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ABSTRACT: Modern fuel cell technologies use Nafion as the material of choice for the proton
exchange membrane (PEM) and as the binding material (ionomer) used to assemble the
catalyst layers of the anode and cathode. These applications demand high proton conductivity as
well as other requirements. For example, PEM is expected to block electrons, oxygen, and
hydrogen from penetrating and diffusing while the anode/cathode ionomer should allow
hydrogen/oxygen to move easily, so that they can reach the catalyst nanoparticles. Given some
of the well-known limits of Nafion, such as low glass-transition temperature, the community is in
the midst of an active search for Nafion replacements. In this work, we present an informatics-
based scheme to search large polymer chemical spaces, which includes establishing a list of
properties needed for the targeted applications, developing predictive machine-learning models
for these properties, defining a search space, and using the developed models to screen the
search space. Using the scheme, we have identified 60 new polymer candidates for PEM, anode
ionomer, and cathode ionomer that we hope will be advanced to the next step, i.e., validating the
designs through synthesis and testing. The proposed informatics scheme is generic, and it can be used to select polymers for multiple
applications in the future.

1. INTRODUCTION
The history of fuel cells, the devices that directly convert the
chemical energy from reactants such as hydrogen (fuel) and
oxygen (oxidant) into electricity, dates back to the 1840s.1−3

Since then, significant efforts and progress have been made to
advance fuel cells so that they can find applications in
transportation4,5 and other sectors, e.g., consumer electronics,
residential power supply, and back-up power for banks and
telecommunication companies..6−9 As the only byproducts of
fuel cells are water and waste heat, such devices are ideal power
generators and a particularly useful energy conversion method
for a future clean economy. A typical fuel cell is composed of
three active components, i.e., a fuel electrode (anode), an
oxidant electrode (cathode), and an electrolyte filled
inbetween. The electrolyte is a material that allows positive
ions, e.g., protons, to transport easily while blocking electrons
and the reactants, e.g., hydrogen and oxygen gases, from
penetrating and diffusing. Fuel cells are classified based on the
electrolyte material used, e.g., alkaline fuel cells, phosphoric
acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells,
and proton/anion exchange membrane (PEM/AEM) fuel
cells.2,3,7−14

In the current PEM fuel cell technology, perfluorosulfonic
acid (PFSA) polymers10,11 are used not only as the
(electrolyte) PEM12 but also as the binding material, i.e.,
ionomers, in the catalyst layers of the anode and cathode,15−18

as schematically shown in Figure 1a. Technically, each
electrode contains a gas diffusion layer and a catalyst layer,
prepared by using a solution of a polymeric ionomer, e.g.,
Teflon or Nafion, to bind nanoparticles of electrocatalysts, e.g.,

Pt, together and to a support.19−21 At this time, designs of
catalyst layers without ionomers remain impractical because of
their extremely low durability.22,23 During operation, hydrogen
is split into electrons and protons (the hydrogen oxidation
reactions) in the anode catalyst layer. The electrons flow
through the outer circuit and the protons are transported
through the PEM layer before combining with oxygen to form
water (the oxygen reduction reactions) in the cathode catalyst
layer, thus closing the circuit. For state-of-the-art PEM fuel
cells that use H2/air and layers of high surface area carbon-
supported Pt/Pt-alloy-based catalysts, the power density could
reach 900−1000 mW/cm2 at cell voltages ≤0.65 V (80 °C,
100% relative humidity RH, and 150 kPa outlet pressure).13,24

Nafion, whose chemical structure is shown in Figure 1b and
key properties summarized in Table 1, is a PFSA polymer that
is used predominantly as the PEM in fuel cells. Although the
proton conductivity of Nafion is high, its very strong
dependence on the amount of water in the membrane, as
discussed in Section 2.2, generates significant challenges in
humidification and water management.8,9,25,26 While Nafion is
used as the cathode ionomer, its low oxygen permeability27,28

has motivated numerous works to search for new binding
materials.18,20,29 In fact, the catalyst layers of a fuel cell are
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necessarily complex, generating a highly active research
area15,16,30 aimed at improving the reaction rate and reducing
the loading of Pt, a precious metal. Moreover, the fully
fluorinated chemical structure of Nafion also leads to high
production cost while its relatively low glass transition
temperature (Tg ≃ 120 °C)31,32 limits the fuel cell operation
at high temperature conditions. Previous attempts to develop
alternatives to Nafion have not been very successful, with no
comparable material identified and optimized so far.33−36

The goal of this work is to identify good alternatives for
PEM and ionomers from a vast space of known polymers using
an artificial intelligence (AI) based screening strategy, outlined
in Figure 2. This search benefits from recent advancements
within the domain of polymer informatics.37−48 In the first
step, target screening criteria, given in terms of the desired
properties, are identified. Then, machine-learning (ML)
models for quickly predicting these properties are developed
and validated, using experimental and/or computational data.
Next, a search space is defined in step 3, creating a big
candidate set whose key properties are unknown. In step 4, ML
models are used to predict the key properties of the candidates,
and those that pass the screening criteria are identified. The
final step is devoted to validations using computations and/or
experiments. We note that when the search space is large, i.e.,
practically infinite, advanced methods like genetic algorithm,44

variational autoencoder,45 and polyG2G46 can be used for
more efficient searches for materials with targeted properties
by inverting the property prediction pipeline.

Figure 1. (a) Schematic of a cross-sectional view of a PEM fuel cell unit in which a PEM layer is sandwiched between two electrodes (anode and
cathode), each of them containing a gas diffusion layer (GDL) and a catalyst layer (CL), and (b) the general chemical structure of Nafion, a
random copolymer composed of an electrically neutral semicrystalline polytetrafluoroethylene backbone and a randomly tethered side-chain ending
with the pendant sulfonate group −SO3

−. The backbone length of Nafion is m ≃ 5.5 while the polar, hydrophilic −SO3
− sulfonate groups are

essential for capturing water molecules. The catalyst layers are created by using polymeric ionomers to bind Pt nanoparticles together.

Table 1. Key Properties of Nafion for Fuel Cell Applications, Roughly Given in the Descending Ordering of the Criticalitya

Experimental data

key property unit value details refs

proton conductivity σ S/cm 10−3−10−1 80 °C, 10−100% RH 62−66
O2 permeability O2 barrer 1.1−34.3 30−80 °C, 10−90% RH 63, 67−69

H2 permeability H2 barrer 9.3−65.0 30−80 °C, 10−90% RH 63, 67−70

electronic band gap Eg eV 7.54 computed, DFT 71
glass trans. temp. Tg K 396−398 31, 32
thermal decom. temp. Td K 553 72, 73
Young’s modulus E MPa 50−220 30−60 °C, 10−90% RH 63, 74, 75

aIn most of the cases, experimental values reported in certain ranges, depending on the experimental conditions.

Figure 2. Machine-learning and multiobjective driven scheme for the
selection of polymers that can be used as a PEM or (anode/cathode)
ionomer in fuel cells.
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In the present work, we have examined and established a list
of polymer properties that are needed for PEM, anode
ionomer, and cathode ionomer. Predictive models were
developed for these properties, validated, and used to screen
polymers spanning a search space of 30 624 known polymers.
A total of 48 new candidates for PEM, 10 new candidates for
anode ionomer, and 2 new candidates for cathode ionomer
have been identified. All of them are predicted to have superior
proton conductivity, the most important property needed for
PEM and ionomers. We anticipate that the candidates reported
in this work will be advanced to the step of experimental
synthesis and testing in the near future.

2. METHODS
2.1. Key Properties and Search Criteria. Proton

conductivity σ is the most important property for fuel cell
PEM and ionomers.6,8,9,15,16 Two main mechanisms of proton
conduction in fuel cell PEM are vehicular, i.e., protons are
bound to and carried by the water molecules when they diffuse,
and hopping, i.e., protons hop from one water molecule to
another. In other words, proton transport relies heavily on the
water molecules contained in a network of connected water
channels in the materials.3,6,8,25,49 In the channels, typically
formed due to phase separation, the polar, hydrophilic pendant
sulfonate groups −SO3

− (see Figure 1b) are well-
known8,34,50−53 to be critical for capturing and holding the
water molecules. For this reason, the proton conductivity σ and
the water uptake λ are very closely related properties, and they
are usually reported simultaneously. When σ is measured
experimentally, samples are subjected to a given temperature,
e.g., T = 80 °C at working condition, and a method of
humidifying, i.e., if the samples are submerged in water vapor
or liquid water. If water vapor is used, σ is typically measured
for a range of relative humidity RH ≃ 10−100% (see Figure 3b
for some experimental data) while if liquid water is used, RH is
100% and only a value of σ is given.
Gas permeability is the next important requirement for the

materials used for fuel cell PEM and ionomers, which also
depends on the temperature and relative humidity.15,16,20,54

Because the PEM layer must block hydrogen and oxygen gases
from penetrating and diffusing, its oxygen and hydrogen
permeabilities, i.e., O2

and H2
, must be low. On the other

hand, the cathode ionomer should allow oxygen gas to flow
well to reach the catalyst nanoparticles, thus a high O2

is
desirable while the value of H2

is not critical because the
hydrogen gas is assumed to be blocked by the PEM layer.
Likewise, the anode ionomer should have a high H2

without
specific requirements on O2

.
Next, the PEM layer in a fuel cell must be a good barrier for

electrons, forcing them to run through the external load. This
requirement can be translated into a large enough electronic
“band gap” Eg of the PEM material. In addition, a high value of
Eg is also needed to secure the electrochemical stability of the
PEM. As the PEM (electrolyte) layer is sandwiched between
two electrodes, the anode electrochemical potential must be
lower than the reduction potential, i.e., the conduction band
minimum, while the cathode electrochemical potential must be
higher than the oxidation potential, i.e., the valence band
maximum, of the PEM material.55−58 Given that the
experimentally measured open circuit and full load voltages
of a PEM fuel cell are ≃1.0 and ≃0.6 V, respectively,59−61 the
electronic band gap Eg of PEM should be much larger than 1.0
eV. On the other hand, although the catalyst layers should be
good electrical conductors, they conduct electrons through the
catalyst and support nanoparticles. Therefore, there are no
requirements on Eg for the anode and cathode inonomers.
Finally, materials used for PEM and ionomer should also be

mechanically and thermally robust. The mechanical robustness
of a proton conducting material is important because the water
channels through which protons are transported must
withstand the internal pressure. These requirements are
translated into a list of other desired properties, including
high thermal decomposition temperature Td, high glass
transition temperature Tg, and high Young’s modulus E. The
properties discussed above for the case of Nafion are
summarized in Table 1.
Our objective here is to discover polymers that can

potentially be better than Nafion in three fuel cell applications,
i.e., PEM, anode ionomer, and cathode ionomer. The desired
property values (i.e., the search criteria) for these applications
are compiled in Table 2. In particular, selected candidates
should have higher predicted proton conductivity than Nafion
at RH = 100% (for liquid water condition) or in the entire

Figure 3. (a) The MT model M1, trained on two data sets of proton conductivity and water uptake, for predicting the proton conductivity σ, and
(b) proton conductivity σ, predicted by model M1 at 80 °C as a function of the relative humidity RH, given in comparisons with experimental data.
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range of relative humidity (for water vapor condition). For H2
and O2 permeabilities, the thresholds were selected as the
midpoints of the reported value ranges shown in Table 1,
which are close to the predictions of our ML models,
summarized in Table 3. The electronic band gap Eg of the
polymer (infinite) chain model of Nafion,71,76,77 computed
using density functional theory (DFT),78−81 and the Heyd−
Scuseria−Ernzerhof exchange-correlation functional82 is 7.54
eV. This value is close to the upper limit (≃ 9.7 eV) of all the
current data sets of polymer band gap Eg, including the one
that is used for this work (see Supporting Information for more
details). Given that the band gap Eg of a PEM should be much
larger than 1.0 eV (the open-circuit voltage of a PEM fuel cell)
while leaving enough room for the PEM candidate selections, a
threshold of 4.0 eV was used. We believe that polymeric
materials with such a band gap are already good insulators and
electrochemically stable. Finally, because the vast majority
(98.5%) of our proton conductivity data (see Section 2.2)
involve the sulfonate group (−SO3

−), only polymer candidates
having this functional group are considered. Given the defined
criteria, a candidate for PEM is not suitable for anode and
cathode ionomers.
Many of the key property requirements shown in Table 2 are

conflicting, exposing a common challenge of material
discoveries for specific applications. As an example, protons
are transported through connected water channels in PEM and
ionomers, so polymers that are suitable for this functionality
must include either a sufficient fraction of rigid (double and/or
triple) bonds or, like Nafion, a combination of hydrophobic
backbone and hydrophilic functional groups. Polymers in the
first class cannot have high band gap Eg while the second class,
combining with the requirement of having sulfonate (−SO3

−)

group, points directly and only to the variants of Nafion, thus
seriously limiting the chemical space exploration. Although this
list may further be expanded or modified, we believe that these
material property requirements are essential for good
candidates of PEM and ionomers in the fuel cell technology.
2.2. Data and Data Representation. To search chemical

space efficiently, the evaluations of the key properties (shown
in Table 2) must be rapid. The best answer for this
requirement is a series of ML models. During the past decade,
the development and applications of ML models for polymer
property predictions and rational design have been steadily
demonstrated while works in this area continue to mount.37−46

In a typical and established ML workflow, polymer data
involving targeted properties are generated/curated, numeri-
cally represented (fingerprinted), and learned to develop
predictive models.39−43 These models are then used to rapidly
search over vast polymer spaces, discovering those with desired
properties for certain applications.42−46

A ML model for proton conductivity is essential for our
objective. Because the proton conductivity σ and the water
uptake λ are very closely related properties, we curated two
data sets of σ and λ in polymers, the former containing 2137
points and the latter containing 1879 points. About 98.5%
(2,105 entries) of the proton conductivity and 42.6% (801
entries) of the water uptake data set involve the ionic −SO3

−

sulfonate group. From the data learning standpoint, data sets of
correlated properties can be fused and learned simultaneously
in a multitask (MT) ML model so that possible hidden
correlations among them can be accessed.39,83 Likewise, a data
set of 2624 data points for the permeabilities of six gases,
including H2, O2, He, CO2, N2, and CH4, were taken from
previous works,84,85 augmented, and learned in another MT
model. Four other data sets of polymer band gap Eg, thermal
decomposition temperature Td, glass transition temperature Tg,
and Young’s modulus E were also utilized from past
works.40,41,85 We note that, among these data sets, only
those for σ and λ contain the temperature T, the relative
humidity RH, and information on if the water is in the liquid
form or not, when the measurements were made. Such
information is unavailable in the other data sets. These data
sets are summarized in Table 3.
Except for the Eg data set that was prepared computationally

at the DFT level for 4121 homopolymers,47,48,71 the other data
sets contain experimentally measured data of both homopol-
ymers and copolymers, whose chemical structures are
represented using SMILES strings, which stand for simplif ied
molecular-input line-entry system.86 Because SMILES was initially
defined for molecules, this concept has been adapted to
represent the homopolymer repeat unit by explicitly specifying

Table 2. Requirements for Key Properties of the Polymers
That Can Be Used as PEM, Anode Ionomers (AI), and
Cathode Ionomers (CI) in a Fuel Cell

desired value

no. key property unit PEM CI AI

1 proton conductivity σ S/cm high high high

2 O2 permeability O2 barrer <18 >18 N/A

3 H2 permeability H2 barrer <37 N/A >37

4 electronic band gap Eg eV >4.0 N/A N/A
5 glass trans. temp. Tg K >396 >396 >396
6 thermal decom. temp. Td K >573 >573 >573
7 Young’s modulus E MPa >156 >156 >156
8 having the sulfonate group

(−SO3
−)

yes yes yes

Table 3. Summary of Six ML Models, i.e., M1, M2, M3, M4, M5, and M6a

model key property unit data set size error metric prediction for Nafion

M1 proton conductivity σ S/cm 2,137 (σ) + 1,879 (λ) 0.114 see Figure 3

M2 O2 permeability O2 barrer 633 (in total of 2624) 0.082 10.7

M2 H2 permeability H2 barrer 317 (in total of 2624) 0.057 37.2

M3 electronic band gap Eg eV 4121 0.25 7.90
M4 glass trans. temp. Tg K 8513 32.5 395.6
M5 thermal decom. temp. Td K 4649 12.0 571.2
M6 Young’s modulus E MPa 932 256 155.7

aAll of them were trained using GPR, and their predictions for the key properties of Nafion. The error metric of M1 and M2 is MOME
(dimensionless) while that of M3, M4, M5, and M6 is RMSE, given in the same unit with the respective property.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.2c07666
J. Phys. Chem. C XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.2c07666/suppl_file/jp2c07666_si_001.zip
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.2c07666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the connecting points.40,41 In case of copolymers, the SMILES

and the concentration of each component are available while
their nature, i.e., if they are block copolymers or random
copolymers, is generally unavailable.
Polymers data, as for materials data in general, must be

represented numerically in a proper way, or fingerprinted, so
that they can be readable by ML algorithms. In this work, we
used the fingerprinting scheme developed previ-
ously39,40,40−43,87 Within this scheme, the polymer SMILES

representation is converted to ≃3000 numerical fingerprint
components, which are arranged into three categories that
correspond to three different length scales, i.e., atomic, block,
and chain levels. For copolymers with multiple repeat units and
concentrations, their fingerprints are defined as the composi-
tion-weighted sum of the fingerprint of all the repeat units.39

Only in the particular cases of proton conductivity and water
uptake, some additional fingerprint components are the
temperature T, the relative humidity RH, and the measure-
ment condition, i.e., if the samples are submerged in liquid
water or not.
2.3. Machine Learning Approach. For the ML

algorithm, we used Gaussian process regression (GPR)88,89

with a radial basic function kernel. The choice of GPR was
motivated by several reasons. First, GPR is explicitly similarity

based and, therefore, intuitive. Second, by assuming the output
is a realization of a Gaussian process, GPR provides a built-in
measure of the prediction uncertainty. Finally, the data sets
used in this work are not too big; thus, training a GPR model
and using it to make predictions is not computationally
intensive while overfitting can be better controlled by the
internal cross-validation step.
2.4. Screening Space. The screening space contains

30 624 known polymers, including 16 858 copolymers and
13,766 homopolymers, all of them have been synthesized and
reported in the literature. Some more information on this data
set can be found in refs 39, 41, and 85. In addition to the SMILES

strings and respective concentrations, references pointing to
the report of each polymer are also available. Starting from the
SMILES and corresponding concentration, the fingerprints of all
the polymers in the screening space were computed and used
as the input for the ML models developed. For proton
conductivity predictions, we assumed T = 80 °C while
considering the whole range of relative humidity RH and two
humidifying methods; e.g., the sample is submerged in liquid
water or water vapor. Those satisfying the criteria for PEM,
anode ionomers, and cathode ionomers as summarized in
Table 2 are compiled in three list of candidates for further
considerations, perhaps experimentally.

Figure 4. Chemical structure and key properties predicted for PEM1, AI1, and CI1, the representative candidate of PEM (top row), anode ionomer
(lower left), and cathode ionomer (lower right), respectively.
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3. RESULTS
3.1. ML Models. The first multitask ML model, i.e., M1,

was trained on two data sets of σ and λ for predicting σ.
Likewise, M2 is the second MT model that was trained on six
data sets of O2, H2, N2, He, CO2, and CH4 permeabilities for
predicting O2

and H2
. Technically, the data set used for each

multitask model was prepared by merging the data sets of n
correlated properties (n = 2 for M1 and n = 6 for M2); each
property is specified by an additional n-dimension vector
stacked to the fingerprint computed from the SMILES. This data-
fusion technique has been demonstrated in exploiting the
possible hidden correlations among the related materials
properties.39,83,84 For the other four key properties, i.e., Eg,
Td, Tg, and E, four ML models, i.e., M3, M4, M5, and M6, were
developed. Given that the training data of M1 and M2 span
over 10 orders of magnitude, these models were trained in the
log scale and the predictions were then transformed back to
the real (linear) scale. Moreover, a dimensionless error metric
named mean order of magnitude error (MOME), defined as
⟨abs(log10(ppred/pref))⟩, where ppred and pref are the predicted
and reference values and ⟨···⟩ stands for the average over the
predictions, was used to evaluate M1 and M2. On the other
hand, M3, M4, M5, and M6 were trained on the linear scales,
and root-mean-square error (RMSE) is a suitable error metric
for them. Table 3 provides a summary of these models and the
data sets they were trained on while the visualized perform-
ances of these models can be found in Supporting Information.
Figure 3a visualizes the performance of the MT model M1

while Figure 3b shows the predictions of Nafion proton
conductivity σ predicted at 80 °C as a function of the relative
humidity. For M1, MOME ≃ 0.1 for both σ and λ, which is
about 2% of the data range, indicating a good predictive
performance. This conclusion is supported by Figure 3b, which
shows that, compared to the available experimental data, M1
predicts both the values and the behavior of Nafion proton
conductivity very well as a function of the relative humidity
RH. Good predictions of the other models, i.e., M2, M3, M4,
M5, and M6, for the key properties of Nafion were obtained
and are given in Table 3. We note that Nafion properties such
as O2

, H2
, and E depend on the temperature T and the

relative humidity RH and were typically reported67,90 as
functions of these variables (see Table 1). Nevertheless, our
training data sets do not have such information; thus, the
values of O2

, H2
, and E predicted for Nafion also do not have

T and RH dependences. In particular, the predicted O2
, H2

,
and E are close to the midpoints of reported data ranges, which
were used as the thresholds of our screening.
3.2. Identified Candidates. Our screening over 30 654

known polymers yields 48 candidates for PEM, 29 (19) of
them were predicted to be better than Nafion in the liquid
(vapor) water condition. In addition, 8 candidates for anode
ionomer and 2 candidate for cathode ionomer were also
identified. In fact, the requirement of having the sulfonate
group (−SO3

−) is a very strict condition, which significantly
reduces the size of the search space from 30 624 polymers to
558 polymers (see Figure 2), thus limiting the number of
candidates in our search. A full list of these candidates that
includes all the available information, e.g., the SMILES strings,
references, and predicted properties, can be found in the
Supporting Information.

Three polymers identified to be candidates for proton
exchange membrane, anode ionomer, and cathode ionomer
and named PEM1, AI1, and CI2, are detailed in Figure 4 and
their performances are visualized in Figure 5. For each of them,

the monomer chemical structure, monomer concentration c,
and key properties predicted by the ML models developed in
this work are given. Because the PEM1 was predicted to have
higher proton conductivity than Nafion in vapor water
conditions, σ was given as a function of the relative humidity.
On the other hand, the AI1 and CI1 were predicted at the
liquid water condition; thus, only the value of σ at RH = 100%
is reported. The proton conductivity σ predicted for these
three polymers are about 2−3 times higher than that of Nafion.
Specifically, very high values of Young’s modulus E suggest that
all of them are mechanically very robust. We believe that
PEM1, AI1, and CI1 could be good candidates for proton
exchange membrane, anode ionomer, and cathode ionomer in
fuel cell technology.
As the polymer search space, i.e., our candidate set, is

composed of polymers previously synthesized and studied (but
not necessarily for fuel cell applications), we hope that future
experimental investigations of our recommended polymers for
fuel cell applications will be possible in the near term. PEM1 is
an aromatic (po1y)cycloaliphatic polysulfonate synthesized91

from two monomers, i.e., 4,4′-(1-cyclohexylidene)-di-(2,6-
dibromophenol) and 4,4′-diphenyldisulfonyl chloride, previ-
ously studied within a search for polymers with good physical,
chemical, and thermal properties. Therefore, some thermal and
mechanical properties, including Td, of this polymer were
measured.91 Two experimental values of Td reported for PEM1
are 583 K, which is the temperature of initial decomposition,
and 613 K, which is the temperature of maximum velocity of
decomposition from the thermal gravimetric analysis.91 PEM1
is included in the Td data set we used to train M5, and our
predicted value of Td = 588 K is very close to 598 K, the
average of two reported values. Predictions on the other key
properties, as shown in Figure 4, suggest that this aromatic
(poly)cycloaliphatic polysulfonate is a good candidate for

Figure 5. Property radar chart of PEM1, AI1, and CI1 whose details
are given in Figure 4. Their key properties are given in unit of the
same properties of Nafion (scale is given in gray numbers). For
PEM1, the proton conductivity σ at RH = 100% is used.
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proton exchange membrane in fuel cells. Likewise, other
candidates identified in this work have also been synthesized in
some contexts, and they can now be reconsidered for specific
applications in fuel cells.
The property radar chart shown in Figure 5 provides a visual

overview of PEM1, AI1, and CI1 in terms of seven key
properties identified for fuel cell applications. Because these
properties are different by multiple orders of magnitude, the
predicted properties of PEM1, AI1, and CI1 are given in unit
of the same properties of Nafion. Compared to Nafion, all
PEM1, AI1, and CI1 have much higher proton conductivity
and Young’s modulus values. While PEM1 can better limit
oxygen and hydrogen gases from penetrating and diffusing, AI1
and CI1 were predicted to promote the permeation of
hydrogen and oxygen gas, respectively. The advantages of
PEM1, AI1, and CI1 in these most important properties are
obtained with small reductions of band gap Eg, i.e., 4.5 eV for
PEM1 and slightly less than 3 eV for AI1 and CI1. The trade-
off among these properties, as shown in Figure 5, is an
illustration for the multiobjective optimization problem in
discovering new materials for specific applications.
3.3. Chemical Rules and Multiobjective Optimization.

Figures 4 and 5 reveal the impressive proton conductivity
predicted for PEM1, AI1, and CI1. We anticipate that the
superior proton conductivity of these polymers is related to the
sulfonate group −SO3

−. In this work, we only consider those
having this functional group partly because −SO3

− is
hydrophilic and plays an essential role in capturing and
holding water molecules in Nafion. However, the main reason
we adopted this criteria is that our proton conductivity data set
is dominated by polymers involving the −SO3

− group, thus
other chemistries are not well represented. We hope that when
the proton conductivity data set is further expanded and
diversified, our model can handle other hydrophilic groups
such as sulfonyl imide −SO2N(H)SO2CF3,

92,93 −P(O)(OH)2,
and −P(O)(OMe)2 that have also been suggested for fuel cell
membranes.34 At this point, many more candidates for PEM,
anode ionomer, and cathode ionomer can be found.
Figure 5 also shows that the Young’s modulus E of PEM1,

AI1, and CI1 is substantially higher than that of Nafion. Such a
mechanical strength, which is very useful for creating and
maintaining a network of water channels in the materials, stems
from the rigid framework of these polymers, which contain
many benzene rings. In exchange, unsaturated bonds in these
rings slightly reduce the band gap Eg of the identified polymers.
In case of PEM1, a band gap of ≃4.5 eV is still good enough to
make the polymer an electron insulator while securing the
electrochemical stability of the PEM layer. In summary, Figure
5 offers a visual assessment to the multiobjective materials
optimization problem that leads to the identification of PEM1,
AI1, and CI1 as alternatives to Nafion for PEM, anode
ionomer, and cathode ionomer, respectively.

4. DISCUSSION AND CONCLUSIONS
Requirements placed on materials that can be used for a
specific application can be translated into a set of desired
physical/chemical properties. Within this work, which focuses
on a search for alternatives of Nafion in fuel cell applications,
we have established three sets of key properties needed for
proton exchange membranes, anode ionomers, and cathode
ionomers. Then, a series of predictive ML models were
developed and used to evaluate the required properties of
30 654 polymers, ultimately identifying 60 polymers that can

potentially be suitable for the targeted applications. In the next
step, works to synthesize, test, and validate the identified
polymers are desirable.
The machine-learning and multiobjective driven strategy

used in this work has its roots in polymer informatics, the
subfield of polymer science that relies on generating, curating,
and learning past data to quickly estimate the properties of
previously unencountered polymers. This generic strategy has
been demonstrated for discovering and designing polymer
dielectrics in the past42−48 and, in principle, can be used for
selecting materials in essentially any application (so long as
screening criteria can be precisely stated and rapid predictive
models are available for the properties in the screening
criteria). We anticipate that multiple variants of this strategy
can be developed and used in the near future.
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