
traditional DFT.
To represent the charge density with physically-informed

descriptors, we employed GTOs, which fully adapt to each

Fig. 4 Performance of the energy, stress tensor components, and atomic forces from the ML-DFT model for the test configurations of the
entire database of molecules, polymer chains, and polymer crystals. a Parity plot of the potential energy per atom. b Parity plot of the six
different components of the stress tensor. c Parity plot of the atomic forces for each type of element. d Histogram of the error between the
reference atomic forces (Fi(DFT)) and the predicted atomic forces (Fi(ML)).
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individual atom and can be used for any element type. The resulting
descriptors contain physical information about the system in two
ways. First, as descriptors of the electronic structure of the system,
which can be employed to further predict density-dependent
properties. We demonstrate this density-enhanced protocol for the
atomic properties of energy, atomic forces, and stress tensors,
obtaining better performance and more robust models than by
using only atomic structure descriptors. Second, the descriptors can
be used to directly calculate the partial atomic charges, obtaining
high accuracy when compared to the leading methods in the field.
We expect further applications of these physically-informed
descriptors of the charge density for the prediction of other
electron density-related properties such as the dipole moment
(initial tests in SI) or polarizability.
Continued future improvements in the performance and

robustness of the ML-DFT approach will allow for a wide range
of applications: from electronic structure prediction to structure
search and optimization, while integration with MD codes will
allow for emulations of ab initio MD simulations. Large-scale

dynamical simulations of disordered systems such as liquids or
glasses may be performed, which are challenging for traditional
DFT. Generalization of this methodology to more delocalized
electron densities, such as in metals, may require modifications to
the type of basis functions used in the decomposition of the
charge density and will be explored in the future (see test on
liquid Li in the SI). We also envision further modifications to
increase the accuracy and transferability by shifting our present
fingerprinting from predefined equations to allow deep learning
architectures to search for the best atomic descriptors.

METHODS
DFT details
All the reference data calculations were performed using DFT-MD
simulations using the Vienna Ab Initio Simulation Package
(VASP)42,43. The exchange-correlation function was modeled using
the Perdew–Burke–Ernzerhof approximation54, and the
ion–electron interaction was modeled using projector-

Fig. 5 Performance of the ML-DFT DOS model. a–f DFT DOS (blue) and ML-DFT DOS (red) for test configurations of six different molecules
and polymer chains. The DFT and ML-DFT VBM/CBM predictions are included. The vertical dashed dark green line indicates the vacuum
energy used as the global energy reference. The gray shadow indicates the standard deviation in the predicted DOS curves due to the
dropout layers employed in the ML-DFT DOS model. g–i Parity plots of the ML-DFT VBM, CBM, and resulting Egap for the test configurations.
Vertical lines indicate the standard deviation.
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augmented wave (PAW) potentials55. We employed a
Monkhorst–Pack grid56 with a density of 0.025Å−1 to sample
the Brillouin zone. A plane wave basis set with a kinetic energy
cutoff of 500 eV was used. The chosen kinetic energy cutoff and
k-point sampling converged the total energy to less than 1meV
per atom. Tkatchenko and Scheffler vdW corrections were
included57. Gaussian smearing of 0.1 eV was used. The MD
simulations were performed in the NVT ensemble, with a time
step of 1 fs for the molecules and polymer chains at 300 K. For the
polymer crystals, due to the high temperatures reached, we used a
timestep of 0.5 fs. All structures were thermalized for 500-time
steps at their initial temperature (300 or 100 K), and the snapshots
were taken from the subsequent simulations spanning 1 ps for the
molecules and polymer chains and 5 ps for the crystal polymers.

AGNI fingerprints
For a given atom i, three different types of AGNI fingerprints are
defined (scalar, vector, and tensor)27,28, expressed as the sum over
the number of Gaussian functions (k) of width σk,

Sk;i ¼ ck
XN
j¼1

exp
�R2ij
2σ2

k

 !
f cðRijÞ (2)

Vα
k;i ¼ ck

XN
j¼1

rαij
Rij

exp
�R2ij
2σ2

k

 !
f cðRijÞ (3)

Tαβ
k;i ¼ ck

XN
j¼1

rαij r
β
ij

R2ij
exp

�R2ij
2σ2

k

 !
f cðRijÞ (4)

where ck is the normalization constant defined as 1ffiffiffiffi
2π

p
σk

� �3
; Rij the

distance between atom j and the center atom i, and fc(Rij) a cutoff

function defined as 0:5 cos πRij
dc

� �
þ 1

h i
for Rij ≤ dc and equal to 0 for

Rij > dc. α and β represent the x, y, or z components of the radial
vector between atoms i and j. In this work, we employed 18
different Gaussian widths on a logarithmic scale (base 10) from 0.5
to 6.0Å, with a cutoff distance of dc= 5Å. While Sk is rotation
invariant, Vα

k and Tαβ
k are not, but can be combined into four rotation

invariant expressions27, which are employed as the fingerprints.

ML-DFT architecture
We used Keras58 with the TensorFlow backend to implement the
ML-DFT. The charge density and DOS models employ fully

connected layers and are trained using a mini-batch of 30, while
the model for the potential energy, atomic force, and stress tensor
uses a mini-batch of 100. All models use random sampling along
with Adam optimizer with a learning rate of 0.0001 and
momentum vectors β1= 0.9 and β2= 0.999. The mean-squared
error was employed as the objective function during all training.
More details about the specific architectures of each model can be
found in the SI.

DATA AVAILABILITY
All DFT data can be found at khazana.gatech.edu.

CODE AVAILABILITY
To promote its applicability within the community, we provide access to our ML-DFT
emulator package with the presently trained models and tutorials (github.com/
Ramprasad-Group). Additionally, a Google Colab notebook is included in the package
to clone and utilize the package online for predictions.
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