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ABSTRACT

Ionic liquids (ILs) are salts, composed of asymmetric cations and anions, typically existing as liquids at ambient temperatures. They have
found widespread applications in energy storage devices, dye-sensitized solar cells, and sensors because of their high ionic conductiv-
ity and inherent thermal stability. However, measuring the conductivity of ILs by physical methods is time-consuming and expensive,
whereas the use of computational screening and testing methods can be rapid and effective. In this study, we used experimentally mea-
sured and published data to construct a deep neural network capable of making rapid and accurate predictions of the conductivity of ILs.
The neural network is trained on 406 unique and chemically diverse ILs. This model is one of the most chemically diverse conductivity
prediction models to date and improves on previous studies that are constrained by the availability of data, the environmental conditions,
or the IL base. Feature engineering techniques were employed to identify key chemo-structural characteristics that correlate positively or
negatively with the ionic conductivity. These features are capable of being used as guidelines to design and synthesize new highly con-
ductive ILs. This work shows the potential for machine-learning models to accelerate the rate of identification and testing of tailored,
high-conductivity ILs.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION

Since 1986, the number of publications and patents related to
ionic liquids (ILs) has grown exponentially due to their potential
use in applications ranging from batteries, supercapacitors, and fuel
cells, to dye-sensitized solar cells and sensors. ~ These devices cur-
rently utilize traditional molecular liquids (such as inorganic dyes,
organic liquid solvents, and alkyl carbonates), which have the draw-
backs of being volatile, flammable, expensive, or limited in their
conductivity and efficiency.

ILs are salts that exist as liquids at ambient temperatures
because of their low melting points (up to ~373 K'?), which
result from the asymmetric cations and anions they are composed
of. These liquids exhibit high ionic conductivities and high
thermal stability, unlike traditional molecular liquids, making them
safe and effective candidates for electrolyte replacement in bat-
teries and fuel cells. They are already being implemented
successfully as electrolytes in rechargeable batteries, fuel cells, and

supercapacitors, as micro-electrodes in biosensors, and as redox
mediators in dye-sensitized solar cells.

Screening and synthesizing the optimal ILs for these appli-
cations, however, is difficult. The current experimental methods
to determine the ionic conductivity of ILs are labor-intensive
and can require expensive compound-specific equipment and
techniques. These problems are exacerbated when trying to
synthesize tailored ILs with target conductivities. Data-driven
methods based on already existing data to determine ionic con-
ductivity can save time and reduce expenditure by eliminating the
need to purchase, refine, or synthesize ILs.”* Given the massive
number of theoretical ILs (estimated to be up to 10" liquids'),
efficient data-driven methods will allow more research to be con-
ducted on both traditional and customized, application-specific
ILs.

Many prior works predicting the ionic conductivity of ILs
are limited by ion-specificity, empirical parameters, or are unable
to predict values over a continuous temperature range. While
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these models may feature low error metrics, they are based on
less comprehensive training data, limited by the environmental
conditions (high-temperature or low-temperature environments),
or constrained by specific cations (pyridinium, imidazolium, and
ammonium).” " For example, the study of Nilsson-Hallén et al.””
predicts ionic conductivity based on only 22 unique ILs within the
temperature range of 298.15-368.15 K and requires many experi-
mentally or environmentally determined inputs, such as ion volume
and ion mass.

In this work, we build a deep neural network to predict
temperature-dependent conductivity values of ionic liquids, trained
on experimentally measured and published conductivity data
sourced from the ILThermo database.”” Our dataset consists of
406 unique ILs with values over a temperature range from 203.4 to
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468.15 K (4259 unique data-points) and ionic conductivities span-
ning 8 orders of magnitude (3 x 1077 to 9.795 S/m). The resulting
machine learning (ML) model is able to rapidly and accurately pre-
dict the ionic conductivity of ILs over a wide range of temperatures.
To better understand our ML model, we also investigate and present
key chemical features and trends that affect the ionic conductivity in
ILs. Our model and associated chemo-structural findings may allow
for more efficient screening and designing of new, tailored ILs.**

Il. DATASET AND METHODOLOGY
A. Dataset

Our dataset consists of experimentally measured ionic con-
ductivity values of 406 pure compound, binary ionic liquids over
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FIG. 1. Experimentally measured dataset for the ionic conductivity of ILs. (a) Histogram for the ionic conductivity of 406 unigue ILs at various temperatures. (b) The ionic
conductivity vs 1000/temperature relationship for all data-points in the dataset. (c) The most common anions and cations present in the dataset and the number of ILs in
which they appear. (d) The median ionic conductivity of ILs featuring the anions and cations of (c) along with their corresponding interquartile range (center 50% of data).
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a temperature range from 203.4 to 468.15 K. The data were
obtained from the publicly available and peer-reviewed NIST
(National Institute of Standards and Technology) ILThermo ionic
liquids database.”” We chose to include only two-component (an
anion and a cation) pure ILs in our dataset, which features
109 unique anions and 244 unique cations comprised of nine chem-
ical species, including H, B, C, N, O, F, P, §, and 1. The most fre-
quently appearing anions were bis((trifluoromethyl)sulfonyl)amide
and tetrafluoroborate, appearing in 124 and 27 unique liquids,
respectively. The most frequently occurring cations were 1-ethyl-
3-methylimidazolium and 1-butyl-3-methylimidazolium, appearing
in 32 and 27 unique ILs, respectively. The four most frequently
occurring cations and anions are depicted in along with
their count. The pressure at which the conductivity for all ILs was
measured remains at roughly atmospheric pressure. The complete
dataset is attached in the .

As shown in , conductivity values range from 3 x 1077
t0 9.795 $/m. The majority of the data lie between 10" and 10° $/m.
Data are sparse for conductivity values lower than 107* $/m. In
order to account for the data spanning multiple orders of mag-
nitude, we converted the conductivity values into the logarithmic
(base 10) scale so each data-point had equal weight in training,
validation, and testing.

shows the conductivity distribution of the dataset
as a function of 1000/temperature. Higher temperature leads to
increased ion mobility, leading to greater ionic conductivity values.
This temperature-based conductivity of ionic liquids can be accu-
rately modeled by Vogel-Tamman-Fulcher (VTF) type equations.
The data show a positive correlation between the temperature of
the ILs and their ionic conductivity. When predicting with the ML
model over a given temperature range, it is important that the
predicted values follow a similar pattern.

In cases where multiple conductivity values were reported for
the same IL under the same temperature, the median values were
computed and used to reduce dataset uncertainty and achieve lower
model error metrics. The median has been shown to be a more
robust estimator of the central data point than the mean and is also
more resistant to outlier values and skewed data distributions.

B. Featurization

The next step in making an accurate predictive model is to gen-
erate features that uniquely represent each IL while also capturing
its temperature dependency. The features are derived from the IL’s
SMILES (simplified molecular-input line-entry system) string. To
achieve this, we used the RdKit.Chem®’ python library to gener-
ate 163 structural descriptors for each IL, including 2D fragment
descriptors and MQNs (molecular quantum numbers). Fragment
descriptors are easily computable counts of repeating structural fea-
tures on a two-dimensional representation of the molecule. MQNs
are structural descriptions of the atom, bond, and ring types present
within the molecules.”* In addition, the temperature at which the
ionic conductivity was measured is incorporated as the key feature to
encode the temperature dependence, resulting in a 164-dimensional
feature vector. In training, all feature values were normalized from
Otol.

We used the Least Absolute Shrinkage and Selection Oper-
ator (LASSO) reduction method to identify the most important

ARTICLE scitation.orgljournalfjcp

features.”” This method was used to fit the entire dataset (406 ILs)
and its original 164 features.

C. Machine learning model and training procedures

Considering that the conductivity depends on both the IL com-
position and the temperature, the ML model was trained in two
distinct fashions. The two approaches are referred to as the (1) IL-
split (406 ILs) and (2) data-points-split (4258 points) method. In the
IL-split approach, the test data are comprised of entirely unique ILs,
resulting in an assessment of the model’s performance on ILs with
an unseen chemical structure. In the data-points-split approach,
random sampling was used to create the train-validation-test sets
across a wider range of ILs and temperatures to test how well the
model predicts temperature dependency.

Both the IL-split and data-points-split methods utilize the same
deep neural network architecture, which was manually tuned. Built
with PyTorch,” the ML model has a five-layer architecture (three
hidden layers), 160 neurons in each layer, and they back-propagate
using the Mean Squared Error (MSE) loss function and Adam
optimization.”” While this architecture may seem inordinate for
our dataset, it proved to be the most efficient and accurate: test-
ing results can be seen in Fig. S1 in the
The Adam optimizer tuned the model’s hyper-parameters, such as
the learning rate and neuron weight to ensure that we had the most
efficient and effective model. Both training methods utilized the
same train-validation-test splits, each of 80% training data, 10%
validation data, and 10% test data. Two error metrics, root mean
squared error (RMSE) and the coefficient of determination (RY),
were used to gauge the performance of the model.

Learning curves were also used to measure the performance
of the two training methods. The average training and test RMSE
is graphed as a function of the training set size, which grows
in increments of 10% while the test set remained constant. The
error bars represent one standard deviation in the RMSE values
over 5 runs.

11l. RESULTS AND DISCUSSION
A. Model performance and validation

shows the results of the deep neural network
trained with the IL-split method and the data-points-split method.
-i) and 2(b-i) show the learning curves of the machine
learning (ML) model trained with the two methods. Results for both
the model with all 164 features (ML-X411) and the model with the 23
LASSO reduced features (ML-X1ass0) are included.
and show the parity plots (the experimentally measured
ionic conductivity is plotted against the predicted ionic conductiv-
ity) for the test data using both training methods.
and show the experimental and ML predicted conduc-
tivity values plotted against 1000/temperature for three unique
ILs using the IL-split method and the data-points-split method,
respectively.

Figure S2 in the is a table with the
error values of the ML predictions classified at different levels of
conductivity using both training methods.

In both -i) and -i), the test RMSE decreased as
the amount of training data increased, as anticipated. We also note
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FIG. 2. Performance of ML model predicting ionic conductivity based on IL-split (a) and data-points-split (b) training methods. (a-i) and (b-i) Learning curves trained using
all features (ML-Xj4;;) and LASSO reduced features (ML-X4s50)- (a-ii) and (b-ii) Parity plots using ML-X;4ss0 and the 80% train set. (a-iii) and (b-iii) The experimen-
tal and ML predicted conductivity values for three unique ILs. IL 1 is 1-butyl-1-methylpyrrolidinium bis(triflucromethyl)sulfonyljimide, IL 2 is 1-methyl-3-octylimidazolium
tetrafluoraborate, and IL 3 is 1-hexyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide.

that the ML-Xj4ss0 model outperforms the ML-X,;; model in
regard to test RMSE. With the data-points-split method, we obtain
a test RMSE of 1.69 and 1.89, and with the IL-split method; a test
RMSE of 2.21 and 2.60 using the ML-Xyass0 and ML-Xa1; models,
respectively.

In addition, the learning curves show a systemic gap between
the training and test curves with the train curves having consis-
tently lower errors that are demonstrative of a model that is not
over-fitted. We observe that the test RMSE values for the data-
points-split method are consistently lower than that of the IL-split
method. This trend is to be expected since the data-points-split
method is a less arduous ML task. For a given IL, the data-points-
split method provides partial data points at a given temperature
in addition to the chemical fingerprints; however, for the IL-split
method, the only input provided to a model is the chemical fin-
gerprints of the IL and the model is expected to extrapolate using
other discrete ILs with similar features to predict temperature-
dependent IL conductivities. To present the model’s error in con-
text, we calculated the Normalized RMSE (NRMSE).” Considering
our dataset ranges from 3 x 1077 to 9.795 S/m, we calculated
a percent NMRSE of 22.5%. This error value is appropriate

given the large scope of the model’s dataset and, therefore, target

applications.
The R” values for the test set of the IL-split and data-point-split
methods [shown in and , respectively] are 0.88

and 0.97, respectively. Because the training data are sparse below
1072, it can be seen that the predictions at that level are less accurate
than those at higher values.

In , the lines of best fit were applied to the discrete
ML predicted values to more clearly show the conductivity under
which the model predicts less accurately. In all three example ILs, the
model under-predicts conductivity at extremely low temperatures
and slightly over-predicts at high temperatures. This is likely because
of the sparse training data at temperatures under 285 K.

In , the experimentally determined values (found
in the training dataset) were plotted alongside predicted values (not
found in training or validation) of the same three ILs.

Overall, shows that the data-points-split-based ML model
performed better than the IL-split-based model, as seen in the
RMSE, R?, and learning curve error trends. This is expected, given
that the data-points-split training dataset includes a wider variety
of IL species, features, and chemical compositions. It is possible
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FIG. 3. LASSO selected features with strong positive or negative correlations with the ionic conductivity. R represents an arbitrary alkane. Ar represents an arbitrary aromatic

group. X represents an arbitrary Halogen group.

that, in the data-points-split approach, many of the same ILs were
included in training and testing at different temperatures, improv-
ing the results. Theoretically, the data-points-split-based model
could be used to make predictions on ILs with some already
known temperature-based conductivity values, while the IL-split-
based model could be used on completely new ILs, with no available
conductivity data.

B. Guidelines to design high conductivity ionic liquids

While most ILs in sparse regions of the dataset were well pre-
dicted, a few ILs that were severely under-predicted had low acyclic
nitrogen and H-bond acceptor site counts. The LASSO reduced
features offer insight into the factors that affect ionic conductiv-
ity. lists some of the features that have strong correlations
with jonic conductivity. All 22 LASSO reduced features and their

respective correlation with the ionic conductivity can be seen in
Fig. S3 in the . Positive and negative coef-
ficients resulting from LASSO reduction correspond to positive and
negative correlations with ionic conductivity, respectively.

It is important to note that the number of nitriles, primary
sulfonamides, halogen bonds, H-bond acceptor sites and atoms, pos-
itive charges, and acyclic double and triple bonds correlate positively
with the ionic conductivity. This is likely because of the increased
polarity, degree of ionization, ion pairing, charge density, and reduc-
tion of the LUMO-HOMO gap of the liquid. Unsaturated
carbon-carbon bonds and the resulting pi orbitals present within
these features contribute to the positive correlation with conductiv-
ity due to the increased polarizability and charge delocalization.
When negatively charged ions, such as aliphatic carboxylic acids
and aliphatic hydroxyl groups, and non-conductive groups like
unbranched alkanes (of four or more members) are introduced, the
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conductivity is reduced. These long aliphatic side chains decrease
conductivity as a result of the increased viscosity of the ILs.
Aromatic groups, such as aryl methyl sites and benzene rings, also
had a negative correlation with the ionic conductivity, likely because
of the resultant pi stacking.

This information can be used to create a framework to
help accelerate the synthesis of ILs with ionic conductivity cus-
tomization as the target. Given the goal of high ionic con-
ductivity, liquids should be synthesized with characteristics that
increase the ion charge density of the liquid, such as double
and triple bonds and hydrogen bond acceptors. Alternatively,
to control or reduce the ionic conductivity, negatively charged
ions and aromatic groups could be targeted. Combining these
guidelines with instantaneous predictions from the neural net-
work can allow new compounds to be rapidly synthesized and
tested.

IV. CONCLUSION

We have developed a machine learning (ML) model capable of
making instantaneous ionic conductivity predictions for ionic lig-
uids (ILs). We have also constructed a set of guidelines for the design
and synthesis of new ILs. This model is trained using a dataset of
experimentally measured ionic conductivity values for 406 unique
ILs featurized into structural and fragment descriptors, MQNs,
and temperature. The performance of the model was tested with
40 unseen ILs or 3406 data-points and has proven to be more
comprehensive in its predictions than previous works using ML
models to predict the jonic conductivity of ILs. Furthermore, our
model does not require many calculated or physically obtained
inputs; it simply uses the SMILES string and target temper-
ature(s). Unique ILs with low ionic conductivities (<0.1 S$/m)
may have a larger margin of error. These data along with data
at lower temperature values could be added to the training
dataset to further improve the model manually or through active
learning.

We identified important chemo-structural features that cor-
related positively or negatively with the ionic conductivity, which
can be used to design new ILs with tailored ionic conductivity
values. Subsequently, the ML model can quickly and accurately
assess the conductivity of these newly designed ILs. It is impor-
tant to note that the conductivity is only one material property
that must be taken into consideration before implementing ILs. For
example, the viscosity and density of ILs are key to their imple-
mentation in energy applications along with conductivity. Future
works may include multi-output regression models to integrate mul-
tiple key properties, aggregating multiple IL databases. It is also
important to note that the presented ML model is trained on pure-
compound ILs; future models could be constructed for binary or
ternary mixtures. By increasing the efficiency of design, synthesis,
and testing, we anticipate that this approach may have a major
impact on the future development and applications of tailored ionic
liquids.

SUPPLEMENTARY MATERIAL

See the for Figs. S1-S3.

ARTICLE scitation.orgljournalfjcp

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The dataset used in this study has been created from the
ILThermo Ionic Liquids database. The complete dataset with the
LASSO reduced features is attached (Supplementary Dataset).

REFERENCES

TN. V. Plechkova and K. R. Seddon, 37,123 (2008).
?N. Yamanaka, R. Kawano, W. Kubo, T. Kitamura, Y. Wada, M. Watanabe, and

S. Yanagida, 2005, 740.
3B. Garcia, S. Lavallée, G. Perron, C. Michot, and M. Armand,
49, 4583 (2004).

“E G. Yanes, S. R. Gratz, M. ]. Baldwin, S. E. Robison, and A. M. Stalcup,
73, 3838 (2001).
5C. A Zelland W. Freyland, 19, 7445 (2003).
8C. W. Scheeren, G. Machado, J. Dupont, P. F. P. Fichtner, and S. R. Texeira,
42, 4738 (2003).
1. He, W. Zhang, L. Zhao, X. Liu, and S. Jiang, 1007, 39 (2003).
8Y. Zhouand M. Antonietti, 125, 14960 (2003).
9A.B. McEwen, H. L. Ngo, K. LeCompte, and J. L. Goldman,
146, 1687 (1999).
19M. A. Navarra, 38, 548 (2013).
""H. Ohno, Electrochemical Aspects of Ionic Liquids (John Wiley & Sons, 2005),
pp. 1-3.
127 Yang and W. Pan,
13K. Sharma, V. Sharma, and S. S. Sharma,
141, Gaines and R. Cuenca,
Argonne National Laboratory, 2000.
el Arbizzani, G. Gabrielli, and M. Mastragostino,
(2011).
'6R. D. Rogers, ACS Symposium Series (American Chemical Society, 2002).
'7W. H. Meyer, 10, 439 (1998).
8D R MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D.
Elliott, J. H. Davis, M. Watanabe, P. Simon, and C. A. Angell,
7,232 (2014).
19R. F. De Souza, J. C. Padilha, R. S. Gongalves, and J. Dupont,
5, 728 (2003).
20M. J. Earle and K. R. Seddon, 72,1391 (2000).
21M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen,
J. Yang, B.-]. Hwang et al., 520, 324 (2015).
22 5. Eftekhari, 9, 47 (2017).
233, Denizalti, A. K. Ali, C. Ela, M. Ekmekci, and S. Erten-Ela,
691, 373 (2018).
24D, Wei and A. Ivaska, 607, 126 (2008).
25A. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskey, and G. A. Baker,
9, 449 (2007).
265, K. Singh and A. W. Savoy,
27R. Ratti, 2014, 729842,
28p. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim,
3,54 (2017).
29, Pilania, A. Mannodi-Kanakkithodi, B. Uberuaga, R. Ramprasad, ]. Guber-
natis, and T. Lookman, 6, 19375 (2016).
397 Nilsson-Hallén, B. Ahlstrém, M. Marczewski, and P. Johansson,
7,126 (2019).
*17. K. Koi, W. Z. N. Yahya, and K. A. Kurnia,

37,19 (2005).
13(1), 381 (2018).
, Center for Transportation Research

196, 4801

297, 112038 (2020).

45, 18584 (2021).

J. Chem. Phys. 156, 214505 (2022); doi: 10.1063/5.0089568
Published under an exclusive license by AIP Publishing

156, 214505-6



The Journal

of Chemical Physics

321, Baskin, A. Epshtein, and Y. Ein-Eli,
33 A. P. Abbott, 6, 2502 (2005).
34E. Kianfar, M. Shirshahi, F. Kianfar, and F. Kianfar, 10, 2617 (2018).
35p, V. Duong, H.-V. Tran, S. K. Pathirannahalage, S. J. Brown, M. Hassett,
D. Yalcin, N. Meftahi, A. Christofferson, T. L. Greaves, and T. C. Le,
156, 154503 (2022).
35D, Dhakal and J. K. Shah, 549, 113208 (2021).
374, Kazakov, ]. Magee, R. Chirico, V. Diky, K. Kroenlein, C. Muzny, and
M. Frenkel, [onic liquids database-ilthermo (v2.0), 2013.
38R, Batra, L. Song, and R. Ramprasad, 6, 655 (2021).
39]. J. Barron and C. Ashton, TSP report, 2005.
"OI. Vila, P. Ginés, J. M. Pico, C. Franjo, E. Jiménez, L. M. Varela, and O. Cabeza,
242, 141 (2006).
1A, Jha, A. Chandrasekaran, C. Kim, and R. Ramprasad,
27, 024002 (2019).
“ZM. Pagano and K. Gauvreau, Principles of Biostatistics (CRC Press, 2018).
“G. Landrum, RDKit: Open-Source Cheminformatics Software, Q2 (2006);
available at .
AhR T, Nguyen, L. C. Blum, R. Van Deursen, and J.-L. Reymond,
4, 1803 (2009).
45, Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, ]. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, 12,
2825 (2011).

351, 118616 (2022).

ARTICLE scitation.orgljournalfjcp

464, Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

Advances in Neural Information Processing Systems (Curran Associates, Inc.,

2019), Vol. 32, pp. 8024-8035.

“7D. P. Kingma and . Ba, (2014).

“8M. Galifiski, A. Lewandowski, and L Stepniak,

(2006).

“SM. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A.

Janovsky, V. A. Kamaev et al,, 24,171 (2013).

50y, Kubota and Y. Tominaga, 4,124 (2015).

51y Morizur, S. Olivero, J. R. Desmurs, P. Knauth, and E. Dufiach,

38,6193 (2014).

52)\. H. Matus, J. Garza, and M. Galvan, 110, 1172 (2006).

55T, Mukai and K. Nishikawa, 3,19952 (2013).

%K. Tsunashima, Y. Ono, and M. Sugiya, 56, 4351 (2011).

55C. D. Rodriguez-Ferndndez, E. L. Lago, C. Schréder, and L. M. Varela,
346, 117099 (2022).

56 M. Montanino, M. Carewska, F. Alessandrini, S. Passerini, and G. B. Appetecchi,

57,153 (2011).

575 T. Schneebeli, M. Kamenetska, Z. Cheng, R. Skouta, R. A. Friesner,

L. Venkataraman, and R. Breslow, 133, 2136 (2011).

58M. Alsufyani, R. K. Hallani, S. Wang, M. Xiao, X. Ji, B. D. Paulsen, K. Xu,

H. Bristow, H. Chen, X. Chen et al., 8, 15150 (2020).

51, 5567

J. Chem. Phys. 156, 214505 (2022); doi: 10.1063/5.0089568
Published under an exclusive license by AIP Publishing

156, 214505-7





