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A general-purpose material property data extraction pipeline
from large polymer corpora using natural language processing
Pranav Shetty 1, Arunkumar Chitteth Rajan2, Chris Kuenneth 2, Sonakshi Gupta3, Lakshmi Prerana Panchumarti2, Lauren Holm2,
Chao Zhang1 and Rampi Ramprasad 2✉

The ever-increasing number of materials science articles makes it hard to infer chemistry-structure-property relations from
literature. We used natural language processing methods to automatically extract material property data from the abstracts of
polymer literature. As a component of our pipeline, we trained MaterialsBERT, a language model, using 2.4 million materials science
abstracts, which outperforms other baseline models in three out of five named entity recognition datasets. Using this pipeline, we
obtained ~300,000 material property records from ~130,000 abstracts in 60 hours. The extracted data was analyzed for a diverse
range of applications such as fuel cells, supercapacitors, and polymer solar cells to recover non-trivial insights. The data extracted
through our pipeline is made available at polymerscholar.org which can be used to locate material property data recorded in
abstracts. This work demonstrates the feasibility of an automatic pipeline that starts from published literature and ends with
extracted material property information.
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INTRODUCTION
The number of materials science papers published annually grows
at the rate of 6% compounded annually. Quantitative and
qualitative material property information is locked away in these
publications written in natural language that is not machine-
readable. The explosive growth in published literature makes it
harder to see quantitative trends by manually analyzing large
amounts of literature. Searching the literature for material systems
that have desirable properties also becomes more challenging.
Moreover, material information published in a non-machine-
readable form contributes to data scarcity in the field of materials
informatics where the training of property predictors requires
painstaking manual curation of the data of interest from literature.
Here, we propose adapting techniques for information extraction
from the natural language processing (NLP) literature to address
these issues.
Information extraction from the written text is well-studied

within NLP and involves several key components such as named
entity recognition (NER), i.e., identifying categories to which words
in the text belong; relation extraction, i.e., classifying relationships
between extracted entities; co-referencing, i.e., identifying clusters
of named entities in the text referring to the same object such as a
polymer and its abbreviation, and named entity normalization, i.e.,
identifying all the variations in the name for an entity across a
large number of documents. The idea of “self-supervised learning”
through transformer-based models such as BERT1,2, pre-trained on
massive corpora of unlabeled text to learn contextual embed-
dings, is the dominant paradigm of information extraction today.
A common architecture for NER and relation extraction is to feed a
labeled input to BERT and use the output vector embedding for
each word along with the corresponding labels (which could be
entity labels or relation labels) as inputs to a task-specific machine
learning model (typically a neural network) that learns to predict
those labels. The tasks mentioned above are label intensive.

Extending these methods to new domains requires labeling new
data sets with ontologies that are tailored to the domain of
interest.
ChemDataExtractor3, ChemSpot4, and ChemicalTagger5 are

tools that perform NER to tag material entities. For example,
ChemDataExtractor has been used to create a database of Neel
temperatures and Curie temperatures that were automatically
mined from literature6. It has also been used to generate a
literature-extracted database of magnetocaloric materials and
train property prediction models for key figures of merit7. In the
space of polymers, the authors of Ref. 8 used a semi-automated
approach that crawled papers automatically and used students to
extract the Flory-Huggins parameter (a measure of the affinity
between two materials, eg., a polymer and a solvent). Word
embedding approaches were used in Ref. 9 to generate entity-rich
documents for human experts to annotate which were then used
to train a polymer named entity tagger. Most previous NLP-based
efforts in materials science have focused on inorganic materi-
als10,11 and organic small molecules12,13 but limited work has been
done to address information extraction challenges in polymers.
Polymers in practice have several non-trivial variations in name for
the same material entity which requires polymer names to be
normalized. Moreover, polymer names cannot typically be
converted to SMILES strings14 that are usable for training
property-predictor machine learning models. The SMILES strings
must instead be inferred from figures in the paper that contain the
corresponding structure.
Past work to automatically extract material property information

from literature has focused on specific properties typically using
keyword search methods or regular expressions15. However, there
are few solutions in the literature that address building general-
purpose capabilities for extracting material property information,
i.e., for any material property. Moreover, property extraction and
analysis of polymers from a large corpus of literature have also not
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yet been addressed. Automatically analyzing large materials
science corpora has enabled many novel discoveries in recent
years such as Ref. 16, where a literature-extracted data set of
zeolites was used to analyze interzeolite relations. Using word
embeddings trained on such corpora has also been used to
predict novel materials for certain applications in inorganics and
polymers17,18.
We built a general-purpose pipeline for extracting material

property data in this work. Starting with a corpus of 2.4 million
materials science papers described in Ref. 17, we selected 750
abstracts from the polymer domain and annotated each of the
abstracts using our own ontology that was designed for the
purpose of extracting information from materials science litera-
ture. Using these 750 annotated abstracts we trained an NER
model, using our MaterialsBERT language model to encode the
input text into vector representations. MaterialsBERT in turn was
trained by starting from PubMedBERT, another language model,
and using 2.4 million materials science abstracts to continue
training the model19. The trained NER model was applied to
polymer abstracts and heuristic rules were used to combine the
predictions of the NER model and obtain material property
records from all polymer-relevant abstracts. This pipeline is
illustrated in Fig. 1. We restricted our focus to abstracts as
associating property value pairs with their corresponding materi-
als is a more tractable problem in abstracts. We analyzed the data
obtained using this pipeline for applications as diverse as polymer
solar cells, fuel cells, and supercapacitors and showed that several
known trends and phenomena in materials science can be
inferred using this data. Moreover, we trained a machine learning
predictor for the glass transition temperature using automatically
extracted data (Supplementary Discussion 3).
This work builds a general-purpose material property data

extraction pipeline, for any material property. MaterialsBERT, the
language model that powers our information extraction pipeline is
released in order to enable the information extraction efforts of
other materials researchers. There are other BERT-based language
models for the materials science domain such as MatSciBERT20

and the similarly named MaterialBERT21 which have been
benchmarked on materials science specific NLP tasks. This work
goes beyond benchmarking the language model on NLP tasks and
demonstrates how it can be used in combination with NER and
relation extraction methods to extract all material property
records in the abstracts of our corpus of papers. In addition, we
show that MaterialsBERT outperforms other similar BERT-based
language models such as BioBERT22 and ChemBERT23 on three out
of five materials science NER data sets. The data extracted using
this pipeline can be explored using a convenient web-based
interface (polymerscholar.org) which can aid polymer researchers
in locating material property information of interest to them.

RESULTS
Abstract annotation
Our ontology for extracting material property information consists
of 8 entity types namely POLYMER, POLYMER_CLASS, PROPER-
TY_VALUE, PROPERTY_NAME, MONOMER, ORGANIC_MATERIAL,
INORGANIC_MATERIAL, and MATERIAL_AMOUNT. For a detailed
description of these entity types, see Table 1. This ontology
captures the key pieces of information commonly found in
abstracts and the information we wish to utilize for downstream
purposes. Unlike some other studies24, our ontology does not
annotate entities using the BIO tagging scheme, i.e., Beginning-
Inside-Outside of the labeled entity. Instead, we opt to keep the
labels simple and annotate only tokens belonging to our ontology
and label all other tokens as ‘OTHER’. This is because, as reported
in Ref. 19, for BERT-based sequence labeling models, the
advantage offered by explicit BIO tags is negligible and IO
tagging schemes suffice. More detailed annotation guidelines are
provided in Supplementary Methods 1. The corpus of papers
described previously was filtered to obtain a data set of abstracts
that were polymer relevant and likely to contain the entity types
of interest to us. We did so by filtering abstracts containing the
string ‘poly’ to find polymer-relevant abstracts and using regular
expressions to find abstracts that contained numeric information.

Fig. 1 Pipeline used for extracting material property records from a corpus of abstracts. The training of MaterialsBERT, training of the NER
model as well as the use of the NER model in conjunction with heuristic rules to extract material property data.
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Using the above-described ontology, we annotated 750 abstracts
and split the abstracts into 85% for training, 5% for validation, and
10% for testing. Prior to manual annotation, we automatically pre-
annotated the abstracts using dictionaries of entities for the entity
types where one was available24. This was intended to speed up the
annotation process. This data set was annotated by three domain
experts using the tool Prodigy (https://prodi.gy). Annotation was
done over three rounds using a small sample of abstracts in each
round. With each round, the annotation guidelines were refined and
the abstracts in the previous rounds were re-annotated using the
refined guidelines. We refer to this data set as PolymerAbstracts.
In order to assess the inter-annotator agreement between the

three annotators, 10 abstracts were annotated by all the annotators
to measure the Cohen’s Kappa and Fleiss Kappa25 metrics. The Fleiss
Kappa metric was computed to be 0.885 and the pairwise Cohen’s
Kappa metric to be (0.906, 0.864, 0.887) for each of the three pairs of
annotators. These metrics are comparable to inter-annotator
agreements reported elsewhere in the literature26 and indicate
good homogeneity in the annotations.

NER model
The architecture used for training our NER model is depicted in
Fig. 2. BERT and BERT-based models have become the de-facto

solutions for a large number of NLP tasks1. It embodies the
transfer learning paradigm in which a language model is trained
on a large amount of unlabeled text using unsupervised
objectives (not shown in Fig. 2) and then reused for other NLP
tasks. The resulting BERT encoder can be used to generate token
embeddings for the input text that are conditioned on all other
input tokens and hence are context-aware. We used a BERT-based
encoder to generate representations for tokens in the input text as
shown in Fig. 2. The generated representations were used as
inputs to a linear layer connected to a softmax non-linearity that
predicted the probability of the entity type of each token. The
cross-entropy loss was used during training to learn the entity
types and on the test set, the highest probability label was taken
to be the predicted entity type for a given input token. Dropout
was used in the linear layer with a dropout probability of 0.2. The
BERT model has an input sequence length limit of 512 tokens and
most abstracts fall within this limit. Sequences longer than this
length were truncated to 512 tokens as per standard practice27.
We used a number of different encoders and compared the
performance of the resulting models on PolymerAbstracts. We
compared these models for a number of different publicly
available materials science data sets as well. All experiments were
performed by us and the training and evaluation setting was
identical across the encoders tested, for each data set.

Table 1. Description of each entity type in the ontology used for annotating PolymerAbstracts.

Entity type Description Total occurrences

POLYMER Material entities that are polymers 7364

ORGANIC_MATERIAL Material entities that are organic but not polymers. Typically used as plasticizers or cross-linking agents 914

MONOMER Material entities which are explicitly indicated as being the repeat units for a POLYMER entity 2074

POLYMER_CLASS Material entities that don’t refer to a specific chemical substance but are broad terms used for a class of
polymers

1476

INORGANIC_MATERIAL Material entities which are inorganic and are typically used as additives in a polymer formulation 1272

MATERIAL_AMOUNT Entity type indicating the amount of a particular material in a material formulation 1143

PROPERTY_NAME Entity type for a material property 4535

PROPERTY_VALUE Entity type including a numeric value and its unit corresponding to a material property 5800

OTHER Default entity type used for all tokens that do not lie in any of the above categories 147,115

Total occurrences here refers to the number of occurrences of each entity type in PolymerAbstracts.

Fig. 2 Model architecture used for named entity recognition. Each token in the input sequence is converted to a contextual embedding by
a BERT-based encoder which is then input to a single-layer neural network. The output of the neural network is the entity type of the
input token.

P. Shetty et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)    52 

https://prodi.gy


Evaluation methods
The performance of the NER model is evaluated using precision,
recall, and F1 score of the predicted entity tag compared to the
ground truth labels. These are defined below:

Precision ¼ TP
TPþ FP

Recall ¼ TP
TPþ FN

F1 ¼ 2 ´ Precision ´ Recall
Precisionþ Recall

(1)

where TP are the true positives, FP are the false positives and FN
are the false negatives. Each of the above metrics is reported as a
% value. We consider a predicted label to be a true positive only
when the label of a complete entity is predicted correctly. For
instance, for the polymer ‘polyvinyl ethylene’, both ‘polyvinyl’ and
‘ethylene’ must be correctly labeled as a POLYMER, else the entity
is deemed to be predicted incorrectly.

NER model performance
The performance of various BERT-based language models tested
for training an NER model on PolymerAbstracts is shown in
Table 2. We observe that MaterialsBERT, the model fine-tuned by
us on 2.4 million materials science abstracts using PubMedBERT as
the starting point, outperforms PubMedBERT as well as other
language models used. This is in agreement with previously
reported results where the fine-tuning of a BERT-based language
model on a domain-specific corpus resulted in improved down-
stream task performance19. Similar trends are observed across two
of the four materials science data sets as reported in Table 3 and
thus MaterialsBERT outperforms other BERT-based language
models in three out of five materials science data sets. These
NER datasets were chosen to span a range of subdomains within
materials science, i.e., across organic and inorganic materials. A
more detailed description of these NER datasets is provided in

Supplementary Methods 2. All encoders tested in Table 2 used the
BERT-base architecture, differing in the value of their weights but
having the same number of parameters and hence are compar-
able. MaterialsBERT outperforms PubMedBERT on all datasets
except ChemDNER, which demonstrates that fine-tuning on a
domain-specific corpus indeed produces a performance improve-
ment on sequence labeling tasks. ChemBERT23 is BERT-base fine-
tuned on a corpus of ~400,000 organic chemistry papers and also
out-performs BERT-base1 across the NER data sets tested.
BioBERT22 was trained by fine-tuning BERT-base using the PubMed
corpus and thus has the same vocabulary as BERT-base in contrast
to PubMedBERT which has a vocabulary specific to the biomedical
domain. Ref. 28 describes the model MatBERT which was pre-
trained from scratch using a corpus of 2 million materials science
articles. Despite MatBERT being a model that was pre-trained from
scratch, MaterialsBERT outperforms MatBERT on three out of five
datasets. While the vocabulary of MatBERT and MaterialsBERT are
both relevant to the domain of materials science, this performance
difference can likely be attributed to the fact that PubMedBERT,
the initial model for MaterialsBERT was pre-trained on a much
larger corpus of text (14 million abstracts and full text). All
experiments shown in Tables 2 and 3 were performed by us. We
did not test BiLSTM-based architectures29 as past work has shown
that BERT-based architectures typically outperform BiLSTM-based
ones19,23,28. The performance of MaterialsBERT for each entity type
in our ontology is described in Supplementary Discussion 1.

Quantifying the extracted data
Using our pipeline, we extracted ~300,000 material property
records from ~130,000 abstracts. Out of our corpus of 2.4 million
articles, ~650,000 abstracts are polymer relevant and around
~130,000 out of those contain material property data. This
extraction process took 60 hours using a single Quadro 16 GB
GPU. To place this number in context, PoLyInfo a comparable
database of polymer property records that is publicly available has
492,645 property records as of this writing30. This database was
manually curated by domain experts over many years while the
material property records we have extracted using automated
methods took 2.5 days using only abstracts and is yet of
comparable size. However, the curation of datasets is not
eliminated by automated extraction as we will still need domain
experts to carefully curate text-mined data sets but these methods
can dramatically reduce the amount of work needed. It is easier to
flag bad entries in a structured format than to manually parse and
enter data from natural language. The composition of these
material property records is summarized in Table 4 for specific
properties (grouped into a few property classes) that are utilized
later in this paper. For the general property class, we computed
the number of neat polymers as the material property records

Table 2. Performance of various BERT-based encoders on the test set
of PolymerAbstracts.

Model Precision Recall F1

MaterialsBERT (ours) 62.5 70.6 66.4

PubMedBERT 61.4 70.7 65.8

MatBERT 60.9 70.1 65.2

BioBERT 59.2 66.3 62.6

ChemBERT 52.2 62.6 57.0

BERT-base 52.1 61.0 56.2

Values are reported in %.
MaterialsBERT has the highest F1 score (shown in bold).

Table 3. Performance of different BERT-based encoders on the test sets of publicly available materials science NER datasets.

BERT-based encoder ChemDNER70 Inorganic Synthesis
recipes71

Inorganic Abstracts24 ChemRxnExtractor23

P R F1 P R F1 P R F1 P R F1

MaterialsBERT (ours) 70.1 68.2 69.2 69.1 68.3 68.6 85.3 86.7 86.0 73.5 69.5 71.4

PubMedBERT 71.5 69.0 70.2 69.9 65.3 67.6 84.0 86.2 85.0 68.1 59.5 63.6

MatBERT 71.7 66.9 69.2 68.6 67.7 68.2 85.6 86.7 86.2 67.4 58.0 62.4

BioBERT 70.6 65.7 68.0 64.4 63.7 64.0 85.6 87.1 86.4 74.8 65.4 69.8

ChemBERT 72.5 66.4 69.4 66.8 64.3 65.6 83.2 86.4 84.8 65.0 64.0 64.4

BERT-base 71.2 65.7 68.4 62.4 60.3 61.4 81.0 81.9 81.4 57.7 54.9 56.2

Values are reported in %.
The encoders with the highest F1 score for each dataset tested are shown in bold.
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corresponding to a single material of the POLYMER entity type.
Blends correspond to material property records with multiple
POLYMER entities while composites contain at least one material
entity that is not of the POLYMER or POLYMER_CLASS entity type.
To compute the number of unique neat polymer records, we first
counted all unique normalized polymer names from records that
had a normalized polymer name. This accounts for the majority of
polymers with multiple reported names as detailed in Ref. 31. Out
of the remaining neat polymer records that did not have a
normalized polymer name, we then counted all unique polymer
names (accounting for case variations) and added them to the
number of unique normalized polymer names to arrive at the
estimated number of unique polymers. For the general property
class, we note that elongation at break data for an estimated 413
unique neat polymers was extracted. In contrast, Ref. 32 used 77
polymers to train a machine learning model. For tensile strength,
an estimated 926 unique neat polymer data points were extracted
while Ref. 33 used 672 data points to train a machine learning
model. Thus the amount of data extracted in the aforementioned
cases by our pipeline is already comparable to or greater than the
amount of data being utilized to train property predictors in the
literature. Table 4 accounts for only 39207 data points which is
13% of the total extracted material property records. More details
on the extracted material property records can be found in
Supplementary Discussion 2. The reader is also encouraged to
explore this data further through polymerscholar.org.

General property class
We now analyze the properties extracted class-by-class in order to
study their qualitative trend. Figure 3 shows property data
extracted for the five most common polymer classes in our
corpus (columns) and the four most commonly reported proper-
ties (rows). Polymer classes are groups of polymers that share
certain chemical attributes such as functional groups. The
properties reported in Fig. 3 fall under the general property class
described in Table 4. The material property data in Fig. 3
corresponds to cases when a polymer of a particular polymer
class is part of the formulation for which a property is reported
and does not necessarily correspond to homopolymers but
instead could correspond to blends or composites. The polymer
class is “inferred” through the POLYMER_CLASS entity type in our
ontology and hence must be mentioned explicitly for the material
property record to be part of this plot. Several key trends are

captured in this plot. From the glass transition temperature (Tg)
row, we observe that polyamides and polyimides typically have
higher Tg than other polymer classes. Molecular weights unlike the
other properties reported are not intrinsic material properties but
are determined by processing parameters. The reported molecular
weights are far more frequent at lower molecular weights than at
higher molecular weights; mimicking a power-law distribution
rather than a Gaussian distribution. This is consistent with longer
chains being more difficult to synthesize than shorter chains. For
electrical conductivity, we find that polyimides have much lower
reported values which is consistent with them being widely used
as electrical insulators. Also note that polyimides have higher
tensile strengths as compared to other polymer classes, which is a
well-known property of polyimides34.
Figure 4 shows mechanical properties measured for films which

demonstrates the trade-off between elongation at break and
tensile strength that is well known for materials systems (often
called the strength-ductility trade-off dilemma). Materials with
high tensile strength tend to have a low elongation at break and
conversely, materials with high elongation at break tend to have
low tensile strength35. This known fact about the physics of
material systems emerges from an amalgamation of data points
independently gathered from different papers. In the next section,
we take a closer look at pairs of properties for various devices that
reveal similarly interesting trends.

Knowledge extraction
Next, we consider a few device applications and co-relations
between the most important properties reported for these
applications to demonstrate that non-trivial insights can be
obtained by analyzing this data. We consider three device classes
namely polymer solar cells, fuel cells, and supercapacitors, and
show that their known physics is being reproduced by NLP-
extracted data. We find documents specific to these applications
by looking for relevant keywords in the abstract such as ‘polymer
solar cell’ or ‘fuel cell’. The total number of data points for key
figures of merit for each of these applications is given in Table 4.
The number of extracted data points reported in Table 4 is higher
than that in Fig. 5 and Fig. 6 as additional constraints are imposed
in the latter cases to better study this data.

Polymer solar cells. Polymer solar cells, in contrast to conven-
tional silicon-based solar cells, have the benefit of lower

Table 4. Number of material property records extracted for several key polymer properties and figures of merit for certain applications.

Property class Property Total number of
datapoints

neat polymers/ blends/
composites

Estimated number of unique neat
polymers

General Molecular Weight 9053 9053/-/- 2623

Glass Transition Temperature 6155 4612/1036/507 1732

Electrical conductivity 6030 3202/606/2222 1017

Tensile Strength 4382 2679/651/1052 926

Elongation at Break 1499 954/234/311 413

Polymer Solar Cells Power Conversion Efficiency 3595 – –

Open Circuit Voltage 1386 – –

Short Circuit Current 1049 – –

Fill Factor 966 – –

Fuel Cells Proton conductivity 1359 – –

Areal Power Density 1235 – –

Areal Current Density 295 – –

Methanol permeability 174 – –

Supercapacitors Gravimetric Energy Density 1131 – –

Gravimetric Power Density 898 – –
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processing costs but suffer from lower power conversion
efficiencies. Improving their power conversion efficiency by
varying the materials used in the active layer of the cell is an
active area of research36. Figure 5a–c shows the power conversion
efficiency for polymer solar cells plotted against the correspond-
ing short circuit current, fill factor, and open circuit voltage for NLP
extracted data while Fig. 5d–f shows the same pairs of properties
for data extracted manually as reported in Ref. 37. Each data point
in Fig. 5a–c is taken from a particular paper and corresponds to a
single material system. It is clear from Fig. 5c that the peak power
conversion efficiencies reported are around 16.71% which is close
to the maximum known values reported in the literature38 as of
this writing. The open-circuit voltages (OCV) appear to be
Gaussian distributed at around 0.85 V. Figure 5a) shows a linear
trend between short circuit current and power conversion
efficiency. It is clear that the trends observed in Fig. 5a–c for
NLP extracted data are quite similar to the trends observed from
manually curated data in Fig. 5d–f.

Fuel cells. Fuel cells are devices that convert a stream of fuel such
as methanol or hydrogen and oxygen to electricity. Water is one of

the primary by-products of this conversion making this a clean
source of energy. A polymer membrane is typically used as a
separating membrane between the anode and cathode in fuel
cells39. Improving the proton conductivity and thermal stability of
this membrane to produce fuel cells with higher power density is
an active area of research. Figure 6a and b show plots for fuel cells
comparing pairs of key performance metrics. The points on the
power density versus current density plot (Fig. 6a)) lie along the
line with a slope of 0.42 V which is the typical operating voltage of
a fuel cell under maximum current densities40. Each point in this
plot corresponds to a fuel cell system extracted from the literature
that typically reports variations in material composition in the
polymer membrane. Figure 6b illustrates yet another use-case of
this capability, i.e., to find material systems lying in a desirable
range of property values for the more specific case of direct
methanol fuel cells. For such fuel cell membranes, low methanol
permeability is desirable in order to prevent the methanol from
crossing the membrane and poisoning the cathode41. High proton
conductivity is simultaneously desirable. The box shown in the
figure illustrates the desirable region and can thus be used to
easily locate promising material systems.

Fig. 3 Material property data extracted from abstracts for material systems that contain a polymer from the polymer classes of
polyurethane, polyimide, polyamide, polyester, and polysiloxane in each corresponding column. These are the most commonly reported
polymer classes and the properties reported are the most commonly reported properties in our corpus of papers.
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Trends across time. We show that known trends across time in
polymer literature are also reproduced in our extracted data. A
Ragone plot illustrates the trade-off between energy and power

density for devices. Supercapacitors are a class of devices that
have high power density but low energy density. Figure 6c
illustrates the trade-off between gravimetric energy density and
gravimetric power density for supercapacitors and is effectively an
up-to-date version of the Ragone plot for supercapacitors42.
Historically, in most Ragone plots, the energy density of super-
capacitors ranges from 1 to 10 Wh/kg43. However, this is no longer
true as several recent papers have demonstrated energy densities
of up to 100 Wh/kg44–46. As seen in Fig. 6c, the majority of points
beyond an energy density of 10 Wh/kg are from the previous two
years, i.e., 2020 and 2021.
Figure 6d and e show the evolution of the power conversion

efficiency of polymer solar cells for fullerene acceptors and non-
fullerene acceptors respectively. These are the two major classes
of acceptors used in polymer solar cells. An acceptor along with a
polymer donor forms the active layer of a bulk heterojunction
polymer solar cell. Observe that more papers with fullerene
acceptors are found in earlier years with the number dropping in
recent years while non-fullerene acceptor-based papers have
become more numerous with time. They also exhibit higher
power conversion efficiencies than their fullerene counterparts in
recent years. This is a known trend within the domain of polymer
solar cells reported in Ref. 47. It is worth noting that the authors
realized this trend by studying the NLP extracted data and then
looking for references to corroborate this observation.
Figure 6f shows the number of data points extracted by our

pipeline over time for the various categories described in Table 4.

Fig. 5 Correlations between key properties extracted automatically from literature for polymer solar cells. a Power conversion efficiency
against short circuit current b Power conversion efficiency against fill factor c Power conversion efficiency against open circuit voltage.
Correlations between key properties extracted manually from literature for polymer solar cells d Power conversion efficiency against short
circuit current e Power conversion efficiency against fill factor f Power conversion efficiency against open circuit voltage. Figure 5d–f is
adapted here with permission from Ref. 37. Copyright 2018 American Chemical Society.

Fig. 4 Tensile Strength Vs Elongation at break for films
demonstrating the strength-ductility trade-off. Materials with
high elongation at break demonstrate lower tensile strength and
conversely, those with high tensile strength have lower elongation
at break.
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Observe that the number of data points of the general category
has grown exponentially at the rate of 6% per year. Out of the
three applications considered in Fig. 6f, polymer solar cells have
historically had the largest number of papers as well as data
points, although that appears to be declining over the past few
years. Observe that there is a decline in the number of data points
as well as the number of papers in 2020 and 2021. This is likely
attributable to the COVID-19 pandemic48 which appears to have
led to a drop in the number of experimental papers published that
form the input to our pipeline49.

DISCUSSION
A natural language processing pipeline that extracts material
property records from abstracts has been built and demonstrated.
This however has some limitations in practice that we describe
below:

1. Material property information is multi-modal and can be
found in the text, tables, and figures of the paper. Co-
referencing material entity mentions across large spans of
text and across figures and tables is a challenging problem.
In addition to this, relation extraction of material entities and
property value pairs occurring across sentences, are
challenges that need to be addressed when extending this
work from abstracts to full-text.

2. The ontology used in this work consists of the most
important entity types found in materials science literature.

This makes it easier to combine material and property
information using heuristic rules but misses other informa-
tion about the material property record such as processing
conditions, measurement methods, or measurement condi-
tions which in most cases would influence the property
value. This work can be extended to include this metadata
by extending the ontology to other entities that would
influence the measured property values for any given
domain by explicitly labeling those entities and training a
new NER model. This approach would however be time-
intensive. Another approach would be to use a combination
of fully supervised and weakly supervised approaches50–52.
The ontology used in this work can be used to extract
entities like material names as well as property names and
values through supervised NER. Our ontology is relevant
across all sub-domains of materials science and additional
information relevant to a specific sub-domain can be
obtained through heuristic rules and regular expressions
which would be unsupervised.

3. Converting polymer names to a structure (typically a SMILES
string14) is also a bottleneck to training property predictor
models as this must be done manually. While tools have
been developed to handle molecule images53,54, reliably
and robustly converting images of polymer structures
typically found in the literature to SMILES strings is an area
of future work for the community. The SMILES string so
generated can be used to generate a structural fingerprint
vector of the polymer which in turn can serve as the input to

Fig. 6 Correlations between key properties extracted automatically from literature for three different applications. a Areal current density
Vs Areal power density for fuel cells. the slope of the best-fit line has a slope of 0.42 V which is the typical operating voltage of a fuel cell
b Proton conductivity vs. Methanol permeability for fuel cells. The red box shows the desirable region of the property space c Up-to-date
Ragone plot for supercapacitors showing energy density Vs power density. d lower conversion efficiency against time for fullerene acceptors
and e Power conversion efficiency against time for non-fullerene acceptors f Trend of the number of data points extracted by our pipeline
over time. The dashed lines represent the number of papers published for each of the three applications in the plot and correspond to the
dashed Y-axis.
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a machine learning model. Expanding the scope of this
pipeline to figures in the paper would allow training
property predictor models without any additional curation
for converting images to SMILES strings. Training robust
property predictors in this manner would in turn allow the
continuous and semi-automatic design of new materials,
thus addressing a missing link in materials informatics. An
example of manually converting polymer names to SMILES
strings followed by the training of a property prediction
model for glass transition temperature is shown in
Supplementary Discussion 3.

The automated extraction of material property records enables
researchers to search through literature with greater granularity
and find material systems in the property range of interest. It also
enables insights to be inferred by analyzing large amounts of
literature that would not otherwise be possible. As shown in the
section “Knowledge extraction”, a diverse range of applications
were analyzed using this pipeline to reveal non-trivial albeit
known insights. This work built a general-purpose capability to
extract material property records from published literature.
~300,000 material property records were extracted from
~130,000 polymer abstracts using this capability. Through our
web interface (polymerscholar.org) the community can conveni-
ently locate material property data published in abstracts. As part
of this work, we also train and release MaterialsBERT, a language
model that is fine-tuned on 2.4 million materials science abstracts
using PubMedBERT as the starting point and obtains the best
F1 score across three of five materials science NER data sets
tested.
Growing the extracted material property data set further would

require extending this capability to the body of the paper. This
would require more robust methods to associate the entities
extracted using named entity recognition. A few steps also remain
in order to utilize the extracted data to produce trained machine
learning property prediction models. The biggest bottleneck in
the case of organic materials is obtaining SMILES strings for
material entities which can then be used to generate structural
fingerprints for property predictor machine learning models.
There is also a wealth of additional information such as processing
conditions or measurement conditions that are not captured in
our ontology. Addressing these bottlenecks would enable
automatic and continuous updates of materials databases that
can seamlessly power property predictor machine learning
models55,56.

METHODS
Corpus of papers
We have created a corpus of ~2.4 million journal articles from the
materials science domain. These papers were downloaded from
the APIs and websites of publishers such as Elsevier, Wiley, Royal
Society of Chemistry, American Chemical Society, Springer Nature,
Taylor & Francis, and the American Institute of Physics. The corpus
used in this work is an expanded version of the corpus described
previously in Ref. 17. 750 abstracts of this corpus were annotated
and used to train an NER model. Furthermore, the trained NER
model along with heuristic rules was used to extract material
property records from the abstracts of the full corpus.

Preprocessing of documents
Because the documents in our corpus are HTML formatted, we
stripped all HTML tags to parse the plain text. Moreover, we
replaced HTML superscripts and subscripts (<sup> and <sub>)
with plain text using the LaTeX convention of ^{} and _ {},
respectively. This is important in order to extract units of
quantities as well as property values reported in scientific

notation. Property values recorded in this notation were converted
back to floating-point numbers downstream when the numeric
value was to be recovered. We also mapped characters such as
spaces or special characters that have multiple Unicode repre-
sentations but have a similar appearance by creating a custom
mapping.

Tokenization
For tokenization, i.e., breaking up text into units known as tokens
which are used for downstream processing, we used wordpiece
tokenization which is the standard tokenization scheme used with
BERT and BERT-based models1,57. For instance ‘The molecular weight
of the result ##ant P ##LL ##A - rich polymer was enhanced .’ is what
a sentence would look like post-tokenization. The word ‘resultant’
and the polymer ‘PLLA’ have been broken into sub-word tokens.
This is necessary in order to tokenize arbitrary text inputs using a
fixed-sized vocabulary as a larger vocabulary would increase the size
of the model. Starting with a set of characters (alphabets, numbers,
etc), certain combinations of characters are iteratively merged and
added to the vocabulary till the vocabulary reaches a certain fixed
size58. The characters to be merged are selected based on
combinations that maximize the likelihood of the input text such
that the most frequently occurring sequences of text in the corpus
are included in the vocabulary. This typically breaks up words into
meaningful subunits such as ‘resultant’ being separated into ‘result’
and ‘##ant’ which reduces the size of the vocabulary. This does not
always happen though, as seen with the example of ‘PLLA’. The
embedding associated with the first subword for each word is used
as the input to the NER model in accordance with conventional
practice1,28. Thus, only the label predicted for the first subword is
used for evaluating the model predictions.

NER model training
We used the Adam optimizer with an initial learning rate of
5 × 10−5 which was linearly damped to train the model59. We used
early stopping while training the NER model, i.e., the number of
epochs of training was determined by the peak F1 score of the
model on the validation set as evaluated after every epoch of
training60. During, this stage, also referred to as ‘fine-tuning’ the
model, all the weights of the BERT-based encoder and the linear
classifier are updated.

Training MaterialsBERT
BERT-base, the original BERT model, was trained using an unlabeled
corpus that included English Wikipedia and the Books Corpus61. The
training objectives included using the masked language modeling
task, which masks a random subset of the input text and asks the
language model to predict it, and the next sentence prediction task
which determines for a given sentence pair whether one sentence
follows the other in the training data1. The vocabulary of the
tokenizer was fixed at 30,000 tokens. It is known that a domain-
specific BERT encoder improves performance on NLP tasks for that
domain because the vocabulary used for tokenization is more
representative of the application of interest and because the
unlabeled text is also closer to the domain of interest resulting in
“better" contextual embeddings19. BERT-base was pre-trained from
scratch using a general English language corpus22.
Even though computationally expensive, pre-training NLP

models from scratch has the advantage of creating a model with
a vocabulary that is customized for the domain of interest. To give
an idea of how resource-intensive this can be, note that RoBERTa,
a similarly pre-trained encoder used the computing power of 1024
V100 GPUs for one day62. As this is not a viable route for us, we
fine-tuned a model starting from previous checkpoints. The
vocabulary used while fine-tuning a model in contrast remains
the same as the underlying model which is a compromise we
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must accept. We used PubMedBERT as our starting point and fine-
tuned it using 2.4 million materials science abstracts19. These
abstracts were not restricted to polymers and span many different
sub-domains of materials science. We restricted ourselves to
abstracts because Ref. 19 found that a language model pre-trained
on abstracts only, outperforms a language model pre-trained on
abstracts as well as full text when the downstream task only
involved abstracts. The computational cost incurred if abstracts, as
well as full text, were to be used would also be significantly higher.
The PubMedBERT model used here is itself pre-trained from
scratch using the PubMed corpus (14 million abstracts from
PubMed as well as full-text articles from PubMedCentral), using
the BERT-base architecture. We picked PubMedBERT as our
starting point as its vocabulary is specific to the biomedical
domain which overlaps with materials science as material entities
are frequently mentioned in biomedical papers. During fine-
tuning, the model weights of PubMedBERT were loaded and
training was continued using the same training objectives used to
pre-train PubMedBERT but using the unlabeled text from the fine-
tuning corpus as the input. The hyperparameters used during fine-
tuning were identical to those used to train PubMedBERT. We
used the “Transformers" library for fine-tuning PubMedBERT63. A
similar strategy was employed in ChemBERT23, ClinicalBert64, and
FinBERT65. We fine-tuned PubMedBERT for 3 epochs which took
90 hours on four RTX6000 16 GB GPUs to obtain MaterialsBERT.

Material property records extraction
The trained NER model is one component of our pipeline that is
used to extract material property records. Each component is
explained below (Refer Fig. 1):

1. Train NER model: A subset of our corpus of 2.4 million
papers was selected and annotated with a given ontology to
train an NER model (described in the Section “NER model”).
This model was used to generate entity labels for abstracts
in the corpus.

2. Pick documents with ‘poly’: The corpus of 2.4 million
abstracts was down-selected by searching for the string
‘poly’ in the abstract as a proxy for polymer-relevant
documents.

3. Run NER model: The NER model previously trained was
used for predicting entity labels on each polymer-relevant
document obtained from the previous step.

4. Abstract filtering: As not all polymer abstracts contain
material property information, the output of the NER was
used as a heuristic to filter out those that do. Only abstracts
with specific material entities, i.e., POLYMER, POLYMER_-
FAMILY, or MONOMER as well as the PROPERTY_NAME and
PROPERTY_VALUE tags were allowed through this stage.
This acts as a second filter to locate polymer-relevant
documents.

5. Entity extraction: The material entities, (PROPERTY_NAME,
PROPERTY_VALUE) and MATERIAL_AMOUNT entities were
extracted and processed separately.

6. Co-reference material entities: This step was applied to co-
reference all mentions of the same material entity. A
common example of this is when a material is mentioned
next to its abbreviation. We used the abbreviation detection
system in ChemDataExtractor3 to find material entity
abbreviation pairs. In addition, we co-referenced material
entities that were within a Levenshtein distance66 of one.
Co-referencing is a tractable problem in abstracts compared
to the body of a paper as there are no long-range
dependencies in the former and typically no anaphora
resolution is required67.

7. Normalizing polymer names: Polymers can have several
different variations in names referring to the same chemical

entity. In this step, we normalized these variations to the
most commonly occurring name for that particular polymer.
For instance, ‘poly(ethylene)’ and ‘poly-ethylene’ occurring
in different abstracts are both normalized to ‘polyethylene’.
This is done using a dictionary lookup on a data set of
polymer name clusters that were normalized using the
workflow described in Ref. 31. Note that we do not normalize
all polymer names but only the ones which are included in
our dictionary. In practice, this includes the most commonly
occurring polymers that have multiple names in the
literature.

8. Extract Property Value pairs: The PROPERTY_NAME and
PROPERTY_VALUE tag were associated by co-occurrence
within a context window. The numeric value of the property
was separated from the units using regular expressions and all
parsed property values were converted to a standard set of
units. The unit used was the most commonly reported unit for
that particular property. Any standard deviation reported with
the numeric value was also parsed using regular expressions.

9. Extract Material amounts: Entities with the MATERIAL_A-
MOUNT tag were extracted and the closest material entity
within a context window was associated with it.

10. Relation extraction: In order to obtain a material property
record, it is necessary to associate the material entities and the
property value pair that correspond to a single record. This
problem has been addressed in the literature using supervised
methods68,69. However, the annotation process for relation
labeling is time-intensive and hence we employed heuristics
in this work to obtain relations between entities. To associate
material entities with property value pairs, we associated the
closest material entity tagged in the same sentence as the
property value pair. If no such material entity was found, then
all the material entities mentioned in the abstract were
associated with the property value pair. This is because most
commonly, an abstract mentions a major material system
described in the paper and reports its measured property
values. This step is reasonable in abstracts, which report this
information compactly. In contrast, the body of the paper
would require coreferencing the entities in text, tables, and
figures to extract material property records.

DATA AVAILABILITY
The journal articles used to train MaterialsBERT and to extract material property data
were downloaded through licensing arrangements that Georgia Tech has with
Elsevier, Wiley, Royal Society of Chemistry, American Chemical Society, Springer
Nature, Taylor & Francis, and the American Institute of Physics. The pre-trained
language model MaterialsBERT is available in the HuggingFace model zoo at
huggingface.co/pranav-s/MaterialsBERT. The DOIs of the journal articles used to train
MaterialsBERT are also provided at the aforementioned link. The data set
PolymerAbstracts can be found at www.github.com/Ramprasad-Group/
polymer_information_extraction. The material property data mentioned in this paper
can be explored through polymerscholar.org.

CODE AVAILABILITY
The code used in this work can be found at www.github.com/Ramprasad-Group/
polymer_information_extraction.
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