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polyBERT: a chemical language model
to enable fully machine-driven ultrafast
polymer informatics

Christopher Kuenneth1,2 & Rampi Ramprasad 1

Polymers are a vital part of everyday life. Their chemical universe is so large
that it presents unprecedented opportunities as well as significant challenges
to identify suitable application-specific candidates. We present a complete
end-to-end machine-driven polymer informatics pipeline that can search this
space for suitable candidates at unprecedented speed and accuracy. This
pipeline includes apolymer chemicalfingerprinting capability called polyBERT
(inspired by Natural Language Processing concepts), and a multitask learning
approach that maps the polyBERT fingerprints to a host of properties. poly-
BERT is a chemical linguist that treats the chemical structure of polymers as a
chemical language. The present approach outstrips the best presently avail-
able concepts for polymer property prediction based on handcrafted finger-
print schemes in speed by twoorders ofmagnitudewhile preserving accuracy,
thus making it a strong candidate for deployment in scalable architectures
including cloud infrastructures.

Polymers are an integral part of our everyday life and instrumental in
the progress of technologies for future innovations1. The sheer mag-
nitude and diversity of the polymer chemical space provide opportu-
nities for crafting polymers that accurately match application
demands, yet alsocomewith the challengeof efficiently andeffectively
browsing this gigantic space. The nascent field of polymer
informatics2–5 allows access to the depth of the polymer universe and
demonstrates the potency of machine learning (ML) models to over-
come this challenge. ML frameworks have enabled substantial pro-
gress in the development of polymer property predictors6–10 and
solving inverse problems in which polymers that meet specific prop-
erty requirements are either identified from candidate sets11,12, or are
freshly designed using genetic13,14 or generative15–17 algorithms.

An essential step in polymer informatics pipelines is the conver-
sion of polymer chemical structures to numerical representations that
are often called fingerprints, features, or descriptors (see blue boxes in
Fig. 1a). Past handcrafted fingerprinting approaches18–22 utilize che-
minformatics tools that numerically encode key chemical and struc-
tural features of polymers. Although such handcrafted fingerprints
build on invaluable intuition and experience, they are tedious to

develop, involve complex computations that often consume most of
the time during model training and inference, and lack generalization
to all polymer chemical classes (i.e., new features may have to be
added to the catalog of features in an ad hoc manner). ML pipelines
that use handcrafted fingerprints are thus prone to errors during the
exploration of new polymer chemical classes. Also, handcrafted fin-
gerprints present barriers for the development and deployment of
fullymachine-driven ipipelines,which are suited for scalability in cloud
computing and high-throughput environments.

One way to overcome the previously mentioned limitations is to
replace handcrafted fingerprints with fully machine-crafted “Trans-
former” fingerprints (see right pipeline of Fig. 1a). Transformers23 were
recently developed in the field of Natural Language Processing (NLP)
and have swiftly become the gold standard in ML language modeling.
In this work, we envision SimplifiedMolecular-Input Line-Entry System
(SMILES)24 strings that have been used to represent polymers as the
“chemical language” of polymers. We use millions of Polymer SMILES
(PSMILES) strings for training a language model called polyBERT to
become an expert—a linguist—of the polymer chemical language. In
combinationwithmultitask deep neural networks6,7, polyBERT enables
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a fully end-to-end machine-driven polymer informatics pipeline that
uses and unleashes the true power of artificial intelligence methods.
Multitask deep neural networks harness inherent correlations inmulti-
fidelity and multi-property data sets, scale effortlessly in cloud com-
puting environments, and generalize to multiple prediction tasks.

Recent studies25–27 demonstrated the benefits of using Transfor-
mers in the molecule chemical space. For example, Wang et al.26 have
trained a BERT28 model (the most common general language model)
with a data set of molecule SMILES strings. Using BERT’s latent space
representations of molecules as fingerprints, the authors show that
their approach outperforms other fingerprinting methods (including
fingerprints of an unsupervised recurrent neural network and a graph
neural network). Similarly, Schwaller et al.29,30 have developed a
Transformer model to predict retrosynthesis pathways of molecules
from reactants and reagents that outperforms known algorithms in the
reaction prediction literature. A very recent study by Xu et al.31 (per-
formed almost at the same time as us, as can be confirmed by both our
arXiv submissions) used a RoBERTa32 model (an evolution of the BERT
Transformer model) for polymer property predictions. Their training
strategy first involves the pretraining (unsupervised training) of the
RoBERTa32 model using 5 million polymers and then a finetuning step
(supervised training) to directly predict polymer properties. Although
theirwork usesmuch smaller datasets thanoursboth for unsupervised
and supervised training tasks, they find that their finetuned RoBERTa
model outperforms graph neural networks, long short-term memory
and other models; we do note that this recent work does not make
direct comparisons of their Transformer-basedmodel with the current

state-of-the-art in hand-crafted fingerprinting and multi-task learning7

(which we do in the present contribution).
Another promising neural network architecture, namely, graph

neural networks33, which treats chemical structures as graphs, has
been applied to the molecule and polymer chemical space in the past.
In contrast to Transformers, graphneural networks represent atomsas
nodes and bonds as edges of a graph, so as to encode immediate and
extended connectivities between atoms. As a consequence, graph
neural networks are not directly based on PSMILES strings like Trans-
formers, but depend on an initial set of feature vectors (such as atom
types, implicit valence, etc.) that need to be computed for and
assigned to each node. For example, Park et al.34 compared predictions
of a graph convolutional network and the popular extended-
connectivity circular fingerprint19 for thermal and mechanical poly-
mer properties, finding a similar prediction performance for both
models. Similarly, Gurnani et al.35 used multitask graph neural net-
works to predict polymer properties, but introduced edges between
the heavy boundary atoms to incorporate the recurrent topology of
polymer chains. Their combined approach of graph neural networks
and multitask learning outperforms predictions based on the con-
ventional handcrafted Polymer Genome fingerprint8,20 in almost all
cases. In a similar manner, Aldeghi and Coley36 introduced low-weight
edges between polymer chains to enable predictions for alternating,
random, and block copolymers, and termini chemical groups. We also
note that unlike Transformers graph neural networks are usually
trained end-to-end, i.e., their latent space representations (finger-
prints) are learned under supervision with polymer properties. The

Fig. 1 | Polymer informatics with polyBERT. a Prediction pipelines. The left
pipeline shows the prediction using handcrafted fingerprints using cheminfor-
matics tools, while the right pipeline (present work) portrays a fully end-to-end
machine-driven predictor using polyBERT. Property symbols are defined in Table 1.
ID1 and ID3 are copolymers, and ID2 is a homopolymer. c1 and c2 are the fractions of
the first and second comonomer in the polymer. The symbols Tg, Tm, Td, E, ϵb, and
σb stand for glass transition temperature, melting temperature, degradation tem-
perature, Young’s modulus, elongation at break, and tensile strength at break,
respectively. b polyBERT is a polymer chemical language linguist. polyBERT
canonicalizes, tokenizes, andmasks Polymer SimplifiedMolecular-Input Line-Entry

System (PSMILES) strings before passing them to the DeBERTa model. Each of the
12 Transfomer encoders has 12 attention heads. A last dense layer with a softmax
activation function finds themasked tokens. polyBERT fingerprints (dashed arrow)
are the averages over the token dimension (sentence average) of the last Trans-
former encoder. c 100 million hypothetical PSMILES strings. First, 13 766 known
(i.e., previously synthesized) polymers are decomposed to 4424 fragments using
the Breaking Retrosynthetically Interesting Chemical Substructures (BRICS)40

method. Second, re-assembling the BRICS fragments in many different ways gen-
erates 100 million hypothetical polymers by randomly and enumeratively com-
bining the fragments.
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consequence of this is that in the case of Transformer-based approa-
ches, the learned fingerprint is independent of the polymer properties
(and so can be determined once and for all), where as graph neural
network architectures are typically constructed such that the learned
representations depend on the specific property under consideration.
We note that self-supervised graph neural networks37,38 have recently
been developed that learn the molecule graph through atom, bond,
and subgraph masking, an approach similar to Transformers.

This work has several critical ingredients. First, we generate a data
set of 100 million hypothetical polymers by enumeratively combining
chemical fragments extracted from a list of more than 13 000 synthe-
sized polymers. Next, we train polyBERT, a DeBERTa39-based encoder-
only Transformer, using this hypothetical polymer data set to become
a polymer chemical linguist. During training, polyBERT learns to
translate input PSMILES strings to numerical representations that we
use as polymer fingerprints. Finally, wemap the polyBERT fingerprints
to about 3 dozen polymer properties using our multitask ML frame-
work to yield fully machine-driven ultrafast polymer property pre-
dictors. For benchmarking, the performance (both accuracy and
speed) of this new end-to-end property prediction pipeline is com-
pared with the state-of-the-art handcrafted Polymer Genome8 (PG)
fingerprint based pipeline pioneered previously. Using the ultrafast
polyBERT polymer informatics pipeline, we are in a position to predict
the properties of the 100 million hypothetical polymers intending to
find property boundaries of the polymer universe. This work con-
tributes to expediting the discovery, design, development, and
deployment of polymers by harnessing the true power of language,
data, and artificial intelligence models.

Results
Data sets
Figure 1c sketches the two-step process for fabricating 100 million
hypothetical PSMILES strings. We use the Breaking Retrosynthetically
Interesting Chemical Substructures (BRICS)40 method (as imple-
mented in RDKit41) to decompose previously synthesized 13,766
polymers (all monomers of the data set outline in Table 1, see below)
into 4424 unique chemical fragments. Random and enumerative
compositions of these fragments yield 100 million hypothetical
PSMILES strings that we first canonicalize (see “Methods” section) and
then use for training polyBERT. The hypothetical PSMILES strings are
chemically valid polymers but, mostly, have never been synthesized
before.

Once polyBERT has completed its unsupervised learning task
using the 100 million hypothetical PSMILES strings, multitask super-
vised learning maps polyBERT polymer fingerprints to multiple prop-
erties to produce property predictors. We use the property data set in
Table 1 for training the property predictors. The data set contains
28,061 (≈80%) homopolymer and 7456 (≈20%) copolymer (total of
35,517) data points of 29 experimental and computational polymer
properties that pertain to 11,145 different monomers and 1338 distinct
copolymer chemistries, respectively. Each of the 7456 copolymer data
points involves twodistinct comonomers at various compositions. Our
copolymer data points are for random copolymers, which are ade-
quately handled by our adopted fingerprinting strategy (see “Meth-
ods” section). Alternating copolymers are treated as homopolymers
with appropriately defined repeat units for fingerprinting purposes.
Other flavors of copolymersmay also be encoded by adding additional
fingerprint components. All data points in the data set have been used
in past studies6,7,11,42–49 and were produced using computational
methods or obtained from literature and other public sources. Sup-
plementary Figs. S3–S8 show histograms for each property.

polyBERT
polyBERT iteratively ingests 100 million hypothetical PSMILES strings
to learn the polymer chemical language, as sketched in Fig. 1b. Using

100 million PSMILES strings is the latest example of training a
chemistry-related languagemodel with a large data set and follows the
trend of growing data sets in this discipline, with ChemBERTa using 10
million, SMILES-BERT using 18.7 million, and ChemBERTa-2 using 77
million SMILES strings.50 polyBERT is a DeBERTa39 model (as imple-
mented in Huggingface’s Transformer Python library51) with a sup-
plementary three-stage preprocessing unit for PSMILES strings. We
chose the DeBERTa model as the foundation of polyBERT because it
outperformed other BERT-like models (BERT28, RoBERTa32, and
DistilBERT52) in our tests (see Supplementary Discussion) and stan-
dardized performance task39. First, polyBERT transforms a input
PSMILES string into its canonical form (e.g., [*]CCOCCO[*] to [*]
COC[*]) using the canonicalize_psmiles Python package devel-
oped in this work. Details can be found in the Methods section. Sec-
ond, polyBERT tokenizes canonical PSMILES strings using the
SentencePiece53 tokenizer and a total of 265 tokens. The tokens include
common PSMILES characters such as the uppercased and lowercased
118 elements of the periodic table of elements, numbers ranging from
0 to 9, and special characters like [*], (, ), =, among others. This
ensures that the tokenizer covers the entire PSMILES strings vocabu-
lary and is a similar approach to that in ref. 50. A full token list can be
found at the GitHub repository (see the Data and Code Availability
section). Third, polyBERT masks 15% (default parameter for masked
language models) of the tokens to create a self-supervised training
task. In this training task, polyBERT is taught to predict the masked
tokens using the non-masked surrounding tokens by adjusting the
weights of the Transformer encoders (fill-in-the-blanks task). We use
80million PSMILES strings for training and 20million PSMILES strings
for validation. The validation F1-score is > 0.99. This exceptionally
good F1-score indicates that polyBERT finds the masked tokens in
almost all cases. The total CO2 emissions for training polyBERT on our
hardware are estimated to be 12.6 kgCO2eq (see CO2 Emission and
Timing section).

The training with 80million PSMILES strings renders polyBERT an
expert polymer chemical linguist who knows grammatical and syn-
tactical rules of the polymer chemical language. polyBERT learns pat-
terns and relations of tokens via the multi-head self-attention
mechanism and fully connected feed-forward network of the Trans-
former encoders23. The attention mechanism instructs polyBERT to
devote more focus to a small but essential part of a PSMILES string.
polyBERT’s learned latent spaces after each encoder block are
numerical representations of the input PSMILES strings. The polyBERT
fingerprint is the average over the token dimension (sentence average)
of the last latent space (dotted line in Fig. 1b). We use the Python
package SentenceTransformers54 for extracting and computing poly-
BERT fingerprints.

Fingerprints
For acquiring analogies and juxtaposing chemical relevancy, we com-
pare polyBERT fingerprints with the handcrafted Polymer Genome8

(PG) fingerprints that numerically encode polymers at three different
length scales. A description of PG fingerprints can be found in
“Methods” section. The PG fingerprint vector for the data set in this
workhas945components and is sparselypopulated (93.9% zeros). The
reason for this ultra sparsity is that many PG fingerprint components
count chemical groups in polymers8. A fingerprint component of zero
indicates that a chemical group is not present. In contrast, polyBERT
fingerprint vectors have 600 components and are fully dense (0%
zeros). Fully dense and lower-dimensional fingerprints are often
advantageous for ML models whose computation time scales super-
linear (OðnsÞ,s>1) with the data set size (n) such as Gaussian process or
kernel ridge techniques. Moreover, in the case of neural networks,
sparse and high-dimensional input vectors can cause unnecessary high
memory load that reduces training and inference speed. We note that
the dimensionality of polyBERT fingerprints is a parameter that can be
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chosen arbitrarily to yield the best training result. A summary of the
key figures can be found in Supplementary Table S4.

Figure 2 shows Uniform Manifold Approximation and Projection
(UMAP)55 plots for all homo- and copolymer chemistries in Table 1. The
colored triangles in the first column indicate the coordinates of three
selected polymers for polyBERT and PG fingerprints. We observe for
bothfingerprint types that theorange andblue triangles are very close,
while the green triangle is separate. We also note that polymers cor-
responding to the orange and blue triangles, namely poly(but-1-ene)
and poly(pent-1-ene), have similar chemistry (different by only one
carbon atom), but poly(4-vinylpyridine) represented by a green trian-
gle, is different. This chemically intuitive positioning of fingerprints
suggests the chemical relevancy of fingerprint distances. The cosine
fingerprint distances reported in Supplementary Fig. S1 allow for the
same conclusion.

The second, third, and fourth columns of Fig. 2 display the same
UMAP plots as in the first column. Colored dots indicate the property
values of Tg, Td, and Egc, while light gray dots show polymer finger-
prints with unknown property values. We observe localized clusters of
similar color in each plot pertaining to polymers of similar properties.
Although this finding is not surprising for the PG fingerprint because it
relies on handcrafted chemical features that purposely position similar
polymers next to each other, it is remarkable for polyBERT. With no
chemical information and purely based on training on a massive
amount of PSMILES strings, polyBERT has learned polymer finger-
prints that match chemical intuition. This again shows that polyBERT
fingerprints have chemical pertinence and their distances measure
polymer similarity (e.g., using the cosine distance metric).

polyBERT learns chemical motifs and relations in the PSMILES
strings using the Transformer encoders, each of which includes an

Table 1 | Training data set for the property predictors. The properties are sorted into categories, showed at the top of each
block. The data set contains 29 properties (dielectric constants kf are available at 9 different frequencies f). HP and CP stand
for homopolymer and copolymer, respectively

Property Symbol Unit Sourcea Data range Data points

HP CP All

Thermal

Glass transition temp. Tg K Exp. [8e+01, 9e+02] 5183 3312 8495

Melting temp. Tm K Exp. [2e+02, 9e+02] 2132 1523 3655

Degradation temp. Td K Exp. [3e+02, 1e+03] 3584 1064 4648

Thermodynamic & physical

Heat capacity cp Jg−1K−1 Exp. [8e-01, 2e+00] 79 79

Atomization energy Eat eV atom−1 DFT [-7e+00, -5e+00] 390 390

Limiting oxygen index Oi % Exp. [1e+01, 7e+01] 101 101

Crystallization tendency (DFT) Xc % DFT [1e-01, 1e+02] 432 432

Crystallization tendency (exp.) Xe % Exp. [1e+00, 1e+02] 111 111

Density ρ g cm−3 Exp. [8e-01, 2e+00] 910 910

Electronic

Band gap (chain) Egc eV DFT [2e-02, 1e+01] 4224 4224

Band gap (bulk) Egb eV DFT [4e-01, 1e+01] 597 597

Electron affinity Eea eV DFT [4e-01, 5e+00] 368 368

Ionization energy Ei eV DFT [4e+00, 1e+01] 370 370

Electronic injection barrier Eib eV DFT [2e+00, 7e+00] 2610 2610

Cohesive energy density δ cal cm−3 Exp. [2e+01, 3e+02] 294 294

Optical & dielectric

Refractive index (DFT) nc DFT [1e+00, 3e+00] 382 382

Refractive index (exp.) ne Exp. [1e+00, 2e+00] 516 516

Dielec. constant (DFT) kc DFT [3e+00, 9e+00] 382 382

Dielec. constant at freq. fb kf Exp. [2e+00, 1e+01] 1187 1187

Mechanical

Young’s modulus E MPa Exp. [2e-02, 4e+03] 592 322 914

Tensile strength at yield σy MPa Exp. [3e-05, 1e+02] 216 78 294

Tensile strength at break σb MPa Exp. [5e-03, 2e+02] 663 318 981

Elongation at break ϵb Exp. [3e-01, 1e+03] 868 260 1128

Permeability

O2 gas permeability μO2
barrer Exp. [5e-06, 1e+03] 390 210 600

CO2 gas permeability μCO2
barrer Exp. [1e-06, 5e+03] 286 119 405

N2 gas permeability μN2
barrer Exp. [3e-05, 5e+02] 384 99 483

H2 gas permeability μH2
barrer Exp. [2e-02, 5e+03] 240 46 286

He gas permeability μHe barrer Exp. [5e-02, 2e+03] 239 58 297

CH4 gas permeability μCH4
barrer Exp. [4e-04, 2e+03] 331 47 378

28,061 7456 35,517
aExperiments (Exp.); density functional theory (DFT).
bf 2 1:78,2,3,4,5,6,7,9,15f g is the log10(frequency in Hz); e.g., k3 is the dielectric constant at a frequency of 1 kHz.
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attention and feed-forward network layer (see Fig. 1b). Figure 3a–c
displays the normalized attentionmaps summed over all 12 attention
heads and 12 encoders of polyBERT for the same PSMILES strings as
in Fig. 2. Large dots indicate high attention scores, while small dots
show weak attention scores. The attention scores can be interpreted
as the importance of knowing the position and type of another token
(or chemical motif) and its impact on the current token’s latent

space. The [CLS], _, and [SEP] tokens are auxiliary tokens. The first
two tokens indicate the beginning of PSMILES strings and the last
token shows the end of PSMILES strings. We notice high attention
scores for the [CLS], _, and first [*] tokens in all panels a to c that
imply the connection of the auxiliary tokens to the beginning of
PSMILES strings. Also, we observe at least intermediate attention
scores to next and next-to-next neighbors (first and second off-

Fig. 2 | Two-dimensional Uniform Manifold Approximation and Projection55

(UMAP) plots of the fingerprints. Panel a shows polyBERT and
panel b shows Polymer Genome fingerprints for all homo- and copolymer che-
mistries in Table 1. The triangles (blue, orange, and green) in the first column
indicate fingerprint positions in the UMAP spaces of three selected polymers. The
colored dots in columns two, three, and four indicate property values of Tg,Td, and

Egc, which stand for the glass transition temperature, degradation temperature, and
band gap (chain), respectively. Light gray dots show polymers with unknown
property values. The Polymer Simplified Molecular-Input Line-Entry System
(PSMILES) strings [*]CC([*])CC, [*]CC([*])CCC, and [*]CC([*])c1ccncc1

denote poly(but-1-ene), poly(pent-1-ene), and poly(4-vinylpyridine), respectively.

Fig. 3 | Attention maps and neuron activation for three polymers. Panels a–c
show the normalized attention maps summed over all 12 attention heads and 12
encoders of polyBERT. Panels d–f show the factorized neurons activations in the
feed-forward network layers56. The Polymer Simplified Molecular-Input Line-Entry

System (PSMILES) strings [*]CC([*])CC, [*]CC([*])CCC, and [*]CC([*])

c1ccncc1 denote poly(but-1-ene), poly(pent-1-ene), and poly(4-vinylpyridine),
respectively.
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diagonal elements) for all tokens highlighting the importance of
closely bonded neighbors for the polyBERT fingerprint. Another
general trend is large attention scores between the second [*]
tokens and multiple neighbor tokens across all panels. Moreover, in
Fig. 3c, we find large attention scores for the cn token up to the
fourth or fifth neighbor tokens that indicate a strong impact of cn to
the latent spaces and polyBERT fingerprint, which is expected due to
the different nature of the nitrogen atom.

Figure 3d–f shows the non-negative matrix factorizations (4
components) of the neuron activations in the feed-forward neural
network layers56 of polyBERT (see Fig. 1b) for the same polymers as in
panels a to c. The neurons in the feed-forward network layers account
for more than 60% of the parameters. Each of the four components
represent a set of distinct neurons that is active for specific tokens (x-
axes). For example, the fourth set of neurons is active if polyBERT
predicts latent spaces for the auxiliary tokens. The third set of neurons
fire in the case of the first two C tokens and the first set of neurons are
active for side chain c or C atoms, except in the case of the cn token,
which has its own set of neurons (second set of neurons). In total, the
attention layers incorporate positional and relational knowledge and
the feed-forward neural network layers disable and enable certain
routes through polyBERT. Both factors modulate the polyBERT
fingerprints.

Not surprisingly, the computations of polyBERT and PG finger-
prints scale nearly linearly with the number of PSMILES strings
although their performance (i.e., pre-factor) can be quite different, as
shown in the log-log scaled Fig. 4. The computation of polyBERT (GPU)
is over two orders of magnitude (215 times) faster than computing PG
fingerprints. polyBERT fingerprints may be computed on CPUs and
GPUs. Because of the presently large efforts in industry to develop
faster and better GPUs, we expect the computation of polyBERT fin-
gerprint to becomeeven faster in the future. Time is very important for
high-throughput polymer informatics pipelines that identify polymers
from large candidate sets11. With an estimate of 0.30 ms/PSMILES for
the multitask deep neural networks (see Property Prediction section),
the total timeusing thepolyBERT-basedpipeline topredict 29polymer
properties sums to 1.06 ms/polymer/GPU.

Property prediction
For benchmarking the property prediction accuracy of polyBERT and
PG fingerprints, we train multitask deep neural networks for each

property category defined in Table 1. In our previous study7, we
observed that these property categories resulted in the development of
models exhibiting superior performance. Multitask deep neural net-
works have demonstrated best-in-class results for polymer property
predictions6,7,11, while being fast, scalable, and readily amenable if more
data points become available. Unlike single-task models, multitask
models simultaneously predict numerous properties (tasks) and har-
ness inherent but hidden correlations in data to improve their perfor-
mance. Such correlation exists, for instance, betweenTg andTm, but the
exact correlation varies across specific polymer chemistries. Multitask
models learn and improve from these varying correlations in data. The
training protocol of the multitask deep neural networks follows state-
of-the-art methods involving five-fold cross-validation and a con-
solidating meta learner that forecasts the final property values based
upon the ensemble of cross-validation predictors. More details about
multitask deep neural networks are provided in the Methods section.
Their training process is outlined in Supplementary Figure S2.

Figure 5a shows the coefficient of determination (R2) averages and
standard deviations across the five validation data sets of the cross-
validation process for 29 polymer properties. The averages are inde-
pendent of the data set splits, while the standard deviations show the
variance of the prediction performance for the different splits. Smaller
standard deviations indicate data sets with homogeneously dis-
tributed data points in the learning space. Large standard deviations
stem from inhomogeneously distributed data points of usually smaller
data sets. Cross-validation is shown to establish an independence of
the data set splits for polymer predictions11. Root-Mean-Square Error
(RMSE) and R2 values for the cross-validation andmeta learner models
can be found in Supplementary Table S1–S3 for all polymers, homo-
polymers, and copolymers, respectively. We find the prediction accu-
racy to be better for thermal andmechanical properties of copolymers
(relative to that for homopolymers) and slightly worse for the gas
permeabilities, similar to previous findings6. Overall, PG performs best
(R2 = 0.81) but is very closely followed by polyBERT (R2 = 0.80). This
overall performance order of the fingerprint types is persistent with
the category averages and properties, except for Xc, Xe, and ϵb, where
polyBERT slightly outperforms PG fingerprints.Wenote that polyBERT
and PG fingerprints are both practical routes for polymer featurization
because their R2 values lie close together and are generally high.
polyBERT fingerprints have the accuracy of the handcrafted PG fin-
gerprints but are over two orders of magnitude faster (see Fig. 4).

Figure 5b shows highR2 values for eachmeta learner (one for each
category), suggesting an exceptional prediction performance across
all properties.We train themeta learners on unseen 20%of the data set
and validate using 80% of the data set (also used for cross-validation).
The reported validation R2 values thus only partly measure the gen-
eralization performancewith respect to the full data set. Meta learners
can be conceived as taking decisive roles in selecting the best values
from the predictions of the five cross-validation models. We use the
meta learners for all property predictions in this work. Supplementary
Figs. S9–S14 show the meta learners’ parity plots.

The ultrafast and accurate polyBERT-based polymer informatics
pipeline allows us to predict all 29 properties of the 100 million
hypothetical polymers that were originally created to train polyBERT.
Figure 5c shows theminimum,mean, andmaximum for eachproperty.
Histograms are given in Supplementary Figs. S15–S20. Given the vast
size of our data set and consequent chemical space of the 100 million
hypothetical polymers, the minimum and maximum values can be
interpreted as potential boundaries of the total polymer property
space. In addition, a data set of this magnitude presents numerous
opportunities for obtaining fascinating insights and practical applica-
tions. For example, it can be utilized in future studies to establish
standardized benchmarks for testing and evaluating MLmodels in the
domain of polymer informatics. The data setmay also reveal structure-
property information that provides guidance for design rules, helps to

Fig. 4 | Computation times of polymer fingerprints. The fingerprints are com-
puted onone CPU core (Intel(R) Xeon(R) CPU E5-2667), except for polyBERT (GPU)
fingerprints that are computed on one GPU (Quadro GP100). The computation
times per Polymer Simplified Molecular-Input Line-Entry System (PSMILES) string,
in the order of the legend, are 33.39, 0.76, and 163.59 ms/PSMILES (computed for
104 PSMILES), respectively.
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identify unexplored areas to search for new polymers, or facilitates
direct selection of polymers with specific properties through nearest
neighbor searches, as evidenced in a recent study11. A possible future
evolution of the data set may also contain subspaces of distinct poly-
mer classes, such as biodegradable or low-carbon polymer classes.
However, these aspects are beyond the scope of this study. The data
setwith 100millionhypothetical polymers including thepredictionsof
29 properties is available for academic use. The total CO2 emissions for
predicting 29 properties of 100 million hypothetical polymers are
estimated to be 5.5 kgCO2eq (see CO2 Emission and Timing section).

Other advantages of polyBERT: beyond speed and accuracy
The feed-forward network (last layer in Fig. 1b), which predictsmasked
tokens during the self-supervised training of polyBERT, enables the
mapping of numerical latent spaces (i.e., fingerprints) to PSMILES
strings. However, because we average over the token dimension of the

last latent space to compute polyBERT fingerprints, we cannot
unambiguously map the current fingerprints back to PSMILES strings.
A modified future version of polyBERT that provides PSMILES strings
encoding and fingerprint decoding could involve inserting a
dimensionality-reducing layer after the last Transformer encoder.
Fingerprint decoders are important elements of design informatics
pipelines that invert the prediction pipeline to meet property specifi-
cations. We note that the current choice of computing polyBERT fin-
gerprints as pooling averages stems from basic dimensionality
reduction considerations that require nomodification of the DeBERTa
architecture.

A second advantage of the polyBERT approach is interpretability.
Analyzing the chemical relevancy of polyBERT fingerprints (as dis-
cussed in the Fingerprints section) in greater detail can reveal chemical
functions and interactions of structural parts of the polymers. As illu-
strated with the examples of the three polymers in Fig. 3, deciphering

Fig. 5 | Coefficient of determination (R2) performance values for polyBERT (PB)
and Polymer Genome (PG) fingerprints. Panel a shows R2 averages of the five
cross-validation validation data sets along with standard deviations (1σ) and
panelb showsR2 valuesof themeta learner’s test data set. The category-averagedR2

values are stated in the last rows of each block, while overall R2 values are given in
the very last block. The properties gas permeabilities (μx) and elongation at break
(ϵb) are trained on log base 10 scale (x 7!log10ðx + 1Þ). The R2 values are reported on
this scale. Panel c shows the minimum, mean, and maximum of polyBERT-based
property predictions for 100million hypothetical polymers.Tg, Tm, andTd stand for
glass transition, melting, and degradation temperature. cp, Eat,Oi,Xc, Xe, and ρ

stand for heat capacity, atomization energy, limiting oxygen index, crystallization
tendency (DFT), crystallization tendency (exp.), and density. Egc, Egb, Eea, Ei, Eib, and
δ stand for band gap (chain), band gap (bulk), electron affinity, ionization energy,
electronic injection barrier, and cohesive energy density. nc, ne, kc, and kf stand for
refractive index (DFT), refractive index (exp.), dielectric constant (DFT), and
dielectric constant at freq. f 2 1:78,2,3,4,5,6,7,9,15f g. E, σy, σb, and ϵb stand for
Young’smodulus, tensile strength at yield, tensile strength at break, and elongation
at break. μO2

,μCO2
,μN2

,μH2
,μHe, and μCH4

stand for O2, CO2, N2, H2, He, and CH4 gas
permeability. Plain numbers of this Figure canbe found in Supplementary Tables S1
and S5.
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and visualizing the attention layers of the Transformer encoders can
reveal such information. Saliency methods57 may also be used to
directly explain the relationships between structural parts of the
PSMILES strings (inputs) and polymer properties (outputs).

Yet another advantage of the polyBERT approach is its coverage
of the entire chemical space. Molecule SMILES strings are a subset of
polymer SMILES strings and differ by only two stars ([*]) symbols that
indicate the two endpoints of the polymer repeat unit. polyBERT has
no intrinsic limitations or functions that obstruct predicting finger-
prints for molecule SMILES strings. Our first experiments show con-
sistent and well-conditioned fingerprints for molecule SMILES strings
using polyBERT that required only minimal changes in the canonica-
lization routine.

Discussion
Here, we show a generalizable, ultrafast, and accurate polymer infor-
matics pipeline that is seamlessly scalable on cloud hardware and
suitable for high-throughput screening of huge polymer spaces.
polyBERT, which is a Transformer-based NLP model modified for the
polymer chemical language, is the critical element of our pipeline.
After training on 100 million hypothetical polymers, the polyBERT-
based informatics pipeline arrives at a representation of polymers and
predicts polymer properties over two orders of magnitude faster but
at the same accuracy as the best pipeline based on handcrafted PG
fingerprints.

The total polymer universe is gigantic, but currently limited by
experimentation, manufacturing techniques, resources, and econom-
ical aspects. Contemplating different polymer types such as homo-
polymers, copolymer, and polymer blends, novel undiscovered
polymer chemistries, additives, and processing conditions, the num-
ber of possible polymers in the polymer universe is truly limitless.
Searching this extraordinarily large space enabled by property pre-
dictions is limited by the prediction speed. The accurate prediction of
29 properties for 100 million hypothetical polymers in a reasonable
time demonstrates that polyBERT is an enabler to extensive explora-
tions of this gigantic polymer universe at scale. polyBERT paves the
pathway for the discovery of novel polymers 100 times faster (and
potentially even faster with newer GPU generations) than state-of-the-
art informatics approaches – but at the same accuracy as slower
handcrafted fingerprinting methods—by leveraging Transformer-
based ML models originally developed for NLP. polyBERT finger-
prints are dense and chemically pertinent numerical representations
of polymers that adequately measure polymer similarity. They can be
used for any polymer informatics task that requires numerical
representations of polymers such as property predictions (demon-
strated here), polymer structure predictions, ML-based synthesis
assistants, etc. polyBERT fingerprints have a huge potential to
accelerate past polymer informatics pipelines by replacing the
handcrafted fingerprints with polyBERT fingerprints. polyBERT may
also be used to directly design polymers based on fingerprints (that
can be related to properties) using polyBERT’s decoder that has been
trained during the self-supervised learning. This, however, requires
retraining and structural updates to polyBERT and is thus part of a
future work.

Methods
PSMILES canonicalization
The string representations of homopolymer repeat units in this work
are PSMILES strings. PSMILES strings follow the SMILES24 syntax defi-
nition but use two stars to indicate the two endpoints of the polymer
repeat unit (e.g., [*]CC[*] for polyethylene). The raw PSMILES syntax
is non-unique; i.e., the same polymer may be represented using many
PSMILES strings; canonicalization is a scheme to reduce the different
PSMILES strings of the same polymer to a singel unique canonicalized
PSMILES string. polyBERT requires canonicalized PSMILES strings

because polyBERT fingerprints change with different writings of
PSMILES strings. In contrast, PG fingerprints are invariant to theway of
writing PSMILES strings and, thus, do not require canonicalization.
Figure 6 shows three variances of PSMILES strings that leave the
polymer unchanged. The translational variance of PSMILES strings
allows to move the repeat unit window of polymers (cf., white and red
box). The multiplicative variance permits to write polymers as multi-
ples of the repeat unit (e.g., twofold repeat unit of Nylon 6), while the
permutational variance stems from the SMILES syntax definition24 and
allows syntactical permutations of PSMILES strings that leave the
polymer unchanged.

For this work, we developed the canonicalize_psmiles
Python package that finds the canonical form of PSMILES strings in
four steps; (i) it finds the shortest PSMILES string by searching and
removing repetition patterns, (ii) it connects the polymer endpoints to
create a periodic PSMILES string, (iii) it canonicalizes the periodic
PSMILES string using RDKit’s41 canonicalization routines, (iv) it breaks
the periodic PSMILES string to create the canonical PSMILES string.
The canonicalize_psmiles package is available at https://github.
com/Ramprasad-Group/canonicalize_psmiles.

Polymer fingerprinting
Fingerprinting converts geometric and chemical information of poly-
mers (based upon the PSMILES string) to machine-readable numerical
representations in the form of vectors. These vectors are the polymer
fingerprints and can be used for property predictions, similarity sear-
ches, or other tasks that require numerical representations of
polymers.

We compare the polyBERT fingerprints, developed in this work,
with the handcrafted Polymer Genome (PG) polymer fingerprints. PG
fingerprints capture key features of polymers at three hierarchical
length scales8,20. At the atomic scale (1st level), PGfingerprints track the
occurrence of a fixed set of atomic fragments (or motifs)21. The block
scale (2nd level) uses the Quantitative Structure-Property Relationship
(QSPR)fingerprints18,44 for capturing features on larger length-scales as
implemented in the cheminformatics toolkit RDKit41. The chain scale
(3rd level) fingerprint components deal with “morphological descrip-
tors” such as the ring distance or length of the largest side-chain44. The
PG fingerprints are developed within the Ramprasad research group
and used, for example, at https://PolymerGenome.org. More details
can be found in References8,44.

N

O

Translation

N

O

Nylon 6

[*]NCCCCCC(=O)[*]

[*]CCC(=O)NCCC[*]

[*]NCCCCCC(=O)NCCCCCC(=O)[*]

Multiplication:

H

H

[*]NCCCCCC(NCCCCCC([*])=O)=O

Multiplication and permutation: 

Fig. 6 | Translational, multiplicative, and permutational variances of Polymer
Simplified Molecular-Input Line-Entry System (PSMILES) strings. The gray and
red boxes represent the smallest repeat unit of poly(hexano-6-lactam) (Nylon 6).
The red box can be translated to match the black box. The dashed boxes show the
second smallest repeat unit (two-fold repeat unit) of Nylon 6.
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As discussed recently6,11, we sum the composition-weighted
polymer fingerprints to compute copolymer fingerprints
F =

PN
i Fici, whereN is the number of comonomers in the copolymer,

Fi the ith comonomer fingerprint vector, and ci the fraction of the ith

comonomer. This approach renders copolymer fingerprints invariant
to the order in which one may sort the comonomers and satisfies the
two main demands of uniqueness and invariance to different (but
equivalent) periodic unit specifications. While the current finger-
printing scheme is most appropriate for random copolymers, other
copolymer flavors may be encoded by adding additional fingerprint
components. Contrary to homopolymer fingerprints, copolymer fin-
gerprints may not be interpretable (e.g., the composition-weighted
sum of the fingerprint component “length of largest side-chain” of two
homopolymers has no physical meaning).

Multitask neural networks
Multitask deep neural networks simultaneously learn multiple poly-
mer properties to utilize inherent correlations of properties in data
sets. The training protocol of the concatenation-conditioned multi-
task predictors follows state-of-the-art techniques involving five-fold
cross-validation and a meta learner that forecasts the final property
values based upon the ensemble of cross-validation predictors6,7,11.
Supplementary Figure S2 details this process. After shuffling, we split
the data set into two parts and use 80% for the five cross-validation
models and for validating the meta learners. 20% of the data set is
used for training the meta learners. We use the Hyperband method58

of the Python package KerasTuner59 to fully optimize all hyperpar-
amters of the neural networks, including the number of layers,
number of nodes, dropout rates, and activation functions. The
Hyperband method finds the best set of hyperparameters by mini-
mizing theMean Squared Error (MSE) loss function.We performdata
set stratification of all splits based on the polymer properties. The
multitask deep neural networks are implemented using the Python
API of TensorFlow60.

CO2 emission and timing
Experiments were conducted using a private infrastructure, which has
an estimated carbon efficiency of 0.432 kgCO2eq kWh−1. A total of 31 h
of computations were performed on four Quadro-GP100-16GB (ther-
mal design power of 235W) for training polyBERT. Total emissions are
estimated to be 12.6 kgCO2eq. About 8 h of computations on four
GPUswere necessary for training the cross-validation andmeta learner
models with an estimated emission of 3.3 kgCO2eq for polyBERT and
Polymer Genome fingerprints, respectively. The total emissions for
predicting 29 properties for 100 million hypothetical polymers are
estimated to be 5.5 kgCO2eq, taking a total of 13.5 h. Estimations were
conducted using the Machine Learning Impact calculator presented
in ref. 61.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data set of 100 million hypothetical polymers with 29 predicted
properties is available for academic use at https://doi.org/10.5281/
zenodo.7766806.

Code availability
The polyBERT code is available for academic use at https://github.
com/Ramprasad-Group/polyBERTand Zenodo62. The trained poly-
BERT model is available at https://huggingface.co/kuelumbus/
polyBERT. The Python package for canonicalizing PSMILES strings is
available at https://github.com/Ramprasad-Group/canonicalize_
psmiles. polyBERT-based property predictions will be made

accessible through the polymer informatics platformPolymerGenome
at https://PolymerGenome.org.
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