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ABSTRACT: A central challenge in the development of next-generation
sustainable materials is to design polymers that can easily revert back to
their monomeric starting material through chemical recycling to
monomer (CRM). An emerging monomer class that displays efficient
CRM are thiolactones, which exhibit rapid rates of polymerization and
depolymerization. This report details the polymerization thermody-
namics for a series of thiolactone monomers through systematic changes
to substitution patterns and sulfur heteroatom incorporation. Addition-
ally, computational studies highlight the importance of conformation in
modulating the enthalpy of polymerization, leading to monomers that
display high conversions to polymer at near-ambient temperatures, while
maintaining low ceiling temperatures (Tc). Specifically, the combination
of a highly negative enthalpy (−19.3 kJ/mol) and entropy (−58.4 J/
(mol·K)) of polymerization allows for a monomer whose equilibrium polymerization conversion is very sensitive to temperature.

Each year, more than 300 million tons of plastic waste are
produced worldwide.1 The majority of this plastic waste is

either landfilled, combusted, or polluted into the environment,
leaving only a small fraction that is recycled.2 Of the plastic
waste that is recycled, most is converted into lower quality
materials.3 An emerging approach that seeks to address this
issue is chemical recycling to monomer (CRM).2,4−13 In CRM,
the polymer is depolymerized back to its monomeric starting
material, which can then be used to remake the polymer with
no loss in material properties.
Monomers with ceiling temperatures (Tc) near ambient

temperatures (and below) are good candidates for chemical
recycling. The Tc of a monomer is defined as the temperature
at which the rates of polymerization and depolymerization are
equal, which occurs when the Gibbs free energy of polymer-
ization (ΔGp) is zero. The Tc is thus determined by both the
enthalpy (ΔHp

o) and entropy (ΔSpo) of polymerization,14 and
low-Tc monomers can be targeted by identifying systems that
have the proper balance of enthalpic and entropic contribu-
tions to the polymerization reaction. For a polymerization
equilibrium to be temperature-dependent in a manner that
allows for practical depolymerization, the entropic contribution
(favoring depolymerization) must be able to overcome the
exothermicity of monomer addition (favoring polymerization)
at reasonable temperatures (Figure 1A). Thus, polymers made
from low-Tc monomers can be reprocessed at temperatures
mild enough to minimize chemical side reactions and energy
consumption. While Tc is an important parameter often used
to qualify monomers for CRM, it is important to consider the

ratio of the individual ΔHp
o and ΔSpo values, as this determines

how sensitive the polymerization equilibrium is to temperature.
A monomer that is ideally suited for CRM would display a
narrow and near-ambient temperature range in which it can be
fully polymerized and depolymerized.
A variety of monomers have been explored for the use of low

Tc polymers in CRM, including lactones,15−28 phthalalde-
hydes,29,30 carbonates,31−36 cyclic acetals,37 and others.38,39

Early efforts largely focused on lactones,40 but the rates of
polymerization and depolymerization are prohibitively slow for
many applications. This has led to an increased interest in
thiolactones, which polymerize and depolymerize more rapidly
due to rapid thiol-thioester exchange reactions.41,42 The first
thiolactone ring-opening polymerization was reported by
Overberger in 1968 for the synthesis of poly-
(thiocaprolactone).43 After receiving minimal attention in the
literature since that time, thiolactones have seen renewed
interest in the field and a number of groups have recently
revisited this monomer class (Figure 1B) and thioester-based
materials in general.44−56 Ghadiri and Bowman explored
polythioester systems to create abiotic mimics of polypeptides
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and polynucleic acids, respectively, that could undergo
dynamic reorganization of the polymer sequence via thiol-
thioester exchange. More recent studies by the Lu, Chen, and
Tao groups have each focused on developing low Tc
thiolactones for applications in chemical recycling. Lu has
developed a number of thiolactone systems that can be
polymerized to yield high molecular weight polymers with
narrow dispersities.46 Chen has built upon Lu’s [2.2.1] bicyclic
framework to yield stereodisordered polythioesters with high
crystallinity and chemical recyclability.47 Most recently, Tao
has investigated alkylated dithiolactones, and shown them to
possess high polymerizability, chemical recyclability, and
crystallinity.49 While these reports have contributed to the
understanding of thiolactone polymerizations, there is still
much to learn with regard to how changes to ring size,

substituents, and heteroatomic substitution impact polymer-
ization thermodynamics.
In this work, the synthesis and polymerization behavior of a

series of six-membered thiolactone derivatives is reported,
augmented by insights from computational studies (Figure
1C). Through systematic heteroatom substitution and
methylation, the monomer-polymer equilibria can be signifi-
cantly modulated through surprising changes to the ground
state monomer conformation. From this study, an improved
understanding of how sulfur atoms affect the conformations of
thiolactone monomers is gained and leads to a nonintuitive
approach for modulating polymerization thermodynamics.
Interest in six-membered thiolactone derivatives was

prompted by Overberger’s early attempts to polymerize
thiovalerolactone (TVL, 1).43 In these studies, low molecular
weight polymers were obtained at high temperatures,
suggesting that TVL may have a low ceiling temperature. To
test this hypothesis, a series of six-membered thiolactone
monomers were designed to investigate polymerization
behavior at reduced temperatures (Figure 2). Based on the
Thorpe−Ingold effect,57 the introduction of methyl groups to
the monomers was expected to accelerate the rate of
cyclization, thereby favoring depolymerization and lowering
the Tc. Two series of monomers were synthesized that varied
in methylation and sulfur substitution: TVLs (1−5) and 1,4-
dithianones (DTNs; 6−9). For both series, methyl groups
were introduced at different positions to study the effect of
alkyl substitution on polymerizability. All monomers were
prepared through two general strategies. TVLs 1−5 were
prepared following Scanlan’s protocol involving thiol-ene
reaction, hydrolysis, and Steglich cyclization.58 The DTN
monomers (6−9) were prepared based on Lenoir’s reaction of
ethane dithiol with the appropriate haloacetyl halides (see
SI3−SI8 for synthetic details).59 Monomers were all prepared
in 31−61% yields from commercially available materials and
were readily scaled for production of sufficient quantities to
evaluate polymerization behavior (500 mg to 12 g).
Initial polymerization studies on this collection of

thiolactone monomers were performed to identify reaction
conditions to produce polymeric material. Anionic polymer-
izations were performed in either CDCl3 or THF using 1-
dodecanethiol as the initiator and 1,8-diazabicyclo[5.4.0]-
undec-7-ene (DBU) as the base. Depending on the monomer,
concentrations ranged from 3 M to bulk and temperatures
from room temperature to −33 °C (Table 1). All polymer-
izations were found to be rapid and reached equilibrium after
30 min, after which time they were quenched with trifluoro-
acetic acid (TFA). Polymers that showed conversion were
isolated by precipitation, then characterized by size-exclusion
chromatography (SEC), thermogravimetric analysis (TGA)
and differential scanning calorimetry (DSC). The results of the
polymerizations are summarized in Table 1. The molecular
weights of the polymers ranged from 3.7 to 18.7 kDa, and
generally correlated with the overall conversion of the
monomers. High dispersities were observed for all polymers,
likely due to chain transfer events derived from trans-
thioesterification of the polymer backbone, as indicated by
GPC (Figures S9−S15). Semicrystalline materials were
observed by DSC with monomers that lacked side chains (1
and 6) and amorphous polymers were obtained from
monomers containing side chains (2, 3, and 7−9). Glass
transition temperatures for all systems were generally low (−40
to 19 °C) but could be increased by the introduction of methyl

Figure 1. (A) Thermodynamics of ceiling temperature (Tc). (B)
Recently reported thiolactone monomers. (C) This work: Design
evolution of six-membered thiolactones via sulfur substitution and
methylation; gray, C; white, H; red, O; yellow, S.
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and phenyl substituents that inhibit rotation of the polymer
backbone.
As expected, the monomer conversion of these polymer-

izations was highly dependent on the monomer structure.
Using a 5 M monomer concentration at room temperature,

TVL (1) achieved 46% conversion at equilibrium (Table 1,
entry 1). Attempts to increase the monomer concentration as a
means to increase conversion were prevented by the
insolubility of the polymer product in all solvents explored.
The introduction of the methyl substituent in α-methyl TVL

Figure 2. Synthesis of TVL and DTN monomers.

Table 1. Polymerizations of Thiolactone Monomers

aConversion determined by 1H NMR in CDCl3.
bDetermined by CHCl3 size-exclusion chromatography (SEC) calibrated using polystyrene

standards. cCalculated as described in ref 61. dTc expressed at 1 M conditions. eTHF was used instead of CDCl3 for the polymerization of these
monomers. fExperimental thermodynamic values not obtainable due to low equilibrium polymerization conversion. gExperimental thermodynamic
values not obtainable due to polymer insolubility at low temperature.
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(2) yielded a more soluble polymer, but also led to a decrease
in the equilibrium polymer conversion to 35% at 5 M
monomer concentration (Table 1, entry 2). This was
anticipated according to the Thorpe−Ingold effect, as
discussed above. The substitution effect was heightened in
the polymerization of α,α-dimethyl TVL (3) and displayed
only 16% conversion to polymer when performed in the bulk
(Table 1, entry 3). Surprisingly, introducing one or two methyl
substituents at the β-position led to complete inhibition of
polymerization in the bulk at temperatures as low as −20 °C
(Table 1, entries 4 and 5), possibly due to a conformational
impact of the ring-opened state.48 The parent DTN (6)
monomer displayed a much higher equilibrium polymer
conversion (87%) compared to the parent TVL monomer
(1) under the same reaction conditions. While the
introduction of one methyl group in α-methyl DTN (7) led
to a decrease in polymer conversion (70%, in the bulk),
addition of the second methyl in α,α-dimethyl DTN (8) led to
a significant increase in conversion (91%) even at lower
concentrations (3 M). Further experiments were performed to
better understand this counterintuitive result and elucidate the
relative roles of ring-strain and entropy in each of these
systems.
To gain insight into the underlying thermodynamics of these

systems, variable temperature NMR (VT-NMR) experiments
were performed to measure the change in monomer
equilibrium as a function of temperature. This enabled the
experimental determination of ΔHp

o and ΔSpo through van’t
Hoff analysis. Applying the Dainton equation, the Tc could also
be obtained. A general procedure for the van’t Hoff analysis
and corresponding plots is included in the SI (Figures S30−
S34). Given the different solubilities and polymerizabilities of
these monomers, the entropy of polymerization and ceiling
temperature (Tc) values in Table 1 are normalized to 1 M. VT-
NMR data were not obtained for monomers 3, 4, and 5 due to
insufficient conversion at the concentration used for the
experiments.
The thermodynamic trends observed during VT-NMR were

in general agreement with the conversion results discussed
above. Specifically, an increased enthalpy and decreased
entropy of polymerization was observed upon methylation of
1 (ΔHp

o = −4.9 kJ/mol and ΔSpo = −23.7 J/(mol·K)) to 2
(ΔHp

o = −4.5 kJ/mol and ΔSpo = −26.2 J/(mol·K)), leading to
a decrease in Tc from −66 to −101 °C. As observed during the
initial polymerization studies, the DTN monomer series 6−8
did not follow trends expected from the Thorpe−Ingold effect.
Table 1 shows how addition of one methyl substituent leads to
a slightly more exothermic polymerization of 7 (ΔHp

o = −10.2
kJ/mol) and a Tc of −18 °C was measured. However,
introduction of the second methyl group in 8 significantly
decreased the ΔHp

o (−19.3 kJ/mol) and the ΔSpo (−58.4 J/
(mol·K)), leading to a Tc of 58 °C. To highlight the different
polymerization behaviors of DTNs 6−8, a graph of the
conversions at different temperatures predicted by the Dainton
equation was plotted for these monomers using the
thermodynamic values obtained (Figure 3). At first consid-
eration, it would seem that a lower ceiling temperature would
lead to a more easily recyclable material. This plot
demonstrates that this assumption can be misleading. The
more exothermic and exoentropic ring-opening of DTN 8
allows it to reach high conversions at near-ambient temper-
atures, while still maintaining a relatively low Tc. In addition,
the larger magnitude of ΔSpo in 8 gives an equilibrium

monomer conversion that is much more sensitive to changes in
temperature. This allows the monomer to shift from a highly
polymerized to fully depolymerized state with a relatively small
change in temperature. To demonstrate this behavior on an
isolated polymer sample, a 0.5 M solution of poly(α,α-
dimethyl DTN) in THF was treated with substoichiometric
quantities of DBU and dodecanethiol (1 mol % relative to each
repeating unit). After heating the reaction at 80 °C for 1 h, 1H
NMR and SEC (Figures S37 and S38) showed 90% conversion
back to monomer.
Due to the insolubility of the α-phenyl homopolymer (9),

VT-NMR analysis could not be carried out. However,
monomer 9 was still viable for copolymerization experiments
to explore how monomers that are not easily homopoly-
merized can be kinetically trapped in a copolymer product and
modify the thermal properties. A first experiment was
performed using a 4:1 ratio of 8:9 and resulted in a polymer
composed of 88% monomer 8 and 12% monomer 9 (Table
S10, entry 1). A second experiment was conducted using a 3:1
ratio of 8:9 and resulted in 83% incorporation of monomer 8
and 17% monomer 9 (Table S10, entry 2). The thermal
properties of these copolymers were also tested, which revealed
two distinct glass transition temperatures (Table S10 and
Figures S39 and S40). The presence of two Tgs could suggest
phase separation from block-like incorporation of 8 into the
polymer backbone.60

To better understand the unexpectedly high exothermicity in
the ring-opening of monomer 8, we have developed a first-
principles based computational strategy to compute ΔH.61 By
adequately incorporating conformational sampling through ab
initio molecular dynamics and extrapolating schemes to access
behavior at large length-scales, this important quantity can now
be computed accurately for a large and chemically diverse set
of ring-opening polymers. This capability is separately
described and validated against a diverse benchmark set of

Figure 3. Predicted polymer conversion at different temperatures.
Plotted at 1 M using the van’t Hoff equation and experimental values
of ΔHp

o and ΔSpo.
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polymers produced using ring-opening polymerization. In the
present contribution, this procedure is adopted to calculate
enthalpies of polymerization ΔHcalc for polymers considered
here, and the ΔHcalc results are shown in Table 1. As can be
seen, ΔHcalc correlates well with available experimentally
determined ΔHp

o for monomers, including low ΔHcalc values
for 4 and 5 that were completely resistant to polymerization.
While the ΔHcalc of 8 was in good agreement with the
experimental results, further insights into the origins of this
change were seen in the ground state monomer conformations
obtained in the DFT calculations. TVL monomers 1−3
consistently featured half-chairlike conformations (Figure S42)
that followed the expected polymerization trends. Interestingly,
the introduction of a second sulfur atom caused the DTN
monomers 6 and 7 to adopt a boat conformation (Figure 4),
which was further supported by the crystal structure obtained
for α-phenyl-DTN (9). A similar boat conformation was
recently observed by Tao and co-workers for analogous
dithiolactone monomers.49 As seen in Figure 4, the boat
conformation causes two hydrogen atoms to point internally
toward each other, which increases ring strain through
transannular interactions and explains why DTN 6 possesses
a higher ΔHp

o than TVL 1. Substitution of both α-hydrogens
for two methyl groups in DTN 8 would lead to severe
transannular strain between the methyl and hydrogen
substituents in the boat configuration. This prompts a
conformational change to a flattened structure with increased
ring strain as observed in the more negative ΔHp

o (Figure 4).
In summary, the effect of methyl substitution and sulfur

incorporation on the polymerization thermodynamics of a
series of thiolactone monomers was investigated. Polymer-
ization and VT-NMR experiments revealed that addition of
methyl substituents to the TVL monomers favors depolyme-
rization and lowers the Tc. First-principles computations and
crystallographic data showed how the addition of a sulfur
heteroatom in the DTN series alters the ground state
conformation and polymerization thermodynamics in non-
intuitive ways. DTNs were observed to preferentially adopt a
boat structure, but the addition of bulky substituents in 8
further disrupts the monomer geometry to give increased
monomer strain and exoentropicity. This highlights the
importance of the magnitude of ΔHp

o and ΔSpo values in
designing low ceiling-temperature monomers with efficient
recyclability. With insufficiently small ΔSpo values, a monomer
with a low Tc may still require large changes in temperature to
reach reasonable conversions. Having the appropriate combi-
nation of thermodynamic values can give rise to systems
capable of high conversion at modest temperatures, while still
retaining polymerization equilibria highly sensitive to temper-
ature. It is anticipated these findings will further the rational
development of low ceiling temperature thiolactone monomers

and encourage the exploration of heterocyclic systems that
have nontraditional ground-state conformations.
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