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Accelerating quantum molecular simulations
Variational Monte Carlo is one of the most accurate methods to solve the many-electron Schrödinger equation, 
but suffers from high computational cost. A recent study uses a weight-sharing technique to accelerate the neural 
network-based variational Monte Carlo method, allowing accurate and effective simulations of molecules.
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The wave function encodes an essential 
amount of information for calculating 
the properties of a quantum system1, 

and thus, accurately solving the Schrödinger 
equation for the wave function is a critical 
problem in multiple disciplines, for example, 
physics, quantum chemistry, and materials 
science. Except for simple systems such as 
the hydrogen atom, this equation cannot be 
solved analytically. When the complexity 
in the system increases, the numerical 
solution also becomes out of reach, mainly 
due to quantum many-body interactions, 
for instance nuclei–nuclei, nuclei–electron, 
and electron–electron interactions. The 
Born–Oppenheimer approximation1 
separates the nuclei and electron’s degrees 
of freedom, thus reducing the complexity in 
nuclei–electron interactions, but the many-
electron problem remains cumbersome to be 
solved effectively. Density functional theory, 
which maps the many-electron system 
onto an effective non-interacting system 
of ‘electrons’, offers a solution that better 
balances the accuracy and computational 
cost, hence being widely used to study many 
physical, chemical, and biological systems. 
When higher accuracy is needed, other 
computationally more expensive methods, 
as schematically shown in Fig. 1a, must 
be used. Among these methods, a popular 
option is variational Monte Carlo (VMC)2. 
A major advantage of VMC over other 
methods, for example, Hatree–Fock, is that 
it can be used with arbitrary forms of the 
wave function. During the last several years, 
artificial intelligence has inspired many 
efforts to improve VMC3–8, and the work by 
Scherbela et al.9 published in this issue of 
Nature Computational Science, is an example 
of such a recent achievement.

Given a wave function ansatz, VMC 
optimizes it to minimize the energy 
of its described quantum system, and 
drives it towards the ground state. A 
good ansatz must be as close as possible 
to the unknown exact solution while 
satisfying the anti-symmetry requirement. 
Choosing a good ansatz is therefore 
a challenge. The traditional choice is 

the Slater–Jastrow ansatz2, obtained by 
multiplying the Slater determinant with a 
(Jastrow) factor. The Slater–Jastrow ansatz, 
which sometimes undergoes a backflow 
transformation, determines the accuracy 
and the computational cost of VMC with 
respect to other methods, as shown in 
Fig. 1a. Recently, deep neural networks 
(DNN) have been used as an ansatz for 
VMC3–8. The main idea is to represent 
the wave function by a DNN that accepts 
the atomic configurations as inputs, and 
outputs the wave function amplitude and 
phase factor3. Then, the DNN is trained 
along with the VMC optimizations. In a 
DNN, weights are the main parameters 

that specify the strength of the connections 
among the artificial neurons, visualized as 
arrows in Fig. 1b. Therefore, the weights of 
a DNN determine the wave function that 
is represented throughout the DNN-based 
VMC approach. Methods of this family 
yield superior accuracy and computational 
cost scaling that can be comparable with 
or better than the highly accurate coupled-
cluster singles, doubles and perturbative 
triples, known as CCSD(T)10. However, as 
depicted in the inset of Fig. 1a, because the 
constant prefactor in the scaling is large due 
to hundreds of thousands of parameters of 
the DNN, they remain slower than CCSD(T) 
for small molecular systems. Even the 
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Fig. 1 | Weight-sharing technique to accelerate DNN-based VMC. a, A schematic view of the available 
methods for solving the many-electron Schrödinger equation. In the inset of a, the computational cost 
scalings (given in the log scale) of CCSD(T), DNN-based VMC, and weight-sharing DNN-based VMC 
methods, are given. DNN-based VMC (blue line) scales better (or has smaller slope) than CCSD(T) 
(black line) but because of its prefactor (the intercept with the y axis), it is slower than CCSD(T) in 
the small system size region (shaded region). The weight-sharing DNN-based VMC technique (red 
line) brings the blue line down, accelerating the ab initio simulations of molecules; the red dashed line 
represents large molecular sizes beyond this study. b, A depiction of three DNN wave functions for 
three geometries in weight-sharing DNN-based VMC. In each DNN, circles represent artificial neurons, 
arranged in layers. Following the arrow, input information, which comes from the left, is processed in 
the neurons, and outputs are passed to the neurons in the next layers. Each arrow is associated with a 
weight factor, specifying how important this line of transferred information is among the inputs of the 
neuron accepting it. Red arrows schematically indicate the weights that are kept the same across the 
geometries. In b, three geometries of the ethene molecule — each having six atoms (2 carbon atoms 
and 4 hydrogen atoms) — are used to visualize the inputs of these DNNs.
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computation of medium-size molecules 
needs days or weeks of calculations on 
highly optimized modern hardware, thus 
the DNN-based VMC approach is generally 
computationally too expensive for sizes of 
practical interest.

The work by Scherbela et al.9 proposes 
a solution for this problem that can 
substantially reduce the prefactor and 
accelerate the DNN-based VMC. It was 
motivated by realistic scenarios when 
the many-electron Schrödinger equation 
should be solved for a large number of 
nuclear geometries. Examples of these 
situations include the calculations of 
chemical reaction pathways, which involves 
multiple continuously deformed nuclear 
geometries, and the generation of big 
datasets for artificial intelligence in materials 
informatics11. The main idea of Scherbela  
et al.9 is that by constructing and optimizing 
the wave function ansatzes for these 
geometries concurrently using a technique 
called weight sharing, multiple advantages 
can be obtained, as depicted in Fig. 1a.

Each DNN that is used as a wave 
function in VMC3–8 could have hundreds 
of thousands of parameters, that is, the 
weights, that have to be optimized during 
the training process. Within the weight-
sharing DNN-based VMC, which resembles 
deep transfer learning, 75% to 95% of these 
parameters are shared — that is — they are 
kept as the same among different nuclear 
geometries in each optimization step. 
When the parameters of one geometry are 

optimized, the shared set of parameters 
will be updated across other geometries. 
The first advantage of the weight-sharing 
DNN-based VMC is that the number of 
independent parameters is much smaller 
than constructing and optimizing the 
wave function ansatzes independently. 
In the study, the authors demonstrated a 
substantial acceleration of about one order 
of magnitude compared to independent 
optimization without weight sharing. 
Second, weight sharing plays a role of 
regularization, forcing the current wave 
functions in each iteration to be comparably 
good in approximating the real wave 
functions of the geometries considered. In 
other words, this regularization makes VMC 
faster and more stable than independently 
using regular DNN-based methods for 
multiple geometries.

Data size and quality are enormously 
important for applying artificial intelligence 
methods in disciplines like quantum 
chemistry and materials informatics. The 
technique demonstrated by Scherbela et al.9  
can greatly accelerate the DNN-based 
VMC method for the simulation of small 
molecules (up to ten atoms as demonstrated 
in the study), and thus, can further enable 
the fast generation of high-qualify molecular 
datasets. Within this context, DeepErwin, 
the open-source package that implements 
weight-sharing DNN-based VMC and is 
available in GitHub, could be a useful tool 
for the community. Given the momentum 
gained recently in this field3–9, we can 

anticipate more developments in the future. 
A promising future avenue, which remains 
very challenging, is to extend the weight-
sharing technique to effectively calculate the 
wave function and other properties of large 
molecules, which have sizes corresponding 
to the region of the dashed red line in the 
inset of Fig. 1a. ❐
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