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Non-degradable plastic waste jeopardizes our environment, yet our modern lifestyle and

current technologies are impossible to sustain without plastics. Bio-synthesized and biode-

gradable alternatives such as polyhydroxyalkanoates (PHAs) have the potential to replace

large portions of the world’s plastic supply with cradle-to-cradle materials, but their chemical

complexity and diversity limit traditional resource-intensive experimentation. Here, we

develop multitask deep neural network property predictors using available experimental data

for a diverse set of nearly 23,000 homo- and copolymer chemistries. Using the predictors, we

identify 14 PHA-based bioplastics from a search space of almost 1.4 million candidates which

could serve as potential replacements for seven petroleum-based commodity plastics that

account for 75% of the world’s yearly plastic production. We also discuss possible synthesis

routes for the identified promising materials.
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P lastics are an integral part of our everyday life and modern
technology. Their simple, yet diverse, chemistries and
tunable properties make plastics versatile and desirable;

plastics display high or low flexibility, strength, thermal, or
electronic conductivity along with low cost, low weight, and
abundance1. The global plastic production of 2019 amounts to an
unimaginable 368 million tonnes and is expected to further
increase in the coming years. About 40% (145 million tonnes) of
the yearly plastic production accounts for packaging products
such as bags, food containers, cutlery, or bottles, which have very
short service lifetimes and often end up in landfills, seawater, or
other natural environments2–4. It is therefore not surprising that
packaging plastics are one of the largest polluters of our world’s
ecosystems, severely threatening the existence of animals and
humans through waste and microplastic particles on land and in
oceans that last for decades or longer5. Finding eco-friendly
plastics (bioplastics) with properties akin to conventional plastics
but with sustainable recycling options is therefore of utmost
importance for a circular economy.1 The bio-derived and bio-
degradable family of polyhydroxyalkanoates (PHAs) is a pro-
mising cradle-to-cradle material that can be synthesized by
several microorganisms directly using sunlight and CO2 from the
environment or industrial point sources3,6,7. Existing commercial
entities have already studied the biosynthesis, processing, and
industrialization of PHA-based polymers and blends8. Diverse
chemistries harbored in PHAs span a large property space with
ample opportunities to design mechanical and thermal properties

such as the Young’s modulus (E), tensile strength (σ), elongation
(ϵ), glass transition temperature (Tg), melting temperature (Tm),
and degradation temperature (Td)3,9–14.

PHAs provide copious opportunities for chemical modification
and property modulation3,15. Key parameters of these modifica-
tions are the numbers of carbons in the main-chain and side-chain
(n and m in Fig. 1a), and the terminating functional groups of the
side-chain (R in Fig. 1a)15,16. For instance, the most widely known
PHA, poly-3-hydroxybutyrate (P3HB, with n= 1, m= 1, and
no R), is brittle and inflexible17. As the number of carbon atoms in
the backbone increases, the resulting polymers tend to display
higher elongation at break (ϵb) combined with improved
mechanical strength and enhanced tendency for degradability3.
Also, PHAs with side-chain-terminating phenyl groups exhibit
higher Tgs because of increased rigidity due to enhanced inter-
chain interactions resulting from the polar side chain functional
groups15,18. Besides systematic structural and chemical alterations,
copolymers provide an additional knob to grow the accessible
property space by not only combining multiple PHA-based motifs
but also PHAs with conventional polymers19. In the past, PHA-
only copolymers have been found to improve mechanical prop-
erties while keeping high Tm and low Tg values, which is ideal for
applications that require large temperature operation windows3,14.
By forming copolymers of PHAs with conventional polymers, one
may harness synergistic effects, potentially leading to recyclable
polymers with enhanced mechanical strength and improved gas
permeability. Polymers with low gas permeabilities are of

Fig. 1 Bioplastic design using multitask deep learning predictors. a Design pipeline. A large search space is created by combining 540 polyhydroxyalkanoates
(PHAs) and 13 conventional polymers to copolymers. Property predictors and property requirements of commonly used polymers allow us to identify bioplastic
candidates within the search space. b Architecture of the multitask neural network predictors. Three separate predictors are trained; one for each of the selector
vectors (S1, S2, S3). S is a binary vector (1 for the selected component and 0 everywhere else) that selects the output property. c Prediction pipeline. The two
SMILES58 strings belong to comonomers in a copolymer.
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particular interest to the food packaging industry where the
containment of gases such as CO2, or the prevention of gases such
as O2 from permeating into the food products, is an important
factor in deciding application-specific suitability of a polymer.

Just contemplating copolymer compositions on a rather coarse
composition grid (c= 0, 0.1,…, 1), the total number of distinct
PHA-only copolymer possibilities is far beyond a million, effec-
tively rendering trial and error-based high-throughput experi-
ments an impractical route of searching for application-specific
candidate materials20. Also, the sheer size of the search space
disqualifies time-consuming computational methods such as
density functional theory (DFT) or even classical molecular
dynamics (MD) simulations. The burgeoning field of polymer
informatics21–26 offers an exciting alternative route to address
such search problems by using modern data-driven machine
learning approaches18,27–29.

The present study, with the details of the workflow and
machine learning framework outlined in Fig. 1, has several vital
elements. First, we develop efficient multitask deep neural
network-based multiproperty predictors for copolymers that
forecast three different thermal (Tg, Tm, and Td), four different
mechanical (E, σy, σb, and ϵb), and six gas permeability (μg∣g∈
{O2, CO2, N2, H2, He, CH4}) properties using nearly 23,000
experimental data points pertaining to a diverse range of homo-
and copolymer chemistries. Here, Tg, Tm, Td, E, σy, σb, and ϵb are
the glass transition temperature, melting temperature, degrada-
tion temperature, Young’s modulus, tensile strength at yield,
tensile strength at break, and elongation at break, respectively.
μO2

, μCO2
, μN2

, μH2
, μHe, and μCH4

stand for the gas permeabilities
of O2, CO2, N2, H2, He, and CH4. The thermal, mechanical, and
gas permeability properties are selected as they play a critical role
in the design and selection of plastics for packaging and other
large-scale industrial applications. Second, we create a bioplastic
candidate space of nearly 1.4 million bioplastics, which is spanned
by 540 PHAs and 13 conventional polymer chemistries. Third, we
follow a two-step protocol to find several PHA-only and PHA-
conventional polymer bio-replacements in the candidate space for
seven petroleum-based and commonly used plastics. Possible
synthesis routes of the bio-replacements are discussed. This work
represents the state-of-the-art in polymer informatics, and con-
tributes to and accelerates the identification of sustainable func-
tional polymer candidate materials.

Results and discussion
Data Set. Our data set for training of the multitask property
predictors includes a total of 22,731 homopolymer (≈60%) and
copolymer (≈30%) data points of the thermal, mechanical, and
the small molecule gas permeability properties as reported in
Table 1. Each of the 7512 copolymer data points involves two
distinct comonomers at various compositions while spanning
over 1440 distinct copolymer chemistries. Homo- and copolymer
data points of Tg, Tm, and Td, and homopolymer data points of
μgs, E, and σb were already utilized in previous studies30–35. The
copolymer data points belonging to μgs, E, σy, σb, and ϵb, and
homopolymer data points of σy and ϵb were collected from the
PoLyInfo35 repository for this study. If multiple data points were
available for a single polymer in PoLyInfo, we used the average
values after a manual curation. For consistency and uniformity,
only Tg and Tm data points measured via differential scanning
calorimetry (DSC), Td data points measured via thermogravi-
metric analysis (TGA), and mechanical data points recorded
around room temperature (300 K) were included in the data set.
Moreover, for configurational consistency, all copolymer data
points in this study are from random copolymers. As part of an
additional curation step and our due diligence strategy, we
employed a clustering algorithm (DBSCAN using standard
parameters as implemented in Scikit-learn36) to identify outliers
and select suspicious data points for manual inspection. The
degree of polymerization and molecular weight were not taken
into account because they were not uniformly available for all
data points. Mandated by the multitask method, all property
values were scaled to the range of [0, 1] (min-max scaling) for
training and transformed back to the actual ranges before com-
puting the respective error metrics. Additionally, ϵb and the gas
permeabilities were transformed to the log base 10 scale
(x 7! log10ðx þ 1Þ) before training because of their power-law-
shaped data distributions (see Supplementary Figs. 4–6).

Property predictors. Multitask deep neural networks with meta
learners have shown best-in-class performance in past polymer
informatics studies33,34 due to their ability to utilize inherent
correlations in data that helps to overcome data sparsity. Here, we
create three multiproperty predictors (one for each category in
Table 1) to predict, in total, 13 polymer properties using the data

Table 1 Overview of our data set used for training the multitask predictors.

Symbol Unit Homopolymer Copolymer Range Total

Thermal properties
Glass transition temp. Tg K 5183 3312 [80,873] 8495
Melting temp. Tm K 2132 1523 [215,860] 3655
Degradation temp. Td K 3584 1064 [291,1173] 4648

Mechanical properties
Young’s modulus E MPa 592 322 [0.2,4000] 914
Tensile strength at yield σy MPa 216 78 [0.01,132] 294
Tensile strength at break σb MPa 663 318 [0.04,200] 981
Elongation at break ϵb 868 260 [0.3, 995] 1128

Gas permeability properties
O2 μO2

barrer 420 210 [5⋅10−6,1000] 630

CO2 μCO2
barrer 313 119 [10−6, 4756] 432

N2 μN2
barrer 417 99 [3⋅10−5, 480] 516

H2 μH2
barrer 266 46 [2⋅10−2, 5000] 312

He μHe barrer 261 58 [5⋅10−2,1950] 319
CH4 μCH4

barrer 360 47 [4⋅10−4, 1690] 407

Total 15,275 7456 22,731

The property portfolio for the three subgroups, associated property ranges, units of measurements, as well as the number of homo- and copolymers included in the dataset are outlined.
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set and categories profiled in Table 1 and fingerprints outlined in
the Methods section. Figure 1b schematically shows the archi-
tecture of the multitask predictors, while implementation details
are given in the Methods section and in Supplementary Fig. 1.

The developed meta learners and cross-validation predictors
display outstanding overall coefficient of determination (R2)
values of 0.97 and 0.93, respectively. The root-mean-square error
(RMSE) and R2 values of all properties are reported in Table 2.
The meta learner (cross-validation) predictors of the thermal
properties perform very well with R2s as high as 0.98 (0.92), 0.97
(0.84), and 0.96 (0.72) for Tg, Tm, and Td, respectively. This is
expected because of the large number of data points and high data
fidelity of the thermal property data points. The reported
validation metrics here are slightly better than those reported in
Ref. 35, which uses a very similar thermal property data set. This
is because of the extra data curation and cleaning steps adopted in
this work, as discussed above in the Data Set section. Wu et al.37

and Tao et al.38 report similar R2 values of 0.91 and 0.93,
respectively, for a similar-sized Tg data set. Chen et al.39 and Tao
et al.40 obtain slightly worse R2 values for learning Tg. We note
that different training and evaluation schemes lead to different
metrics and only the exact same data sets (and splits) should be
compared for benchmarking purposes. The mechanical and gas
permeability meta learners show very high R2s of 0.94, 0.96, 0.94,
and 0.91 for E, σy, σb, and ϵb, respectively, and 0.99, 0.99, 0.99,
1.00, 0.99, and 0.99 for the six gases g∈ {O2, CO2, N2, H2, He,
CH4}, respectively. The overall performance of the three
developed meta-learners with averaged R2s of 0.97, 0.94, and
0.99 is exceptional and may be credited to the large data set of
almost 23,000 data points, additional data curation measures,
well-conditioned and smooth fingerprints, and fully-
hyperparameter-optimized multitask deep neural networks. We
use the meta learners for property predictions. The cross-
validation metrics indicate the generalization error for learning
the data set (see also Supplementary Discussion on “General-
ization and data set errors”). The individual parity plots of the
meta learners for each property can be found in the Supplemen-
tary Figs. 7–9. Supplementary Fig. 11 shows a good agreement of
predictions and data points of four copolymers, which are
included in the test data set only.

Bioplastic search space. In the next step, we consider a bioplastic
space that can be searched using the property predictors devel-
oped in the last section. As shown in Fig. 1a, 540 PHAs and 13
conventional polymers define and bound this space. The 540
PHAs are devised through variations of the number of carbon
atoms in the main-chain and side-chain from 1 to 6 (n and m in
Fig. 1a), and by terminating the side-chains with 17 different
functional groups (see Supplementary Fig. 2). The bio-
copolymers of this space are generated by the outer product of
PHAs and conventional polymers at eleven different composi-
tions (c= 0, 0.1,…, 1). The total number of bioplastics in the
search space amounts to 1 373 503 and is composed of 553
homopolymers, 146 070 copolymers of PHA-only, and 7 033
copolymers of PHAs and conventional polymers. The 13 con-
ventional polymers were selected according to the list of most
commonly used plastics and are documented in Supplementary
Fig. 3.

Figure 2a, b display the 2D uniform manifold approximations
and projections (UMAPs)41 of two different fingerprint sub-
spaces. These subspaces contain all fingerprint components of the
selected polymers. The fingerprint subspace of Fig. 2a contains
five PHAs (green dots, c= 1), the remaining 548 polymers (blue
dots, c= 0), and copolymers (c= 0.1, 0.2,…, 0.9) that connect the
five PHAs and the remaining 548 polymers. Interestingly, UMAP
has identified similar polymers and agglomerated them into the
shape of stars. The corner vertices of these stars are the
fingerprints of the copolymers closest to the five PHAs
(c= 0.9), while all other dots in the stars indicate fingerprints
of polymers of similar chemistry. For example, the dots of the
topmost star in Fig. 2a show fingerprints of PHA copolymers
containing a nitro phenyl functional group, while the rightmost
star includes fingerprints of PHA copolymers containing
benzonitrile. The different clusters in Fig. 2b have 13 corner
vertices (some of them are hidden) that indicate the fingerprints
of the copolymers closest to the 13 conventional polymers
(c= 0.9, see Fig. 1a), which are included in the fingerprint
subspace of Fig. 2b, instead of the five PHAs as in Fig. 2a.
Equivalent to the stars, the different clusters contain fingerprints
of polymers of similar chemistry. The agglomeration to stars or
clusters illustrates that the used fingerprints (i) unambiguously

Table 2 The RMSEs and R2s averages of the five cross-validation models and meta learner from predictions on the respective
validation data sets. The cross-validation deviations show one standard deviation (1σ).

Symbola Unit Cross-validation Meta learner

RMSE R2 RMSE R2

Thermal properties
Tg K 29.78 ± 1.26 0.92 ± 0.01 13.04 0.98
Tm K 40.17 ± 0.83 0.84 ± 0.01 16.67 0.97
Td K 62.16 ± 2.52 0.72 ± 0.02 23.84 0.96

Mechanical properties
E MPa 475.34 ± 31.84 0.78 ± 0.03 237.2 0.94
σy MPa 15.43 ± 3.81 0.79 ± 0.12 7.1 0.96
σb MPa 18.82 ± 1.00 0.77 ± 0.02 9.81 0.94
ϵbb 0.43 ± 0.04 0.59 ± 0.10 0.2 0.91

Gas permeability properties
μO2

b barrer 0.13 ± 0.02 0.97 ± 0.02 0.07 0.99

μCO2

b barrer 0.20 ± 0.04 0.96 ± 0.02 0.11 0.99

μN2

b barrer 0.12 ± 0.04 0.96 ± 0.03 0.05 0.99

μH2

b barrer 0.14 ± 0.02 0.97 ± 0.01 0.06 1.0

μHe b barrer 0.14 ± 0.01 0.96 ± 0.01 0.06 0.99
μCH4

b barrer 0.16 ± 0.03 0.96 ± 0.01 0.06 0.99

a See Table 1 for symbol definition.
b Trained on log base 10 scale (x7!log10ðxþ 1Þ). RMSE and R2 values are reported on this scale.
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distinguish polymers; (ii) position related polymers of similar
chemistries in the vicinity (i.e., pack all copolymers with a specific
side-chain functional group in the same part of the space); (iii)
and thus create a physically meaningful learning space with
chemical similarity integrated that is well-suited for machine
learning.

Figure 3 displays property relations for a selected set of
properties of the bioplastic search space in order to qualitatively
assess our predictions and verify physical trends expected based
on chemical intuition. The trend in Fig. 3a is that polymers of
high Tg values also have high Tm and room temperature E values.
This confirms our chemical intuition that Tg is approximately
linearly correlated to Tm, and high Tg and/or Tm polymers have
stiffer morphologies thus possessing high E values. Also, we

observe that the correlation of Tg and Tm is not sharp but broad,
which arises from the different side-chain functional groups in
the search space. In contrast, Fig. 3b suggests little to no
correlation of Tm and σb, except that the range spanned by σb at a
given Tm broadens as Tm increases. However, σb is intuitively
correlated to E, i.e., stiffer materials (high E) break at higher
stresses (high σb). Figure 3c shows a roughly linear correlation of
μCO2

and μO2
that again agrees with chemical intuition and lends

credibility to the developed predictors.

Bioplastic Replacements. Up to this point, we have discussed the
training and validation of three multitask deep neural networks
(each targeting separately the thermal, mechanical, and gas per-
meability properties) to forecast 13 polymer properties, the
consideration of a search space of over 1.3 million bioplastic
candidates, and predictions for each of the candidates in the
search space. Next, we search the candidate set for suitable
replacements for seven petroleum-based and commonly used
plastics listed in Table 3. The search is performed following a
two-step protocol. In the first step, we employ a nearest neighbors
search to find the five closest replacements (within the target
property space) for each of the seven plastics and in each copo-
lymer subgroup of PHA-only and PHAs with conventional
polymers. We employ the nearest neighbors algorithm using
standard parameters as implemented in Scikit-learn36. Table 3
reports averaged property values of polymers at standard condi-
tion (films or pieces from neat resin). The values of PE match the
properties of medium-/ high-density PE the best. Process and
manufacturing conditions can impact these property values. We
note that the nearest neighbors search may be performed for any
polymer with property values that deviate from the average values
considered here. The nearest neighbors search algorithm and
nearly 1.4 million bioplastic candidates, including the predicted
properties, are shared on GitHub (see Code Availability section).

In the second step, we use our domain expertise to pick the
most promising bio-replacement from the five candidates based
on its potential to be synthesized. The most promising bio-
replacements for each commodity plastic and for each of the two
copolymer subgroups are reported in Fig. 4. The full list of bio-
replacements (70) is provided as Supplementary Data 1.

Figure 5 a shows the property distributions of the bioplastic
candidate set along with the properties of the seven commodity
plastics (see Table 3) indicated as triangles. As expected, the Tm
peak is shifted to higher temperatures (by around 80 K) with
respect to the Tg peak. Among the mechanical properties, the
densities of E and σb demonstrate a peak at around 540 MPa and
20 MPa, while ϵb shows a broad distribution, which covers most
of the data range. Moreover, the majority of μO2

and μCO2
values

are below 4 barrer and 20 barrer, which match the expected value
range of this polymer class35. Overall, all commodity plastics

a 5 PHAs

b 13 conventional polymers
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Fig. 2 Two-dimensional UMAP41 plot of two fingerprint subspaces that
contain only fingerprints of selected polymers. a Five PHAs. The dark
green dots (c= 1) show the fingerprints of the SMILES strings [*]
OCCC(=O)[*], [*]OC(O)CC(=O)[*], [*]OC(C(=O)O)CC(=O)

[*], [*]OC(C(=O)OC)CC(=O)[*], and [*]OC(N)CC(=O)[*]. b 13
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conventional polymers. The dark blue dots (c= 0) in panels a and
b indicate the fingerprints of the remaining 548 and 540 polymers in the
bioplastic search space (a total of 553 polymers), respectively. The dots
with intermediate colors (green to blue) indicate the fingerprints of
connecting copolymers. PC1 and PC2 represent the first and second
principal components in the UMAP projection, respectively.

200 300 400
Tg [K]

300

400

500

T
m

[K
]

a

0 50 100
σb [MPa]

300

400

500

T
m

[K
]

b

0 50 100
μCO2 [barrer]

0

10

20

30

μ
O

2
[b

ar
re

r]

c

1

2

E
[G

P
a]
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(triangles) lie within the property ranges spanned by the
bioplastic search space. However, because the triangles often lie
in the tails of the property distributions, it is challenging (but
possible) to find suitable replacements. Similar to Fig. 5a–h
compare the experimental properties of the commodity plastics
with their top bio-replacements identified in Fig. 4 in a radar
chart. Qualitative graphical pairwise similarities between the
property profiles in each radar chart indicate that the identified
bio-replacements do indeed exhibit similar sets of properties with
respect to the experimental properties. A comparison of the
predicted and experimental properties of the seven commodity
plastics is shown in Supplementary Fig. 10.

Synthesis Opportunities. It is interesting to note that all PHA-
only and PHA-conventional bio-replacements in Fig. 4 contain
aromatic groups in the side-chain. The biosynthesis of PHAs
containing an aromatic monomer was first reported in 1990 by
Fritzsche et al.42 for Poly(3-hydroxy-5-phenylvalerate) and since

then a wide range of aromatic side-chain functional groups have
been introduced into PHAs through biosynthesis routes. For
instance, see a recent comprehensive review by Ishii-Hyakutake
et al.43 for a more detailed discussion. Looking at the complexity
of the chemistries that are already accessible via biosynthesis,
prospects of producing the identified PHA-only bio-replacements
are rather optimistic. For example, Aróstegui et al.44 reported that
the Pseudomonas oleovorans bacterium synthesizes PHAs with
nitrophenyl side-chain functional groups, which occur in the
PHA-only bio-replacements of PVC, PS, and PEN in Fig. 4.
Moreover, engineering the bacterial PHA synthesis remains a
highly active area of research with novel genome editing techni-
ques, such as clustered regularly interspaced short palindromic
repeats interference (CRISPRi),45 that carry enormous potential
for future breakthroughs in terms of both the accessible chemical
diversity in PHA biosynthesis of homo- and copolymers as well as
the yield optimization of the produced polymer chemistries.

Chemical synthesis routes for PHAs have been widely reported in
the literature as well46–49. The potential for the chemical synthesis

Table 3 Measured properties of petroleum-based commodity plastics that in total account for 75.1% of Europe’s yearly plastic
production in 2019 (see usage column)2.

Polymer Abb. Applications SMILESa Tg [K] Tm [K] σb [MPa] ϵb E [MPa] μO2

[barrer]

μCO2

[barrer]

Usage [%]

Poly(ethylene) PE Cloth
packaging,
shopping bags,
waste bags

[*]CC[*] 220 403 22.0 338.0 670 2.00 27.10 29.2

Poly(propylene) PP Living hinges,
pipes, caps,
cutlery

[*]CC([*])C 287 437 30.0 150.0 1600 0.76 4.40 19.3

Poly(vinyl
chloride)

PVC Window
frames, cables,
pipes, films

[*]CC([*])
Cl

353 485 36.0 29.7 1680 0.06 0.23 9.9

Poly(ethylene
terephthalate)

PET Bottles,
automotive
industry

[*]CCOC(=O)
c1c cc(C(=O)
O[*])cc1

350 526 119.0 65.0 2970 0.05 0.33 7.9

Poly(styrene) PS Packaging
fillers, cutlery,
foam cups,
take-out boxes

[*]CC([*])
c1 ccccc1

371 528 34.0 2.0 2450 2.60 12.60 6.8

Poly(hexano-6-
lactam)

Nylon6 Yarns, fibers [*]CCCCCC
(=O)N[*]

324 493 60.0 61.0 1600 4.00 0.09 2

Poly(ethylene
2,6-naphthalate)

PEN Bottles,
scintillators,
medical
product
containers

[*]CCOC(=O)
c1cc
c2cc(C(=O)
O[*]) ccc2c1

357 541 77.0 42.0 2310 0.02 0.24

aThe two stars ([*]) indicate the endpoints of the polymer repeat unit.
Property values are averaged over the entries in the PoLyInfo repository35 at standard conditions (film or piece from neat resin).

Fig. 4 PHA-only and PHA-conventional bio-replacements for seven commodity plastics. Full polymer names are listed in Table 3.
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of the copolymers in this work (see Fig. 4 or Supplementary Data 1)
lies in the ability to combine two comonomers of differing
composition. Methods used in the synthesis of polystyrene-co-
lactone copolymers50,51 can lead to the desired formation of the
PHA-conventional bio-replacements of PP and PS. A chemical
synthesis route for the PE and Nylon 6 PHA-conventional bio-
replacements may follow similar steps used for the copolymeriza-
tion of PHA/PEO (polyethylene oxide) copolymers19. The PVC,
PET and PEN bio-replacements from PHA-conventional polymers
may be produced via a reactive twin-screw extrusion process to
form block structures containing phthalate-co-lactones.52 Alterna-
tively, a copolymer of repeating phthalate/lactone units has recently
been produced via a copolymerization reaction of ε-lactone with
degraded PET53,54. We believe the predictions based on our work
have potential to translate into new PHA biopolymers or
copolymers and will inspire development of new PHA-only or
hybrid conventional-PHA polymer synthesis routes.

The developed property predictors used in this work have several
limitations which are largely tied to the availability of training data.
The property predictors ignore process and manufacturing
conditions as well as certain details of morphology (e.g., %
crystallinity). Furthermore, other relevant factors such as the
molecular weight distribution, form factors (e.g., linear versus
branched), additives, etc. are currently not integrated in the
property prediction pipeline. In addition, low level configurational
trends across diverse chemistries such as subtle variations stemming
from chain morphologies or different relative placements of distinct
monomer units across the chains are not accounted for. If such
information becomes available in the future, the developed
predictors can easily be updated to account for these additional
effects. The proposed informatics pipeline should be considered an
essential first step to solve the sustainable polymer design problem
that calls for future improvements such as the development of
improved property predictors, integrated synthesizability criteria,
and above all, process optimization protocols to make the designed
polymers a practical reality.

Conclusion
We have developed an informatics-based bioplastic design pipeline,
which has identified promising PHA-based bioplastic replacements
for seven petroleum-based commodity plastics. Our study starts

with the data collection and curation of approximately 23,000
homo- and copolymer data points spanning 13 properties critical
for everyday applications and use. Multitask neural networks with a
meta learner, pioneered by us for polymer informatics, forecast
thermal, mechanical, and gas permeability properties for polymers
over a broad chemical space with unprecedented performance.
Using the trained models, we predict the 13 key thermal,
mechanical, and gas permeability properties of all polymers in a
bioplastic search space of almost 1.4 million polymers. The property
predictions are validated and subsequently utilized to find bio-
replacements for seven commodity plastics that, in total, account
for more than 75% of the yearly plastic production. Using a two-
step selection protocol of a nearest neighbors search and synthe-
sizability criteria, we propose two bio-replacements for each com-
modity plastic and discuss chemical synthesis and biosynthesis
routes for these promising polymer replacements. Informatics can
help to identify suitable synthesis strategies as well55.

The implications of this work are far-reaching. We currently
produce by far more plastics than we can recycle,4 and the
demand for plastics is expected to continue to grow at an
annual rate of 4%.56 As countries begin to implement restric-
tions on plastic use, there is an urgent need for bioplastic
alternatives to conventional plastics. Yet, the options of com-
mercially available biopolymers are currently very limited.57

Our approach to design and discover functional biopolymers
can be applied to greatly accelerate the replacement of con-
ventional plastic materials with more sustainable alternatives,
and with possibly even greater performance advantages. The
candidate biopolymers, in particular PHAs, might be synthe-
sized by known chemical or biosynthetic routes, hybrid routes,
or routes yet to be developed. Our approach can augment
conventional empirically based design approaches by guiding
the way to more targeted experiments, fewer experimental trials,
or shorter times to market. Our work provides an informatics-
based screening tool for researchers and developers aiming to
produce bioplastics with improved thermomechanical and
transport properties for better performance in specific appli-
cations, thus accelerating the transition to a circular economy.

Methods
Fingerprinting. The fingerprinting process converts geometric and chemical
information of polymers to machine-readable numerical representations for

Fig. 5 Experimental and predicted properties. a Property density profiles computed over the entire prediction set of bioplastic candidates. Missing x-axes
beyond a certain cutoff indicate zero predicted property densities over those property ranges. The triangles show experimental properties of the seven
commodity plastics. Full polymer names are listed in Table 3. b–h Property radar charts for each commodity plastic. Triangles with solid lines show the
experimental properties. Circles with dashed lines and diamonds with dotted lines indicate predicted properties of the bio-replacements in Fig. 4 for the
copolymer subgroups of PHA-only and PHA-conventional polymers, respectively.
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training machine learning models. Homopolymer repeat units are represented as
simplified molecular-input line-entry system (SMILES)58 strings that use two
stars to indicate the two endpoints of the repetitive unit of the polymers, but
otherwise follow the SMILES syntax. The fingerprint vector (F) in this work has
849 components and is calculated based upon the SMILES string following a
two-step protocol34: First, we compute hierarchical fingerprints that capture
structural and key chemical features of each comonomer at three different length
scales59,60. At the atomic scale, our fingerprints track the occurrence of a fixed
set of atomic fragments (or motifs)61. For example, the fragment “C3-S2-C3” is
composed of three contiguous atoms, in this order, a three-fold coordinated
carbon, a two-fold coordinated sulfur, and a three-fold coordinated carbon. A
vector of such triplets represents the fingerprint components at the lowest
hierarchy. The next level uses the quantitative structure-property relationship
(QSPR) fingerprints62 to capture features on larger length-scales. QSPR finger-
prints are often used in chemical and biological sciences, and used here as
implemented in the chem informatics toolkit RDKit63. Examples of such fin-
gerprints are the van der Waals surface area64, the topological polar surface area
(TPSA)65,66, the fraction of atoms that are part of rings (i.e., the number of
atoms associated with rings divided by the total number of atoms in the formula
unit), and the fraction of rotatable bonds. The highest length-scale fingerprint
components in our polymer fingerprints deal with “morphological descriptors”.
They include features such as the shortest topological distance between rings, the
fraction of atoms that are part of side-chains, and the length of the largest side-
chain30.

Second, we sum the composition-weighted comonomer fingerprints to
compute the total copolymer fingerprint vector F ¼ ∑N

i Fici , where N is the
number of comonomers in the copolymer, Fi the ith comonomer fingerprint,
and ci the fraction of the ith comonomer. This copolymer fingerprint satisfies the
two main demands of uniqueness and invariance to different (but equivalent)
periodic unit specifications and renders the fingerprinting routine invariant to
the order in which one may sort the comonomers. Contrary to homopolymer
fingerprints, copolymer fingerprints may not be interpretable (e.g., the
composition-weighted sum of the fingerprint component “shortest distance
between rings” of two homopolymers has no physical meaning). In our work, all
copolymer data points are of random copolymers, and alternating copolymers
were treated as homopolymers.

Multitask predictor and meta learner. Multitask deep neural networks simul-
taneously learn multiple polymer properties to utilize possible inherent corre-
lations in data. Figure 1b schematically portrays the architecture of the three
concatenation-conditioned multitask predictors: the copolymer fingerprint and
selector vector are fed to a feed-forward deep neural network that outputs a
single property. The selector vector is a binary vector and specifies the output
property. For instance, the selector vector of the thermal properties predictor
(S1) has three components and encodes Tg as [100], Tm as [010], and Td as [001].
All parameters of the neural networks, such as the number of layers, number of
nodes, dropout rates, and activation functions, are optimized using the
Hyperband method67 of the Python package KerasTuner68. Final parameters are
reported in Supplementary Table 1. All models were implemented using the
Python API of TensorFlow69.

The training protocol of the predictors follows state-of-the-art techniques
involving five-fold cross-validation and a meta learner that forecasts the final
property values based upon the ensemble of cross-validation predictors34 (see also
Supplementary Fig. 1). The parameters of the cross-validation models are fixed
when used in the meta learner. The meta learner has the same network architecture
as the multitask predictors but receives the five outputs of the multitask predictors
as inputs (rather than the copolymer fingerprint). The cross-validation process
ensures that each data point has at least once been in the validation data set and
allows us to report the generalization error as averaged RMSEs and R2s of the
validation data sets. The three meta learners operate as production predictors. After
shuffling, the data set was split into two parts. 20% of the data set was set aside for
training the meta learners, while the remaining 80% was used for five-fold cross-
validation and the validation of the meta learner. All data set splits were stratified
by the properties.

Data availability
All the polymer data used in this work to train the various property prediction models
can be found in the PoLyInfo database https://polymer.nims.go.jp/en/(National Institute
for Materials Science (NIMS) holds the copyright of this database system).

Code availability
The Python code for creating the 1 373 503 bioplastic candidates, the bioplastic
candidates with property predictions, the code for searching the bio-replacements, and
the 70 predicted bio-replacements for seven commodity plastics are available at https://
github.com/Ramprasad-Group/bioplastic_design. Production models are deployed at
https://PolymerGenome.org.
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