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Polymer informatics 
beyond homopolymers
Shivank S. Shukla, Christopher Kuenneth, and Rampi Ramprasad* 

Polymers are diverse and versatile materials that have met a wide range of 
material application demands. They come in several flavors and architectures 
(e.g., homopolymers, copolymers, polymer blends, and polymers with additives). 
Searching this enormous space for suitable materials with a specific set of 
property/performance targets is thus nontrivial, painstaking, and expensive. Such 
a search process can be made effective by the creation of rapid and accurate 
property predictors. In this article, we present a machine learning framework to 
predict the thermal properties of homopolymers, copolymers, and polymer blends. 
A universal fingerprinting scheme capable of handling this entire polymer chemical 
class has been developed and a multitask deep learning algorithm is trained 
simultaneously on a large data set of glass-transition, melting, and degradation 
temperatures. The trained models demonstrate precision and scalability to other 
properties when relevant data becomes accessible. 
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Impact statement
The chemical and structural variations that can be 
achieved with the polymers is staggering. Such 
extraordinary and diverse possibilities translate to 
attractive combinations of physical properties impact-
ing several application spaces, making the polymeric 
class of materials ubiquitous in our modern society. 
This chemistry–structure–property diversity is accom-
panied by a major challenge. Searching the chemo-
structural space to identify suitable application-rele-
vant candidates with the right set of target properties 
is nontrivial, requiring advanced rapid property 
prediction and search schemes. In this article, we 
present a data-driven machine learning framework 
to instantaneously predict the thermal properties (an 
important property class) of a dizzyingly large class of 
polymer archetypes, namely, homopolymers, copoly-
mers, and polymer blends. A state-of-the-art machine 
learning algorithm has been developed and trained 
on a large data set of glass-transition, melting, and 
degradation temperatures, to make instantaneous 
predictions of these properties for any new-to-the-
world polymer that falls in this large important poly-
mer chemical class. This prediction scheme paves the 
way for discovering polymers with unprecedented 
thermal stability by allowing searches of enormous 
chemical spaces at scale.

Introduction
Polymeric materials come in a variety of 
flavors and architectures, such as homopoly-
mers, copolymers, polymer blends, and poly-
mers with additives such as dopants, plasti-
cizers, and organic/inorganic fillers.1–4 The 
extraordinary chemical and structural diver-
sity offered by such materials lead to wide-
ranging and attractive combinations of physi-
cal properties impacting several application 
spaces, ranging from structural, electrical, 
packaging, chemical separation, health care, 
energy, and sustainable technologies.5–17

In an effort to simultaneously optimize 
multiple (correlated or uncorrelated) prop-
erties, the community has explored and 
developed polymer varieties beyond neat 
homopolymers, namely, copolymers, poly-
mer blends, and polymers with additives. 
Finding optimal candidates possessing a 
predefined set of property attributes has 
largely been guided by experience, intui-
tion, and trial-and-error approaches. An 

exhaustive search of the relevant chemi-
cal spaces is nontrivial given the vast 
expanse of the spaces. Over the last de‑ 
cade or so, polymer informatics approaches 
have attempted to aid this search process 
by offering data-driven machine learning 
(ML) models to rapidly predict the proper-
ties of new polymer formulations and to rec-
ommend candidate materials that may meet 
multi-property target requirements.18–27 
Nevertheless, these polymer informatics 
efforts have thus far largely focused on neat 
homopolymers,28 although notable excep-
tions exist within recent attempts to address 
copolymer chemistries,29–34 polymers with 
dopants, and polymer composites.35

In this contribution, we lay the ground-
work to handle neat homopolymers, copoly‑ 
mers, and polymer blends within one uni-
fied multitask neural network polymer 
informatics framework. For definiteness, 
we focus on thermal properties, namely, 
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the glass-transition temperature ( Tg ), the melting temperature 
( Tm ), and the degradation temperature ( Td ). Our method com-
bines a novel fingerprinting scheme for polymer blends with a 
unified fingerprinting approach for all three types of polymers. 
We fine-tuned a ML architecture to accurately predict thermal 
properties, including the glass-transition temperature ( Tg ), the 
melting temperature ( Tm ), and the degradation temperature ( Td ) 
of all three types of polymers, including miscible and immisci-
ble polymer blends. Furthermore, we developed a classification 
model to predict the miscibility of polymer blends. Past efforts 
have mainly focused on homopolymers and copolymers, but our 

framework can handle all three types of polymers, and it can 
predict these properties for any new homopolymer, copolymer, 
or polymer blend.

As portrayed in Figure 1a, homopolymers are a subset of 
copolymers, and copolymers are a subset of polymer blends. 
Homopolymers are defined by one monomer repeat unit and 
copolymers by multiple monomer units. Polymer blends are 
a physical mixture of two or more homopolymer(s) and/or 
copolymer(s). In this work, we assume that our copolymers 
are random (i.e., the multiple repeat units are distributed ran-
domly along the polymer backbone); we make this assumption 

a

b

c

Figure 1.   (a) Evolution of our polymer informatics framework that incorporates predictors for homopolymer,20 homopolymer and 
copolymer,29 and the current work for homopolymer, copolymer, and polymer blend. (b) Fingerprint computation pipeline for the exam-
ple of a poly(ethylene)-co-poly(propylene) and poly(vinyl chloride)-co-poly(vinylidene fluoride) blend. The monomers of poly(ethylene), 
poly(propylene), poly(vinyl chloride), and poly(vinylidene fluoride) are shown as PE, PP, PVC, and PVDF, respectively. Homopolymer 
fingerprints ( Hi ) for the homopolymers (i) are computed using the polymer genome fingerprinting framework.18 Copolymer fingerprints 
( Cj ) for the copolymers (j) are the composition-weighted sum of the homopolymer fingerprints ( Hi ) with xji being the compositions of 
monomer i in copolymer j. Polymer blend fingerprints ( B ) are the composition-weighted harmonic mean of the copolymer fingerprints 
with M, N, and wj representing the number of monomers in copolymer j, the number of polymers, and their weight fraction in the poly-
mer blend, respectively. (c) The inference pipeline to predict thermal properties for a new polymer blend.
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because we do not have data that specify the particular arche-
type of the copolymer. However, if the copolymer type is 
known, an ML architecture trained by Tao et al. can be used 
to predict thermal properties of block and gradient copoly-
mers.36,37 Their framework considers the sequence of repeat-
ing units and relative composition of the monomers, which 
can be crucial for predicting thermal properties, whereas our 
approach only considers the relative composition of mono-
mers. Polymer blends could be miscible or immiscible; our 
framework first predicts which category the polymer blend 
belongs to, and then, subsequently, predicts the appropriate 
number of critical temperatures (miscible polymer blends are 
characterized by one Tg , one Tm , and one Td , whereas immis-
cible two-phase polymer blends could display two Tg , two 
Tm , and one Td).

Our machine learning procedure starts by first converting 
the chemical structure of homopolymers, copolymers, and 
polymer blends into numerical vectors called fingerprints; the 
chemical structure itself is specified using SMILES strings38 
of the repeat units, the composition of the copolymers (if rel-
evant), and the weight fraction of the polymer blend compo-
nents (if relevant). These aspects are captured in Figure 1b. 
The fingerprints of the chemical structures, along with Tg , Tm , 
and Td data are fed into our multitask neural network archi-
tecture,29 with the ultimate output being a trained model that 
can predict whether a polymer blend (if the queried case is a 
polymer blend) is miscible or not, followed by the thermal 
properties of the queried case. This new polymer informat-
ics capability is able to predict Tg , Tm , and Td with a RMSE 
of 15 K, 17 K, and 23 K, respectively. Needless to say, this 
framework can be extended to handle any other property class, 
as long as the requisite data for these properties are available.

Results and discussion
Data
The data set used in this study for homopolymer, copolymer, 
and polymer blends Tg , Tm , or Td were collected from multiple 
sources cited elsewhere,18,29,39–41 including from the poLy-
Info database.41 (The copyrights of this database are owned by 
the National Institute for Materials Science [NIMS].) In order 
to maintain consistency, we only use Tg and Tm data points 
measured using differential scanning calorimetry (DSC), and 
Td values measured via thermogravimetric analysis (TGA).29 
Each copolymer data point has two comonomers, and each 
polymer blend data point consists of two constituents (two 
homopolymers, a homopolymer–copolymer mixture, or two 
copolymers). We infer the polymer blend miscibility for each 
data point from the presence of one or two Tg values in the 
data set. This is also known as technological miscibility.42 If 
the polymer blend data point has only one Tg value, we con-
sider it miscible; otherwise, it is classified as immiscible. A 
three-component selector vector is used to indicate the prop-
erty ( Tg , Tm , or Td ) and miscibility (miscible or immiscible) of 
the data point. The property (for homopolymers, copolymers, 

and polymer blends) is encoded in the selector vector at the 
position of the nonzero component as shown in Figure 2a. For 
polymer blends, the miscibility information is encoded at the 
appropriate component taking on values of 1 or 2 as shown 
in Figure 2a.

Fingerprinting
The repeat units of the monomers of homopolymers, copoly-
mers, and polymer blends in the data set are represented using 
simplified molecular input line system (SMILES) strings.38 
We use stars [*] to denote the end points of the repeat unit. 
SMILES strings cannot directly be ingested by conventional 
ML models and require conversion to numerical vectors. This 
conversion is performed using a previously pioneered hand-
crafted fingerprinting scheme20 (see the “Methods” section) 
that has shown great performance for predicting properties of 
polymers in many previous works.18–20,23,28 For copolymers,29 
we compute fingerprints as the composition-weighted sum of 
the homopolymer fingerprint vectors ( Cj =

∑
N

i
xjiHi ), as 

shown in Figure 1b. Hi , xji , and N denote the fingerprint vec-
tor of a homopolymer (i), relative compositions of homopoly-
mers in a copolymer (j), and the total number of comono-
mer components (in this work, N = 1, 2 ), respectively. For 
polymer blends, we use the composition-weighted harmonic 
mean of fingerprint vectors of the constituents in the poly-
mer blend. To compute the polymer blend fingerprints, we 
use 1/B+ 1 =

∑
M

j
wj/C

′

j
=

∑
N ,M

i,j
wj/xjiHi + 1 . Here, B , wj , 

C

′

j
 , and M represent the polymer blend fingerprint, the relative 

composition of the jth constituent, fingerprint vector of the jth 
polymer blend constituent, and the number of constituents in 
the polymer blend, respectively. This equation resembles the 
mathematical form of the Fox equation.43 A scalar factor of 
one was added to the fingerprint vector components (and later 
subtracted) to avoid singularities caused by fingerprint com-
ponents with the value of zero. The complete fingerprinting 
pipeline for homopolymers, copolymers, and polymer blends 
is shown in Figure 1b.

Performance
ML model development involved fivefold cross-validation 
(CV) and a meta learner, as described in the “Methods” sec-
tion. The averaged performance scores of the five CV and 
the meta learner classification models are illustrated in Fig-
ure 3a. By comparing the precision (P), recall (R), accuracy 
(A), and F1 score, we find that P is generally higher than R. 
The reason for this is the imbalance of miscible and immis-
cible polymer blends (ratio ≈ 5/1 ) in our data set (see Table 
I). The performance metrics of the classification meta learner 
improve from the fivefold cross-validation classification 
model for Tg as illustrated in Figure 3a. Figure 3b and Sup-
plementary information Table S1 show the root-mean-square 
error (RMSE) values of the fivefold CV models of the prop-
erty-predictive regression models. The low RMSE values for 
Tg , Tm , and Td of homopolymers, copolymers, and polymer 
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blends provide confidence in the novel fingerprinting scheme 
for polymer blends and the usage of multitask models for this 
problem. All RMSE values for thermal properties are also of 
the same order of magnitude as experimental measurement 
errors. These RMSE values are also slightly better than the 
performance of homopolymers and copolymers as reported 
in our past publications.21,28,29 For all types of polymers, 
RMSEs of fivefold CV are the lowest for Tg , followed by 
Tm , and then Td.

The parity plots of meta learner predictions for all the 
thermal properties on different polymer data sets are shown 
in Figure 4. These meta learner predictions are based on the 
80% data set used to train the cross-validation models. The 
low overall RMSE values (including all the types of poly-
mers) of 15 K, 17 K, and 23 K, and high R 2 of values 0.98, 
0.97, and 0.96 for Tg , Tm , and Td , respectively, signify high 

performance across the three distinct classes of polymers. 
Incorporating a hyperparameter-tuned meta learner on top of 
the cross-validation model further improves the performance 
of the multitask model as shown in Table S1. We use Monte 
Carlo dropout to estimate the uncertainty in our predictions 
and report them within a 95% confidence interval.44 Our use 
of Monte Carlo dropout allows us to quantify the uncertain-
ties in our predictions.

Sample prediction
Model predictions and experimentally measured values 
across the whole composition range for two selected mis-
cible (Figure 5a–b) and two immiscible polymer blends 
(Figure 5c–d) are illustrated in Figure 5. The smoothness 
of the predictions across the composition range indicates 
that the  ML model learned a smooth mapping between 

Table I.   The number of homopolymers, copolymers, and polymer blend data points for the glass-transition ( Tg ), melting ( Tm ), and degradation 
( Td ) temperatures.

The 7774 copolymer data points consists of 1569 distinct copolymer chemistries. The 4573 polymer blend data points consist of 626 distinct 
combinations of two constituents (two homopolymers, two copolymers, or a homopolymer and a copolymer). Polymer blends can be miscible 
(M) or immiscible (IM). The reported measurement method, differential scanning calorimetry (DSC), or thermogravimetric analysis (TGA) is 
also indicated.

Property Homopolymer Copolymer Polymer Blend Range Method Total

M IM

Tg 5072 4426 2541 440 [131, 587] DSC 12,039

Tm 2079 1988 1001 330 [253, 639] DSC 5068

Td 3520 1360 261 – [383, 977] TGA​ 5141

Total 10,671 7774 3803 770 23,018

a b c

Figure 2.   Machine learning workflow. (a) The multitask deep neural network-based classification model that predicts if a polymer blend is miscible 
or immiscible and to determine the miscibility-dependent number and components of the selector vectors needed for each thermal property. (b) The 
multitask deep neural network-based regression models to predict Tg , Tm , and Td with fivefold cross-validation (CV). The inputs to this model are the 
polymer fingerprints and the selector vector. (c) The meta learner model. The inputs to this meta learner are the five property values from the fivefold 
CV models.
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the fingerprint space and polymer properties. The experi-
mental data points are in close agreement with the predic-
tions, except for a few points in Figure 5b that fall outside 
the shaded bands, which indicate the uncertainty of the 
predictions.

Model validation
As a direct and true test of the generalizability of our trained 
meta learner model, we performed the following. The entire 
data set was divided into two parts. We used 90% of the data to 
train the fivefold cross-validation and the meta learner model, 

CV Meta CV Meta CV MetaCV Meta

P R A F1 P R A F1

T
g

T
g

T
m

T
d

H C B H C B H C B H C B H C B H C B

a b

Figure 3.   (a) Validation set performance metrics of the fivefold cross-validation (CV) classification models and meta learner 
(Meta) model for glass transition ( Tg ) of polymer blends. The performance metrics are P: precision, R: recall, A: accuracy, 
and F1: F1 score. The reported values for all of these metrics are averaged over the five CV models and the black error bars 
represent the standard deviation observed in the performance metrics across five CV models. (b) Test set root-mean-square 
error (RMSE) values of fivefold CV regression models and meta learner (Meta) model for glass-transition ( Tg ), melting ( Tm ), and 
thermal degradation ( Td ) temperature of homopolymers (H), copolymers (C), and polymer blends (B). For the fivefold CV RMSE, 
the errors are averaged across the five CV models and the black error bars represent the standard deviation observed in the 
RMSE values of the five CV models.

a b c

d e f

Figure 4.   Meta learner parity plots for the test data set. The first three plots (a–c) are for homopolymers and copolymers repre-
sented as pink and cyan data points, respectively. The last three plots (d–f) are for polymer blends with one thermal property value 
and more than one thermal property value (immiscible polymer blends may show two Tg and two Tm values) represented as blue 
and lime data points, respectively. The distribution of data points for all properties is shown in the margins of each plot. RMSE, 
root-mean-square error; MAE, mean absolute error; R2, coefficient of determination; Ct, Count.
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while the remaining 10% was reserved for testing. This 10% 
subset of data was never seen by our model and was used to 
test both the classification and prediction models. The perfor-
mance of the meta learner classification model on the testing 
data set is summarized in Table IIa, demonstrating promising 
performance for both thermal properties. Similarly, Table IIb 
presents a summary of the meta learner prediction model’s 
performance on the 10% testing data set. Additionally, the 
parity plots for all predictions can be found in Figure S2. 
Notably, our observations indicate that the prediction perfor-
mance for homopolymers and copolymers surpassed that of 
polymer blends on the testing data set, primarily due to the 
larger availability of data points, consistent with the findings 
from our fivefold cross-validation model. Furthermore, we 
noticed variations in performance based on thermal proper-
ties, with the model demonstrating enhanced accuracy for Tg 
and Tm compared to Td . Overall, the results suggest reason-
able agreement between the predicted values and the measured 
values for all polymer classes and different thermal properties, 
although additional data could further improve the model’s 

performance. To expand the data  set for polymer blends, 
simulated data for Tg can be employed. Previous studies have 
employed molecular dynamics simulations to generate Tg data 
for miscible blends.45,46 Furthermore, features encompassing 
processing parameters, morphological details, and experimen-
tal conditions can be utilized for all thermal properties to train 
more accurate models.

Conclusion
In this study, we developed an ML framework capable of 
predicting properties of homopolymers, copolymers, and 
polymer blends simultaneously. Our framework demon-
strates notable performance in terms of prediction accu-
racy and expands the chemical domain for this property 
class, showing improvements over previous works in 
terms of prediction accuracy and coverage.29 Powered by 
multitask predictors and a large data  set of 23,018 ther-
mal data points, this framework enables the prediction 
of polymer properties that fall in a broad technologically 
relevant class. For the success of the model building, we 

Tg2

Tg1/Tg

Tm
Td

a b c d

Figure 5.   The predicted thermal property values and the experimentally measured thermal property values (solid circles) for  
(a) (i) poly(acrylonitrile-co-styrene) (ii) poly[(3-hydroxybutyric acid)-co-(3-ethyl-3-hydroxypropionic acid)] blend, (b) (i) poly(vinylidene 
fluoride) (ii) poly-tetrafluoroethylene-alt-ethylene blend, (c) (i) poly(propylene carbonate) (ii) poly[(vinyl alcohol)-co-(vinyl acetate)] 
blend, and (d) (i) poly(oxiranylmethyl methacrylate) (ii) poly(3-hydroxybutyric acid) blend.

Table II.   The performance of the trained multitask (a) classification and (b) prediction meta learner model for the thermal properties on the 
testing data set.

a b

Property Tg Tm Property Tg Tm Td

Accuracy 0.86 0.82 Homopolymer R2 0.90 0.84 0.67

RMSE 33.45 45.42 63.13

Precision 0.94 0.95 Copolymer R2 0.95 0.84 0.73

RMSE 19.03 30.21 50.16

Recall 0.94 0.80 Blend (Miscible) R2 0.79 0.85 0.51

RMSE 33.71 26.79 66.71

F1 score 0.94 0.87 Blend (Immiscible) R2 0.73 0.88

RMSE 37.97 23.91
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designed a polymer blend fingerprinting scheme that 
extends and is based on homopolymer and copoly‑ 
mer fingerprints that we have used in the past.

There are several ways in which this work can be utilized 
to further expand the capabilities of polymer informatics in 
terms of accuracy and scope. Incorporating the impact of 
processing parameters and morphology in the case of poly-
mer blends can lead to improvements in prediction accuracy 
and versatility. The conceptual ideas used in this work to 
set up the ML pipeline for thermal properties prediction for 
different polymer flavors can be extended to other proper-
ties (e.g., electronic and mechanical) when suitable data are 
available. Our approach can be adapted to different polymer 
classes, such as polymers with additives or polymer com-
posites, by encoding features corresponding to the additive 
and fillers in the fingerprinting step.

Methods
Polymer genome fingerprints
Polymer SMILES strings (e.g., [*]CC[*] for polyethyl-
ene) are converted to numerical fingerprint vectors using a 
handcrafted fingerprinting scheme. For homopolymers/mono-
mers, previous works have shown that effective fingerprinting 
involves using three hierarchical levels of descriptors that span 
different length scales.47,48 Starting from the atomic level, we 
determine the presence of  predetermined atomic fragments 
or motifs, which are sequences of contiguous atoms.21 Mov-
ing up the hierarchy, we employ larger length-scale descrip-
tors that utilize quantitative structure–property relationships 
(QSPRs), such as van der Waals surface area, topological polar 
surface area (TPSA), fraction of atoms in rings, and fraction of 
rotatable bonds.21 Finally, we use chain-level descriptors that 
characterize the physical structure of the polymer, including 
the shortest topological distance between rings, fraction of 
atoms in side chains, and length of the longest side chain.21 
These three levels of descriptors enable us to capture diverse 
and critical features of the polymers that are important for their 
properties. The benefits of these descriptors are that they have 
sufficient chemico-structural information to describe a wide 
range of physical and chemical attributes that control various 
polymer properties, they can distinguish between two different 
monomers, and they are invariant to different specifications of 
the polymer SMILES strings of the same polymer.

Multitask models and meta learner
The polymer fingerprints along with the selector vector and 
thermal property values for homopolymers, copolymers, and 
polymer blends are used to train our predictive ML models. 
Before training, the thermal property values are curated using 
min-max normalization to scale them to [0,1]. For the classifi-
cation models, polymer fingerprints, selector vectors, and the 
number of thermal property values for Tg and Tm of polymer 
blends are used for training. The ML architecture is shown 

in Figure 2a, where the multitask model is a concatenation-
based conditioned multitask deep neural network. This multi-
task model is trained on 80% of the data set through fivefold 
cross-validation (CV) and the remaining 20% is utilized to train 
the meta learner. We utilized TensorFlow49 to implement all 
of our models. Adam optimization along with stochastic weight 
averaging is used for updating the weights of the network. The 
learning rate is initially set at 10−3 and is changed in the later 
phases of training through the learning rate scheduler along 
with early stopping to prevent overfitting. Hyperparameters 
of our ML model that include the number of layers, number 
of neurons in each layer, initial learning rate, dropout rates, 
and the layer where the selector vector is concatenated were 
tuned using the HyperBand algorithm implemented in the 
KerasTuner.50 All values of the hyperparameters are present in 
Table S2. The ML architecture and the hyperparameter tuning 
steps are the same for the prediction and classification models.

The predicted thermal property values from the fivefold CV 
models are used as inputs to the meta learner as shown in Fig-
ure 2c. The predictive meta learner is an ensemble model that 
predicts the final thermal property value from the five thermal 
property values of the five CV models.29 The meta learner 
for classifying miscibility is an ensemble model that predicts 
the final probabilities for miscibility of polymer blends. Both 
meta learners are trained on the remaining 20% of the data set 
that the cross-validation models have never seen. Similar to 
the multitask models, the hyperparameter optimization of the 
meta learner is achieved through the HyperBand algorithm 
implemented in the KerasTuner.50
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