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ABSTRACT: Artificial intelligence-based methods are becoming
increasingly effective at screening libraries of polymers down to a
selection that is manageable for experimental inquiry. The vast
majority of presently adopted approaches for polymer screening
rely on handcrafted chemostructural features extracted from
polymer repeat units�a burdensome task as polymer libraries,
which approximate the polymer chemical search space, pro-
gressively grow over time. Here, we demonstrate that directly
“machine learning” important features from a polymer repeat unit
is a cheap and viable alternative to extracting expensive features by
hand. Our approach�based on graph neural networks, multitask
learning, and other advanced deep learning techniques�speeds up
feature extraction by 1−2 orders of magnitude relative to presently
adopted handcrafted methods without compromising model accuracy for a variety of polymer property prediction tasks. We
anticipate that our approach, which unlocks the screening of truly massive polymer libraries at scale, will enable more sophisticated
and large scale screening technologies in the field of polymer informatics.

1. INTRODUCTION
Polymers have emerged as a powerful class of materials for a
wide range of applications because of their low-cost processing,
chemical stability, tunable chemistries, and low densities.
These attributes have led to vigorous, widespread, and
sustained research, and to the development of new polymeric
materials.1−3 The result is a constant flux of materials data.
Over the past decade, the polymer informatics community has
translated this data stream into machine-learned property
predictors that efficiently screen libraries of candidate polymers
for subsequent experimental inquiry.4,5

Currently, most approaches for polymer screening rely on
handcrafted features�extracted from the chemical structure of
a polymer repeat unit�as input for property predictors.6,7

These approaches are highly accurate, but feature extraction
becomes a bottleneck (as discussed in Section 3.1) when used
to screen vast swathes of the polymer chemical space. This
bottleneck is increasingly exposed by the proliferation of
enumeration methods8,9 and long-sought10,11 inverse predic-
tors,12−16 which directly locate optimal pockets of the chemical
space from a user-defined wish list of material properties. By
leveraging these tools, the day that we routinely generate
billions of polymer candidates is fast approaching. Advances in
polymer screening and feature engineering are needed to keep
up with this pace.

An alternative to handcrafting features is to “machine learn”
them. One approach is to represent the material as raw text,
such as a simplified molecular-input line-entry system
(SMILES)17 or BigSMILES18 string, and then learn features

with a neural network specifically designed for natural language
processing.19 Another promising approach is to represent the
material as a graph, and then train a Graph Neural Network
(GNN)20 to learn features. To date, GNNs have outperformed
approaches based on handcrafted features20−24 on the massive
QM9 database25 for small molecules. Similarly, feature learning
approaches have supplanted traditional methods in other
domains (e.g., convolutional neural networks26 in computer
vision and transformers27 in natural language processing)
where the extraction of handcrafted representations from the
input data is nontrivial or impractical.26

Another important emerging trend in machine learning
(ML) for materials science is multitask learning.5,28 The
central concept of multitask learning is that by training a model
to learn multiple correlated target properties at the same time,
the risk of overfitting to any one target property is reduced,
leading to improved predictive performance for each
property.28 A similar effect can also be observed in nature.
For example, there is evidence that training in one sport can
improve a young athlete in another related sport.29

A handful of polymer GNNs have been explored in the
past.30−36 The majority of these approaches are single task.
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The GNN proposed by Mohapatra et al.34 is suitable for
biopolymers, in which the monomer sequence is known. Other
approaches,32,33,35,36 geared toward synthetic polymers (the
subject of interest in this work), represent a polymer using the
graph of a predominant repeat unit. This introduces the need
for invariance to certain transformations of the repeat unit
graph: translation, addition, and subtraction (as defined in
Section 2.2). A subset of the GNNs for synthetic polymers35,36

are invariant to translation, but not to addition and subtraction.
In other words, a GNN that preserves the invariant properties
of polymer repeat units has not been developed until now. Our

work, a powerful multitask GNN architecture (see Figure 1)
for polymers, fills this gap. We call this development the
Polymer Graph Neural Network (polyGNN).

In the small molecule domain, the adoption of GNNs is
motivated by systematic work20 comparing GNNs and
handcrafted approaches on even footing across a diverse set
of molecules and predictive tasks. Analogous studies are absent
from the synthetic polymer domain. Previous works have
compared feature learning and handcrafted approaches for up
to two31,35 polymer properties, or for several properties in the
same class30 (e.g., electronic properties). In what follows, we

Figure 1. PolyGNN architecture. The Encoder converts the repeat unit SMILES string to a periodic graph and then computes initial atomic and
bond fingerprint vectors (green and purple squares, respectively). A subsequent set of atomic fingerprints (yellow squares) are learned by the
Message Passing Block and then averaged, yielding the learned polymer fingerprint (light blue square). This fingerprint and a series of selector
vectors are passed to the Estimator, producing a series of property predictions. Td, Tm, Tg refer to the critical temperatures for thermal
decomposition, melting, and glass transition, respectively.

Figure 2. Breakdown of our data set. (a) The symbol, name, and unit of each property in our data set. For properties with data from both
experiment and DFT calculations, the two sources are distinguished by the abbreviations “expt.” and “DFT”. Our data set includes the permeability
μg of six gases g ∈ {He, H2, CO2, O2, N2, CH4}. Each permeability data point is scaled by x → log10(x + 1). Our experimental dielectric constant ϵf
data contains measurements at nine frequencies f ∈ {1.78, 2, 3, 4, 5, 6, 7, 9, 15} in log10 Hz. The distributions of μg and ϵf are given in Section S1.
(b) The data set size per property, shown on both the y-axis and above each bar. Bars of the same color belong to the same property class. “perm.”
stands for gas permeability.
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compare polyGNN with the handcrafted fingerprint originally
hosted under the Polymer Genome (PG) project4 on a large
and diverse data set consisting of more than 13,000 polymers
and 30+ predictive tasks�spanning thermal, thermodynamic,
physical, electronic, optical, dielectric, and mechanical proper-
ties, the Hildebrand solubility parameter, as well as
permeability of six gases.

Our benchmark, the PG fingerprint, contains descriptors
that correspond to one of three length scales. The finest-level
components are atomic triples (e.g., CiOjNk) where the
subscripts denote the atomic coordination. The next (block)
level contains predefined atomic fragments (e.g., the common
cycloalkenes). These two levels contain strictly one-hot
features. At the highest (chain) level are numerical features
that describe the atomic or block topology (e.g., the number of
atoms in the largest side chain). The handcrafted PG
fingerprint is the current state-of-the-art in polymer repre-
sentation and has shown success in the numerical representa-
tion of materials over a wide chemical and property space.4,8,37

The handcrafted PG fingerprint-based property predictors thus
serve as veritable performance baselines. We find that
polyGNN, relative to these baselines, leads to a 1−2 orders
of magnitude faster fingerprinting and better or comparable
model accuracy in most polymer property prediction tasks.
polyGNN thus offers a powerful new polymer informatics
option for screening the polymer chemical space at scale.

2. METHODS
2.1. Data Set and Preparation. Our corpus contains measure-

ments for up to 36 properties of 13,388 polymers, yielding over
21,000 data points in total. The unit and symbol for each property is
listed in Figure 2a. The distribution of data points per property is
plotted in Figure 2b. These data points come from in-house density
functional theory (DFT) computations,38−40 experimental data
collected from the literature,41−46 printed handbooks,47−49 and online
databases.50,51 Band gaps were calculated for both individual polymer
chains Egc and polymer crystal (bulk) structures Egb using DFT. DFT
data contain uncertainties due to the choice of exchange correlation
functional, pseudopotentials, optimization procedure, etc., while data
from physical experimentation comes with uncertainty due to sample
and measurement conditions. Thus, data for the same property but
from different sources (e.g., DFT-computed and experimentally
measured refractive index) are separated and then colearned with
multitask learning.

Our multitask learning approach requires data preprocessing steps.
First, the training data for each property was MinMax scaled between
zero and one. This ensures that the optimizer of a multitask ML
model equally weights the loss for each property during training.
Second, to better exploit correlations between properties,5 we divided
our entire 36 property data set into six “property groups”: thermal
properties, thermodynamic and physical properties, electronic proper-
ties, optical and dielectric properties, solubility and gas permeability,
and mechanical properties. The stratification of properties by group is
shown in Figure 2b. Finally, we designate each property within one
group a unique one-hot “selector” vector (see Figure 1 for example
selector vectors of thermal properties). These vectors are used by our
ML models to distinguish between multiple tasks.
2.2. polyGNN. All GNNs rely on a well-defined graph

representation of their input. If the input is a small molecule, then
building a corresponding graph is straightforward�each heavy (i.e.,
non-hydrogen) atom is a graph node and each bond between heavy
atoms is a graph edge. However, polymers are macromolecules with
numerous atoms and bonds. Creating a node and edge for each atom
or bond will generate a massive graph. Machine learning based on
thousands of such graphs would be computationally inefficient.
Instead, we construct a polymer graph from its repeat unit alone and
propose that additional information (e.g., molecular weight, end

groups, etc.)�if available�be concatenated to each computed atom
or bond fingerprint and/or to the learned polymer fingerprint.

Ideally, our learned polymer fingerprint must respect the
invariances present in a polymer repeat unit. We identify three key
transformations�translation, addition, and subtraction�that repeat
units of infinite 2D polymer chains are invariant to. We define
translation as the movement of the periodicity window, which can
produce periodic repeat units that are all equivalent. For example,
(−OCC−), (−COC−), and (−CCO−) are equivalent repeat units of
polyethylene glycol, related to one another by translation. We define
addition (subtraction) as the extension (reduction) of a repeat unit by
one or more minimal repeat units. For example, (−COCO−) and
(−COCOCO−) are equivalent repeat units, related to one another by
the addition (or subtraction) of their minimal repeat unit, (−CO−).
We have constructed polyGNN to be invariant under such
transformations, as discussed below.

The polyGNN architecture is composed of three main modules: an
Encoder for processing the repeat unit, a Message Passing Block for
fingerprinting, and an Estimator to colearn multiple properties. In the
polyGNN Encoder, bonds are added between heavy atoms at the
boundary of any input repeat unit, forming a periodic polymer graph
(as shown in Figure 1). This ensures that the graph of the repeat unit,
and hence its learned fingerprint, is invariant to translation. Then,
each atom and bond in the graph are given initial feature vectors
(described later in Section 2.3) that are computed using RDKit.52 The
featurized graph is passed to the Message Passing Block and then to
the aggregation function. In the Message Passing Block, the initial
feature vectors are passed between neighboring atoms. This
information flow is the mechanism by which rich polymer features
are learned (described later in Section 2.4).

After message passing, the sequence of learned atomic fingerprints
is aggregated into a single polymer fingerprint by taking the mean.
Taking the mean rather than the sum ensures that, for example,
(−COCO−) and (−COCOCO−) are mapped to the same
fingerprint. However, there are polymers (see Figure 3a) where the

desired invariance is not preserved. These conflicts arise because
RDKit treats periodic polymer graphs as cyclic molecules. To address
these conflicts, we propose two approaches. In the first approach,
which we will continue to refer to as polyGNN, the original training
data set is augmented with transformed repeat units (see Figure 3b).
Thus, although polyGNN is not invariant to addition or subtraction in
these complicated cases, it achieves approximate invariance after
learning from augmented data. This choice was inspired by state-of-
the art image classification models, which are trained using cropped

Figure 3. Overview of data set augmentation. (a) Two equivalent
repeat units of infinite polyacetylene and their corresponding periodic
graphs. Each atom in the graph is labeled with a zero if the atom is
aliphatic or labeled with a one if the atom is aromatic. Other atomic
features and all bond features are not shown for visual clarity. (b)
Data augmentation strategy for polyGNN. Rows of the original
training data are transformed by repeat unit addition.
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and flipped images.53 In this work, we find that data augmentation is
also effective for training polyGNNs but does increase training time�
a one-time cost. As an alternative, we created a variant, polyGNN2,
with guaranteed invariance to addition and subtraction (and thus no
need for augmentation). Invariance is achieved by modifying the
Encoder to compute features on an extended polymer graph instead
of on the periodic graph (see Section S2). However, operating on the
extended graph notably slows fingerprinting in polyGNN2, and so we
instead focus on polyGNN in what follows.
2.3. Fingerprinting Graphs. The node features used in this work

are element type, node degree, implicit valence, formal charge,
number of radical electrons, hybridization, aromaticity (i.e., whether
or not a given node is part of an aromatic ring), and number of
hydrogen atoms. The edge features are bond type, conjugation (i.e.,
whether or not a given edge is part of a conjugated system), and ring
member (i.e., whether or not a given edge is part of a ring).
2.4. Neural Message Passing. In GNNs, “messages” between

neighboring atoms in a graph are iteratively passed along chemical
bonds. After each iteration, every atom fingerprint is updated using
the messages. In this way, atoms learn about their local neighborhood
over time. By fitting parameters (e.g., weights and biases) in the
model, the information contained in each message is optimized for the
task at hand. This process is captured by three general but abstract
equations presented in Section S3. In this section, for concreteness,
we will demonstrate message passing using a highly simplified
example.

First, consider the graph of infinite polyethylene glycol (PEG),
shown in Figure 1. We restrict our initial atom features to the element
type and our initial bond features to the bond type. Thus, all edge
fingerprints on the PEG graph are set to [1, 0, 0, 0] (indicating the
presence of single bonds and no double, triple, or aromatic bonds).
The two carbon atoms in PEG are initialized with a fingerprint of [1,
0] (indicating the presence of C atoms and not O atoms). We index
these two nodes 0 and 1. The oxygen atom, with index 2, in PEG is
initialized with a fingerprint of [0, 1]. Now, we compute messages mi,j
between all pairs of chemically bonded atoms using the functional
form

= × [ ]WReLUm x x e( , , )i j i j i j
T

,
(0) (0)

,

where i, j are atom indices, xi(0) is an initial atom fingerprint, and ei,j is
a bond fingerprint. Note that, for simplicity, we ignore bias terms and
use the Rectified Linear Unit (ReLU) activation in this example. Wϕ
is a matrix of parameters. Before training, the parameters are
randomly initialized. During training, the parameters are iteratively
updated (i.e., learned) using some flavor of stochastic gradient
descent. In this example, our choice of initial parameters will be
guided by mathematical convenience, and we do not consider
subsequent weight updates. Choosing
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Now, these messages can be used to update the fingerprint of each
atom using the functional form
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where Wχ is a matrix of parameters, and j takes on values
corresponding to atoms that share a chemical bond with atom i.
After we conveniently initialize Wχ to a 2 × 10 all-ones matrix, we
have

= [ ]

= [ ]

= [ ]

x

x

x

41, 41

41, 41

33, 33

0
(1)

1
(1)

2
(1)

So, by exchanging messages with neighbors, the fingerprint of each
carbon atom in PEG was updated from [1, 0] to [41, 41] and the
fingerprint of each oxygen atom was updated from [0, 1] to [33, 33].
The effect of message passing is clear. Initially, the oxygen atom was
not aware of neighboring carbon atoms (that is, x2,2

(0) = 0, where xi,l is
the lth dimension of xi). However, after passing one round of
messages, the oxygen atom becomes aware of its carbonaceous
neighbors (i.e., x2,2

(1) ≠ 0). Likewise, the carbon atoms become aware of
their neighboring oxygen atom over time.

3. RESULTS AND DISCUSSION
3.1. Benchmarking Speed. polyGNN was developed with

a primary objective in mind: to increase the rate at which large
libraries of polymers may be screened. We quantified this rate
by measuring the time needed to fingerprint a data set of
13,338 known polymers on a variety of different capacities and
hardware. Capacity, as used in this work, is a hyperparameter
that specifies both the number of message passing steps and
the depth of each multilayer perceptron (MLP) in the network.

Figure 4 presents the computation times for generating
13,388 polymer fingerprints using a randomly initialized

polyGNN model. A shallow polyGNN (with a capacity of
two) fingerprints the set of polymers in 32 s (2.4 ms per
polymer) on one CPU or 30 s (2.2 ms per polymer) on one
GPU. Meanwhile, a deep polyGNN (with a capacity of 12)
takes 57 s (4.3 ms per polymer) to compute the fingerprint set
on one CPU or 32 s on one GPU. For each of the above, the
time spent on the Encoder was fixed at 26 s. The remaining
time was spent on the Message Passing Block which, unlike the
Encoder, can run on either CPUs or graphics processing units
(GPUs).

Figure 4. Fingerprint time as a function of method, capacity, and
hardware. Fingerprint time t, measured in milliseconds per polymer, is
plotted on the y-axis. t was computed using a diverse set of 13,388
polymers. Above each bar is the total time (in plain text) in seconds
taken to compute fingerprints for the entire set as well as the speed up
(in parentheses) relative to the handcrafted PG method. Method and
hardware are labeled on the x-axis. CPU and GPU refer to one Intel
Xeon Gold 6140 CPU core and to one 32 GB Nvidia Tesla V100-
PCIE GPU, respectively. Capacity is denoted by bar color.
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By extrapolation, this means that fingerprinting a library of 1
billion polymers using polyGNN would take 26 days in the
best case (shallow model run on a GPU) and 47 days in the
worst case (deep model run on one CPU). Meanwhile, at a
rate of 125.4 ms per polymer, fingerprinting a library of 1
billion polymers would take nearly 4 years on one CPU using
the handcrafted PG approach. Of course, the rates for either
approach can be further sped up with parallelization and/or
increased random access memory.
3.2. Benchmarking Accuracy. Here we evaluate the

predictive accuracy of polyGNN models on 34 of the 36
properties in our data set; dielectric constants at 107 and 109

Hz (ϵ7 and ϵ9) were excluded because our corpus contains
fewer than 50 data points for these properties. The data for the
remaining properties was divided into a training and a test set
in a 4:1 ratio, with three such random divisions carried out per
property for the purpose of computing statistics of model

performance, such as the mean and standard deviation of the
root-mean squared-error (RMSE).

Kuenneth et al.5 showed that multitask learning significantly
improves the accuracy of polymer property prediction, relative
to single task learning. Thus, we train single task (ST) and
multitask (MT) polyGNNs and compare both on the same
data. As a benchmark, we also train both ST and MT “PG-
MLPs” (i.e., MLPs that use the handcrafted PG fingerprint as
input; see Section S4 for details on this architecture). A
detailed discussion of our training procedure can be found in
Section S5. The RMSE and R2 values of polyGNN and PG-
MLP are compared in Tables 1 and S1.

We note several observations from these results. First, our
data augmentation strategy plays a critical role in teaching
polyGNN models invariance to addition and subtraction (see
Table S2). Second, we find that MT learning is an important
component of our approach, especially in low data situations.

Table 1. Average RMSE Plus/Minus One Standard Deviation on Unseen Test Dataa

Property MT polyGNN MT PG-MLP ST polyGNN ST PG-MLP

λ* 0.0547 ± 0.0103 0.0630 ± 0.0082 0.0580 ± 0.0096 0.0663 ± 0.0201
Tm 45.0 ± 1.8 47.2 ± 2.2 55.3 ± 2.8 53.1 ± 1.3
Td 58.7 ± 3.3 59.3 ± 2.0 67.7 ± 3.2 71.9 ± 6.9
Tg 31.7 ± 1.5 34.0 ± 0.9 36.6 ± 1.0 35.5 ± 1.6

Eat* 0.114 ± 0.071 0.284 ± 0.089 0.0913 ± 0.0224 0.155 ± 0.040
cp* 0.172 ± 0.033 0.223 ± 0.085 0.171 ± 0.019 0.161 ± 0.030
Oi* 8.99 ± 1.01 9.77 ± 1.57 8.79 ± 0.46 8.63 ± 0.47
Xe* 15.0 ± 3.7 13.1 ± 4.6 15.8 ± 3.9 17.1 ± 5.1
Vff* 0.0380 ± 0.0191 0.0423 ± 0.0216 0.0330 ± 0.0182 0.0373 ± 0.0215
Xc 16.6 ± 1.3 17.4 ± 2.5 18.6 ± 1.9 19.1 ± 2.2
ρ 0.0640 ± 0.0053 0.0937 ± 0.0025 0.0627 ± 0.0015 0.385 ± 0.264

Ea* 0.380 ± 0.034 0.483 ± 0.148 0.341 ± 0.055 0.357 ± 0.107
Ei* 0.540 ± 0.170 0.678 ± 0.231 59.9 ± 102.5 0.676 ± 0.139
Egb* 0.468 ± 0.066 0.535 ± 0.123 0.716 ± 0.164 0.737 ± 0.058
Egc 0.445 ± 0.018 0.491 ± 0.033 0.442 ± 0.020 0.494 ± 0.026

ϵ0* 0.285 ± 0.101 0.284 ± 0.061 0.362 ± 0.086 0.252 ± 0.014
ϵ1.78* 0.427 ± 0.042 0.328 ± 0.067 1.34 ± 0.30 0.988 ± 0.517
ϵ2* 0.478 ± 0.228 0.376 ± 0.257 2.67 ± 2.78 0.937 ± 0.201
ϵ3* 0.621 ± 0.250 0.806 ± 0.338 1.39 ± 0.21 1.42 ± 0.22
ϵ4* 0.284 ± 0.018 0.252 ± 0.030 0.650 ± 0.108 0.602 ± 0.175
ϵ5* 0.212 ± 0.023 0.243 ± 0.011 0.479 ± 0.266 0.658 ± 0.358
ϵ6* 0.323 ± 0.075 0.274 ± 0.034 0.676 ± 0.315 0.487 ± 0.214
ϵ15 0.125 ± 0.015 0.145 ± 0.019 0.144 ± 0.021 0.171 ± 0.027
nc* 0.0507 ± 0.0186 0.0733 ± 0.0191 0.0933 ± 0.0304 0.0957 ± 0.0251
ne 0.0413 ± 0.0023 0.0437 ± 0.0090 0.0540 ± 0.0087 0.0760 ± 0.0262

Y 0.827 ± 0.099 0.760 ± 0.169 0.877 ± 0.074 0.860 ± 0.196
σts 23.3 ± 5.5 22.2 ± 3.9 28.1 ± 4.6 25.8 ± 3.9

δs* 1.15 ± 0.11 2.11 ± 0.10 1.65 ± 0.33 1.36 ± 0.09
μHe* 0.133 ± 0.017 0.111 ± 0.014 0.265 ± 0.065 0.246 ± 0.011
μHd2

* 0.127 ± 0.006 0.104 ± 0.011 0.287 ± 0.013 0.367 ± 0.034

μCOd2
0.166 ± 0.015 0.161 ± 0.019 0.430 ± 0.025 0.525 ± 0.212

μCHd4
0.132 ± 0.024 0.113 ± 0.023 0.366 ± 0.030 0.397 ± 0.006

μNd2
0.124 ± 0.011 0.109 ± 0.018 0.410 ± 0.104 0.397 ± 0.038

μOd2
0.139 ± 0.014 0.114 ± 0.004 0.399 ± 0.062 1.83 ± 2.46

aProperties marked with an asterisk contain 300 or fewer data points. Models with the best, or comparable with the best, average RMSE are bolded.
The unit of each RMSE value matches those listed in Figure 2a; for example, the RMSE of the MT polyGNN approach on Tg is 31.7 ± 1.5 K.
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As shown in Table S1, polyGNNs that do not use MT learning
exhibit erroneous predictions (i.e., negative R2 value) for five
properties�Ei, ϵ1.78, ϵ2, ϵ5, ϵ6�each with 158 or fewer data
points. In contrast, with MT learning, polyGNNs exhibit
positive R2 for each of the 34 properties studied.

Third, we find that polyGNNs tend to exbihit better or
comparable accuracy than PG-MLPs, especially when the
number of training data points is greater than 300. For the 14
properties containing more than 300 data points, each MT
polyGNN model is either more accurate than or comparably
accurate to its corresponding MT PG-MLP model (we define
two models as having comparable accuracy for a property if the
difference in average RMSE of their predictions is within 5% of
that property’s standard deviation σ, see Table S3 for a
complete list of σ values). However, for the 20 properties
containing 300 data points or less, the situation becomes more
complex. MT polyGNN models still perform well relative to
the MT PG-MLP benchmark, but not for every property. MT
polyGNN models are more or comparably accurate for 16
properties but are notably less accurate on four properties
(experimental crystallization tendency Xe, ϵ1.78, ϵ2, ϵ6).

The relatively low performance on these four properties
could be explained by the fact that the polyGNN models
trained here struggle to learn the block- or chain-level features
(which typically consist of 4+ atoms) present in the
handcrafted PG fingerprint. In principle, increasing the number
of message passing steps�so as to capture larger length scale
features�should mitigate this challenge. In practice, however,
we observe a threshold number of message passing steps.
Above three message passing steps, model generalization only
worsens�regardless of the property of interest. This empirical
observation has been reported by others and is due to a
collapse in which the learned fingerprints of all polymers, even
chemically distinct ones, converge.54,55 However, as evidenced
by the impressive performance of the MT polyGNN models
on a vast majority of properties, the inability to learn block- or
chain-level features is often ameliorated by the ability to learn
lower-level features that go beyond those currently present in
the handcrafted PG fingerprint. Still, the development of
techniques that encourage GNNs to surpass the message
passing threshold is a critical next step. We leave this task for
future work.

4. SUMMARY AND OUTLOOK
In summary, we have produced polyGNN�the first-ever
protocol that integrates polymer feature learning from SMILES
strings and other relevant features, invariant transformations,
data augmentation, and multitask learning. Through careful
comparison, we show that our protocol culminates in ultrafast
polymer fingerprinting and accurate property prediction over
the most comprehensive array of chemistries and properties
studied to date. The gains in speed are essential when
screening large candidate sets (e.g., millions or billions of
polymers) and/or when computational resources are limited.
Our approach is especially accurate when the training data set
size is moderate to large. Even with data sets containing less
than 300 points, our approach is at least competitive with
presently adopted methods in a majority of cases.

Looking ahead, though polyGNNs perform remarkably well
in the experiments tried here, handcrafted polymer fingerprints
have advantages. In tasks where chain- or block-level features
are essential, handcrafted fingerprinting approaches may yield
the best model accuracy. Advances in the optimization of

graph neural networks are needed to make the accuracy of
polyGNNs competitive in these tasks. Finally, a handcrafted
feature is, by definition, interpretable. In contrast, the features
learned by the polyGNNs presented here are not interpretable.
Following the work of others,56 future polyGNN architectures
may incorporate attention mechanisms for partial interpret-
ability. However, the interpretability of polyGNN features at
the level of handcrafted features will require further innovation.
Despite these shortcomings, we anticipate that the adoption of
polyGNNs and related approaches will increase as they unlock
the ability to screen truly massive polymer libraries at scale.

5. PUBLIC USE
The sources of data used in this work and the availability of
each source is reported in the paper. The code used to train
our polyGNN models is available at github.com/Ramprasad-
Group/polygnn for academic use.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c02991.

Data breakdown, polyGNN2 Encoder, polyGNN
architecture, handcrafted PG models, training procedure,
and extended results (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Rampi Ramprasad − School of Materials Science and
Engineering, Georgia Institute of Technology, 30332 Atlanta,
Georgia, United States; orcid.org/0000-0003-4630-
1565; Email: rampi.ramprasad@mse.gatech.edu

Authors
Rishi Gurnani − School of Materials Science and Engineering,

Georgia Institute of Technology, 30332 Atlanta, Georgia,
United States; orcid.org/0000-0002-2744-2234

Christopher Kuenneth − School of Materials Science and
Engineering, Georgia Institute of Technology, 30332 Atlanta,
Georgia, United States; orcid.org/0000-0002-6958-4679

Aubrey Toland − School of Materials Science and Engineering,
Georgia Institute of Technology, 30332 Atlanta, Georgia,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.chemmater.2c02991

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was financially supported by the Office of Naval
Research through a Multi-University Research Initiative
(MURI) grant (N00014-17-1-2656), the Center for Under-
standing and Control of Acid Gas Induced Evolution of
Materials for Energy (UNCAGE ME, an Energy Frontier
Research Center) funded by the U.S. Department of Energy
(DOE) under Award # DE-SC0012577, and by the National
Science Foundation under grant 1941029. C.K. thanks the
Alexander von Humboldt Foundation for financial support.
R.G. is the main architect of the machine learning models and
wrote this paper. C.K. and A.T. supported the development
and debugging of the machine learning models. The work was

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.2c02991
Chem. Mater. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.2c02991/suppl_file/cm2c02991_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.2c02991/suppl_file/cm2c02991_si_001.pdf
github.com/Ramprasad-Group/polygnn
github.com/Ramprasad-Group/polygnn
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c02991?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.2c02991/suppl_file/cm2c02991_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rampi+Ramprasad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4630-1565
https://orcid.org/0000-0003-4630-1565
mailto:rampi.ramprasad@mse.gatech.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rishi+Gurnani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2744-2234
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christopher+Kuenneth"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6958-4679
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aubrey+Toland"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c02991?ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c02991?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


conceived and guided by R.R. All authors discussed results and
commented on the manuscript.

■ REFERENCES
(1) Baldwin, A. F.; et al. Poly(dimethyltin glutarate) as a Prospective

Material for High Dielectric Applications. Adv. Mater. 2015, 27, 346−
351.

(2) Mannodi-Kanakkithodi, A.; Chandrasekaran, A.; Kim, C.; Huan,
T. D.; Pilania, G.; Botu, V.; Ramprasad, R. Scoping the polymer
genome: A roadmap for rational polymer dielectrics design and
beyond. Mater. Today 2018, 21, 785−796.

(3) Hu, Y.; Zhao, W.; Wang, L.; Lin, J.; Du, L. Machine-Learning-
Assisted Design of Highly Tough Thermosetting Polymers. ACS Appl.
Mater. Interfaces 2022, 14, 55004.

(4) Doan Tran, H.; Kim, C.; Chen, L.; Chandrasekaran, A.; Batra,
R.; Venkatram, S.; Kamal, D.; Lightstone, J. P.; Gurnani, R.; Shetty,
P.; Ramprasad, M.; Laws, J.; Shelton, M.; Ramprasad, R. Machine-
learning predictions of polymer properties with Polymer Genome. J.
Appl. Phys. 2020, 128, 171104.

(5) Kuenneth, C.; Rajan, A. C.; Tran, H.; Chen, L.; Kim, C.;
Ramprasad, R. Polymer informatics with multi-task learning. Patterns
2021, 2, 100238.

(6) Barnett, J. W.; Bilchak, C. R.; Wang, Y.; Benicewicz, B. C.;
Murdock, L. A.; Bereau, T.; Kumar, S. K. Designing exceptional gas-
separation polymer membranes using machine learning. Science
Advances 2020, 6, eaaz4301.

(7) Patel, R. A.; Borca, C. H.; Webb, M. A. Featurization strategies
for polymer sequence or composition design by machine learning.
Molecular Systems Design & Engineering 2022, 7, 661−676.

(8) Ma, R.; Luo, T. PI1M: A benchmark database for polymer
informatics. J. Chem. Inf. Model. 2020, 60, 4684−4690.

(9) Ruddigkeit, L.; Van Deursen, R.; Blum, L. C.; Reymond, J. L.
Enumeration of 166 billion organic small molecules in the chemical
universe database GDB-17. J. Chem. Inf. Model. 2012, 52, 2864−2875.

(10) Franceschetti, A.; Zunger, A. The inverse band-structure
problem of finding an atomic configuration with given electronic
properties. Nature 1999 402:6757 1999, 402, 60−63.

(11) Batra, R.; Song, L.; Ramprasad, R. Emerging materials
intelligence ecosystems propelled by machine learning. Nature Reviews
Materials 2021, 6, 655.

(12) Gurnani, R.; Kamal, D.; Tran, H.; Sahu, H.; Scharm, K.; Ashraf,
U.; Ramprasad, R. polyG2G: A Novel Machine Learning Algorithm
Applied to the Generative Design of Polymer Dielectrics. Chem.
Mater. 2021, 33, 7008−7016.

(13) Batra, R.; Dai, H.; Huan, T. D.; Chen, L.; Kim, C.; Gutekunst,
W. R.; Song, L.; Ramprasad, R. Polymers for Extreme Conditions
Designed Using Syntax-Directed Variational Autoencoders. Chem.
Mater. 2020, 32, 10489−10500.

(14) Kim, C.; Batra, R.; Chen, L.; Tran, H.; Ramprasad, R. Polymer
design using genetic algorithm and machine learning. Comput. Mater.
Sci. 2021, 186, 110067.

(15) Yao, Z.; Sánchez-Lengeling, B.; Bobbitt, N. S.; Bucior, B. J.;
Kumar, S. G. H.; Collins, S. P.; Burns, T.; Woo, T. K.; Farha, O. K.;
Snurr, R. Q.; Aspuru-Guzik, A. Inverse design of nanoporous
crystalline reticular materials with deep generative models. Nature
Machine Intelligence 2021, 3, 76−86.

(16) Zunger, A. Inverse design in search of materials with target
functionalities. Nature Reviews Chemistry 2018, 2, 0121.

(17) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Comput. Sci. 1988, 28, 31−36.

(18) Lin, T. S.; Coley, C. W.; Mochigase, H.; Beech, H. K.; Wang,
W.; Wang, Z.; Woods, E.; Craig, S. L.; Johnson, J. A.; Kalow, J. A.;
Jensen, K. F.; Olsen, B. D. BigSMILES: AStructurally-Based Line
Notation for Describing Macromolecules. ACS Central Science 2019,
5, 1523−1531.

(19) Chen, G.; Tao, L.; Li, Y. Predicting polymers glass transition
temperature by a chemical language processing model. Polymers 2021,
13, 1898.

(20) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G.
E. Neural Message Passing for Quantum Chemistry. 34th International
Conference on Machine Learning, ICML 2017 2017, 3, 2053−2070.
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