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Abstract
The Flory-Huggins interaction parameter χ for polymer-solvent mixtures captures the nature of interactions and provides insights on solubility. χ is 
usually estimated using experimental or (empirical) computational methods, which may be expensive, time-consuming or inaccurate. Here, we built 
a machine learning (ML) model to instantly predict temperature-dependent χ for a given polymer-solvent pair. The ML model was trained using 1586 
experimental polymer-solvent datapoints, and a hierarchical polymer and solvent fingerprinting scheme. Extensive testing has been performed to 
verify the accuracy and generality of this model. This work demonstrates an ML model that can progressively be improved as new data emerges.

Introduction
Understanding polymer-solvent interactions is critical in sev-
eral contexts, e.g., during polymer synthesis,[1] designing pol-
ymer-blends,[2] building polymer membranes,[3,4] and polymer 
recycling.[5] The polymer-solvent interaction parameter χ , also 
alternatively known as Flory-Huggins interaction parameter, 
is a quantitative measure of the degree of interaction between 
the polymer and solvent molecules.[6–8] A lower χ implies 
higher polymer-solvent interaction and thus indicates higher 
solubility. Furthermore, by knowing χ , one can express other 
properties that depend on polymer-solvent interaction, some 
of which include viscosity, miscibility and swelling equilib-
ria.[9] In the future, we hope this work serves as guideline for 
polymer design for desired polymer-solvent interaction related 
properties.

The conventionally used experimental methods to estimate χ 
are osmotic pressure, vapor sorption, or inverse gas chromatog-
raphy measurements.[10] However, these methods are usually 
time-intensive. For example, sorption studies are time consum-
ing as they require allowing the solvent to fully absorb the 
polymer until saturation. Previously, computational approaches 
involving classical force fields molecular dynamics (MD)[11–13] 
and density functional theory (DFT)[14] have been used to cal-
culate χ . However, these methods are either not reliable enough 
or are computationally expensive.

An alternate simple approach the community has adopted is 
to estimate χ from the Hildebrand solubility parameter of the 
solvent (δs) and that of the polymer (δp) as follows:[15]

vp and vs stand for the molar volume of the polymer and sol-
vent, R is the universal gas constant, T is the temperature, and 
β is a constant with a commonly used value of 0.34. The Hilde-
brand parameter of a system is the square root of its cohesive 
energy per unit volume.

Figure 1 makes a comparison of χHildebrand with χexperimental 
values at room temperature for a number of polymer-solvent 
pairs. More details on the literature-sourced χexperimental values 
are covered in “Dataset” section. While some correlation does 
indeed exist between χHildebrand with χexperimental , it is not quan-
titative enough to be useful for general polymer-solvent com-
binations. Moreover, Eq. (1) is too simplistic an approach to 
capture the full breadth of polymer-solvent interactions. Hence, 
other more reliable and practical methods must be explored to 
estimate χ.

In this contribution, we have developed a Gaussian Process 
Regression (GPR) based machine learning model to instantly 
predict χ values of the polymer-solvent pairs. To train this 
model, we used a dataset of experimentally measured χ val-
ues. The temperature of measurement and the chemical fea-
tures of the polymer and solvent were used to define our total 
feature space. Extensive testing of the strengths and limi-
tations of the model was performed. Given that the dataset 
has a larger diversity and number of solvents than polymers, 
generalizability was better for unseen solvents. Nevertheless, 
the model can be progressively improved as newer data on 
polymer-solvent pairs become available. We hope that this 
work serves as an initial step towards a data-driven, quan-
titative predictive capability for describing polymer-solvent 
interactions.[16,17](1)χHildebrand = (vpvs)

1/2(δp − δs)
2/RT + β

© The Author(s), under exclusive licence to The Materials Research Society, 2022

http://orcid.org/0000-0003-4630-1565
http://crossmark.crossref.org/dialog/?doi=10.1557/s43579-022-00237-x&domain=pdf


 

2        MRS COMMUNICATIONS · VOLUME XX · ISSUE xx · www.mrs.org/mrc

Technical details
Dataset
Experimental χ values corresponding to unique polymer-
solvent pairs at various temperatures have been collected 
from literature sources and online databases.[10,19–29] Fig-
ure 2 illustrates our 1586 data points corresponding to 58 
polymers and 140 solvents, within a temperature range of 
273–526 K. The experimental methods commonly used to 
report χ are osmotic pressure measurements, sorption studies, 
and inverse gas chromatography. It has been observed that χ 
decreases with an increase in temperature.[30] When multiple 
values of χ were available, the average value was considered. 
Our dataset also contains negative values of χ , which are 
fairly uncommon. These arise due to excess negative entropy 
contributions, commonly seen in exothermic mixing.[31] Fur-
ther, our dataset contains mostly simple synthetic organic 
polymers and a few natural polymers, such as polystyrene 
(318), polybutadiene (172), poly(dimethylsiloxane) (123), 
polyisobutylene (86), polycarbonate (67) and polyethylene 

(56). The solvents belong to various classes like aromatic, 
linear aliphatics, and cyclic aliphatics.

Fingerprints
To numerically represent polymers and solvents, this study uses 
a unique fingerprinting scheme to define the chemical features 
of the polymer and solvent.[18,32] The fingerprinting scheme 
derives features from various hierarchical levels including 
atomic level descriptors, block-level descriptors and morpho-
logical descriptors, as described in Ref. 18. The atomic level 
fingerprints consider the atomic triples (fragments of three 
contiguous atoms). The block-level fingerprints consider the 
blocks from a larger scale, like benzene rings. Additionally, the 
morphological descriptors deal with features such as shortest 
topological distance between rings, fraction of atoms that are 
part of side-chains, and the length of the largest side-chain. 
Finally, the morphological descriptors also include quantitative 
structure-property relationship (QSPR) type descriptors such as 
Van der Waals volume, surface area and the topological polar 
surface area (TPSA). Moreover, the temperature at which χ 
was measured is another essential feature. In total, 400 features 
were used to train our machine learning model.

Machine learning
Gaussian process regression (GPR) was utilized as the method 
of choice owing to various advantages. First, as a Bayesian 
approach, one of the critical advantages of using GPR is its 
ability to provide uncertainty on the predictions. The uncer-
tainty acts as a good metric on whether one can trust the pre-
diction or not. Second, GPR converges well on a small dataset. 
Our model was built using radial basis function kernel (RBF), 
and five-fold cross-validation.

To assess the impact of sampling methods on the model 
accuracy, we have tested four sampling methods: (1) random 
split, (2) group shuffle split based on polymer groups, (3) group 
shuffle split based on solvent groups, and (4) polymer and sol-
vent one-holdouts.[33] For the group shuffle splits, each unique 
polymer (or solvent) is assigned to a unique group, and these 
specific groups are split into training and testing sets. These 
group splits are critical to deciphering the model performance 
for polymers/solvents chemically distinct from the ones in our 
trainset. On the other hand, the one hold-out splits is a particu-
lar case of the group split, where only one polymer (with all 
its associated solvents) or one solvent (with all its associated 
polymers) is held out. This helps us to understand the model 
performance for that specific targeted held-out polymer/solvent. 
For small dataset sizes, the machine learning model perfor-
mance changes drastically with the choice of sampling, but this 
dependence should vanish as the number of distinct polymers 
and solvents increases in the dataset.

The model performance was checked with the following 
two error metrics: root mean square error (RMSE) and the 
coefficient of determination (R2 ). The RMSE as a function of 
trainset size is visualized in the form of a learning curve to 
check against overfitting. The trainset size was varied from 50 

Figure 1.  (a) Comparison of χ obtained from Eq. (1) (χHildebrand) 
with corresponding experimental values (χexperimental) at room 
temperature, (b) same comparison in a log–log plot.

Figure 2.  Distribution of χ as a function of temperature for each 
unique polymer and solvent.
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to 100% of the full dataset size, and for each trainset size, five 
runs were performed.

Results and discussion
Firstly, the most critical step is data validation, which is done 
by comparing the experimental χ values to the available solu-
bility data. Next, this validated dataset was then converted into 
a machine-readable form via fingerprinting. Thereafter, a GPR-
based machine learning model was constructed, considering 
different sampling methods. Lastly, the generality and accuracy 
of the developed model was validated by testing on two novel 
polymers, never seen by the ML model during training: PIM-1 
and SBAD-1.

Dataset validation
For the dataset accumulated over various sources, dataset vali-
dation was done to ensure its viability. From the definition of 
χ , it follows that the smaller the value of χ , the greater is the 
reduction in Gibb’s free energy of polymer-solvent mixing.[10] 
This implies that the χ values may be expected to be small for 
good solvents for a particular polymer. To ascertain that such 
a trend occurs, we compared our polymer-solvent χ data with 
two available polymer-solvent solubility datasets, as portrayed 
in Fig. 3.

The first comparison was made with solubility data found 
from Hansen’s Solubility Parameters: A user’s handbook.[34] 
This handbook classifies the solubility levels of polymer-sol-
vent mixtures on a 6-level scale: (1) soluble; (2) almost soluble; 
(3) strongly swollen, slight solubility; (4) swollen; (5) little 
swelling; (6) no visible effect, insoluble. Comparing with the 
solvent-polymer pairs in our dataset, we find 8 common poly-
mers (polystyrene, polyisopropene, polyisobutylene, poly(vinyl 
chloride), poly(vinyl acetate), poly(methyl methacrylate), 
poly(cis-1,4-butadiene), cellulose acetate) and 41 common 
solvents corresponding to 367 datapoints at room temperature. 
The violin plots in Fig. 3 show that, as expected, the median 
values of χ of our dataset increase with an increasing level of 
insolubility as per Hansen’s solubility data.

The second comparison was made using newer accumulated 
solubility data.[35] This new dataset represented solubility at 
two levels: insoluble and soluble. Figure 3(b) compares our 
χ data with this new solubility data for the polymer-solvent 

combinations that occur in both datasets (corresponding to 11 
polymers and 12 solvents, with a total of 45 data points). As 
expected, with increasing χ values, the level of insolubility 
increases. These comparisons provide us confidence that our χ 
dataset is reliable and shows expected trends in terms of cor-
relations with available solubility data.

Machine learning model performance
Next, we move on to discuss the trained GPR-based ML model 
utilizing the 1586 χ data points corresponding to 58 polymers 
and 140 solvents, trained using 400 features. Because χ is 
impacted by both polymer and solvent types, different types 
of sampling methods are used to understand the strengths and 
limitations of the models. We used four sampling splits to 
train our model: (1) random split, (2) group shuffle split based 
on polymer groups, (3) group shuffle split based on solvent 
groups (4) polymer and solvent one-holdouts, details provided 
in “Machine learning” section and Supplemental Information.

Figure 4 shows the parity plots corresponding to random 
split, the polymer group split, and solvent group split, followed 
by the learning curve plotted for five runs. The learning curve 
is a great tool to check if the model is overfitting. It is evident 
from the learning curve that the performance for the model 
with the random split is the best, closely followed by solvent 
group splits, followed at last by polymer group splits. Further, 
with increasing trainset size, the model performance improves.

We also note from Fig. 4 that when the random split is used, 
the model may get a glimpse of the polymers (and solvents) 
present in the test set. That polymer may have already been 
paired with another solvent, or even with the same solvent at 
another temperature. The high test R2 values (0.83) and low 
RMSE (0.27) values attest to the satisfactory performance of 
the model, as can be seen from Fig. 4. For the solvent-based 
splits, the performance does not change drastically as a function 
of the held-out solvent. This is because the solvent space span-
ning about 140 solvents is quite diverse. For polymer group 
splits, the performance changes dramatically as a function of 
held-out polymers. The polymer space consisting of 58 exam-
ples is relatively small and not diverse enough. Therefore due 
to the data imbalance, the model performance fluctuates dra-
matically for polymers that are chemically different from the 
polymers in the trainset.

Figure 3.  Violin plots to 
visualize (a) χ comparison 
with 6-level solubility classes 
(experimental data referenced 
from Hansen’s Solubility 
Parameters Handbook),[34] 
(b) χ comparison with newer 
2-level solubility classification 
(experimental data).[35]
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In addition to the three sampling methods discussed 
above, we did another exercise pertaining to the polymer 
and solvent hold-outs included in the Supplemental Infor-
mation. This exercise compares the model performance as 
a function of one-heldout polymer (and solvent) at a time. 
It emphasizes the fact that for held-out polymers that are 
chemically similar to the ones present in the trainset, the 
predictions are quite satisfactory. However, the predictions 
are less accurate for the ones that are not chemically similar. 
This analysis is crucial to realize the strengths and weak-
nesses of the model.

Further model validation
One of the major goals of any machine learning algorithm is 
extrapolative prediction. Thus, there is a need to validate the 
model by checking its generalizability. To ensure the mod-
el’s validity, we tested the model performance on two novel 
polymers, SBAD-1 (spirobifluorene aryl diamine) and PIM-1 
(polymer of intrinsic microporosity).[4] The experimentally 
measured χ at room temperature has been recently reported 
for these two polymers with 12 solvents, leading to a total 
of 14 data points. None of these new datapoints were part of 
our χ training set.

Figure 4.  Parity plot (for 90 % trainset size) with data split using (a) random split, (b) polymer group split, and (c) solvent group split, along 
with d) learning curve comparing the three splits.
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The model built using random split (see Fig. 4) was used 
to make predictions on SBAD-1 and PIM-1. Unfortunately, 
the model greatly underpredicts χ values for these polymers. 
This is an expected result as PIM-1 and SBAD-1 are ladder 
and semi-ladder polymers (see Fig. 5), which are very differ-
ent from the more straightforward linear or branched polymers 
present in our dataset. The principal component analysis (PCA) 
plot in Figure 6 contrasts the difference in chemistry corre-
sponding to the polymers from our dataset with SBAD-1 and 
PIM-1 polymers. This difference in chemistries clearly explains 
why the model does not perform an excellent job at making 
predictions for PIM-1 and SBAD-1 polymers.

To aid better predictions for these drastically different poly-
mers, we iteratively augmented the PIM-1 and SBAD-1 data 
(see Fig. 7). The driving force for this exercise is to create a 
model with some data to just learn enough about these dif-
ferent polymers. As a part of this exercise, out of the 14 new 
datapoints, just datapoints for which the predictions showed 
the highest uncertainty and errors were appended to the origi-
nal training dataset. We proceed to add data points sequen-
tially: first, we added one data point each for SBAD-1 and 
PIM-1 polymers. The augmented data points were also chosen 
consciously so as to balance the solvent chemistry. The vali-
dating dataset contained solvents of the type aromatic, linear 

aliphatics, and cyclic aliphatics. After retraining the model, it 
was seen that PIM-1 predictions became quite satisfactory on 
the addition of only one new data point. On the other hand, 
the behavior for SBAD-1 was still not learned by the model, 
and we continued to add 4 more data points for SBAD-1. With 
these 5 appended data points, the model learns the behavior of 
PIM-1 and SBAD-1 for the solvents not added to the dataset. 
This exercise clearly demonstrates the limitation of the machine 
learning models, but also points to a pathway to understand the 
limitations and overcome them (via suitable data augmentation 
and infusion, when possible).

We proceeded to retrain our final production model with all 
data pertaining to PIM-1 and SBAD-1 polymers. This model 
built on 1600 datapoints shows an average CV train RMSE 
of 0.211 and average CV test RMSE of 0.333. Details of this 
model have been included in the Supplemental Information.

Conclusion
A knowledge of χ enables us to decipher and understand poly-
mer-solvent interactions. Here, we have developed a machine 
learning model for instantaneous χ predictions for polymer-
solvent pairs. Based on 1586 experimental χ values, 400 
features were generated for polymers and solvents using the 

Figure 5.  Structure of (a) PIM-1 polymer, (b) SBAD-1 polymer.[4]

Figure 6.  (a) Comparison of the chemical space of polymers SBAD-1 and PIM-1 with the polymers present in our trainset, (b) Similar com-
parison for solvents used. Here PC0 and PC1 denote the first and second principal components derived from PCA analysis.
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Polymer Genome fingerprint scheme and were used to train our 
GPR model.[29] We further assessed the model performance by 
considering various sampling methods and testing on unseen 
polymer-solvent pairs. Although the data scarcity problem lim-
its the model’s accuracy and generality, it can be progressively 
improved by exposing the model to new data.
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