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ABSTRACT

To meet the demands of emerging electrification technologies, polymers that are

capable of withstanding high electric fields at high temperatures are needed. Given

the staggeringly large search space of polymers, traditional, intuition- and experi-

ence-based Edisonian approaches are too slow at discovering new polymers that

can meet these demands. In this work, a genetic algorithm was combined with five

machine learning-based property predictors to design over 50,000 hypothetical

polymers that achieve target properties. Additionally, a polymer synthesizability-

based criterion was used to narrow these polymers down to 23 candidates likely to

be synthesizable and 3665 that may be synthesizable. A version of the genetic

algorithm code is also made available for public use on GitHub.
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GRAPHICAL ABSTRACT

Introduction

Polymers such as polypropylene have, historically,

been used as the dielectric materials of choice in high

energy density capacitors because of their graceful

failure due to self-clearing and low production costs

[1–3]. As the demand for electrification under

extreme conditions becomes more prevalent, these

capacitors may experience high temperatures ranging

from 150 �C in electric vehicles to 250 �C in aircraft

[4, 5]. Presently available polymer dielectrics are not

suitable for these applications due to low thermal and

electrical stability at high temperatures [6]. Conse-

quently, there have been efforts to develop new

polymer dielectrics that can withstand these condi-

tions [6–8].

Like with many applications, polymer dielectrics

for high-temperature capacitors need to meet multi-

ple property criteria, including a high energy density

to reduce the size of capacitors, high thermal stability

to survive high operating temperatures, and high

breakdown field strength to withstand high electric

fields. It is time- and cost-intensive to search for

polymers satisfying these properties using tradi-

tional, Edisonian experimental methods. However,

their discovery can be aided and accelerated by

computation- and data-driven design algorithms

[9–12]. Indeed, past work has revealed the power of

such informatics-guided pursuits for the design of

high energy density capacitor dielectrics [13–16],

especially when combined synergistically with

experimental validation [17–19].

In this paper, we utilize a genetic algorithm (GA),

along with machine learning (ML) property predic-

tion models for the associated target properties, to

design hypothetical polymer dielectrics for high

temperatures and electric field applications. In con-

trast to a previous study that also utilized GA to

design polymers for this application [14], the present

work involves several significant advancements as

detailed below.

(1) First, a set of five property-based target screen-

ing criteria was adopted in the present study to

guarantee superior performance as opposed to

the two criteria used in the previous study.

These five property criteria include high band-

gap (Eg), high charge injection barrier (Ue), low

cohesive energy density (ecoh), high dielectric

constant (e), and high glass transition temper-

ature (Tg). The first three criteria ensure high

electrical breakdown strength [20–24], the

fourth criterion allows for high energy density

[6, 20, 25, 26], and the last criterion is necessary

for good thermal stability. The present imple-

mentation, through a ‘‘clamping’’ fitness func-

tion, can handle a varying number of target

criteria in a robust manner.
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(2) Second, several algorithmic improvements

were made to our GA to explore the search

space more exhaustively than before, thus

increasing the diversity of the designs. This

has led to an increase in the number of

polymers achieving target properties and the

discovery of over 50,000 promising, hypothet-

ical polymers for high-temperature dielectric

applications.

(3) Third, a polymer synthesizability-based crite-

rion was also included to ensure that the

polymers designed using our GA have a high

probability of synthetic success, drawing on a

recent machine-guided synthesis planning

development [27].

(4) Finally, flexibility has been imparted to the GA

design framework so that a chemist’s prefer-

ence (or lack thereof) for certain blocks or

functional groups may be handled with ease.

Below, we describe the enhancements imple-

mented in our GA workflow and present the most

promising polymer designs that have emerged from

this effort. The present GA implementation may be

utilized in a general-purpose manner for designing

polymers for any application, so long as the target

design criteria may be set up and models (ML or

otherwise) are available for predicting the relevant

properties.

Methods

Target screening criteria and machine
learning models

As mentioned above, five screening criteria were set

up as the goals for our GA to achieve. These criteria

are listed in Table 1. As stated previously, for high-

temperature polymer dielectric applications, poly-

mers should have large e and Tg, as these, respec-

tively, correlate with a larger energy density and

higher operating temperature. They should also have

a high dielectric breakdown strength, which is the

maximum electric field an insulator can operate at

before becoming a conductor due to the creation of

free electrons. Since the breakdown strength is rela-

ted to the number of free electrons in the material, it

is correlated with properties related to electron con-

centration, such as Eg, Ue and ecoh. Polymers should

have a high Eg, as the larger the Eg the more energy is

required to transfer electrons from the valence band

to the conduction band. Ue should also be large, as

metal electrodes can inject free electrons into the

material if the barrier is too low. For ecoh, there is an

inverse relationship with Eg. Higher ecoh is attributed

to strong inter-chain interactions (hydrogen-bonding

and van der Waals forces), which impact anti-bond-

ing energy level overlaps and thus decreases Eg.

Thus, ecoh should be small.

For each of these five target properties, machine

learning models based on Gaussian process regres-

sion (GPR) are available for instantaneous property

predictions. Details pertaining to these models,

including training data used, algorithmic details and

accuracy have been discussed elsewhere [19, 28, 29].

We have provided a short reference to these values in

Table S1.

Genetic algorithm

The GA is a simulated evolution-based search algo-

rithm that has been used since the 1990s to tackle the

design of molecules and polymers [13–17]. It has also

been used to design or improve other materials and

applications, such as optical glasses, induction

motors, Li–S cathodes, and image processing soft-

ware [30–33]. Each version of the GA has a different

design, but the fundamental concepts underlying the

algorithm are the same: first, crossover and mutation

operations are performed on a parent dataset to cre-

ate a new child dataset, then each child is scored

according to some fitness function, and finally, the

Table 1 Design goals for high

temperature polymer

dielectrics, proxy properties

correlated with the goals, and

their targets during the genetic

algorithm design process

Property Target Goal

Bandgap (Eg) [ 5 eV Increase breakdown strength

Electron injection barrier (Ue) [ 3 eV Increase breakdown strength

Cohesive energy density (ecoh) \ 80 cal cm-3 Increase breakdown strength

Dielectric constant @ 100 Hz (e) [ 4 Increase energy density

Glass transition temperature (Tg) [ 500 K Increase thermal stability
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parents of the next generation are chosen based on

their fitness scores [34]. This cycle continues until a

set of prescribed target criteria is achieved.

In our previous work, we explained how we fol-

lowed this paradigm with small modifications to

make it suitable for the polymer domain. First, 3045

building blocks were extracted from * 12,000 refer-

ence polymers via the ‘‘breaking of retrosynthetically

interesting chemical substructures’’ (BRICS)

scheme [35]. These building blocks were used as the

chromosomes of our polymers. Then, we followed

conventional GA protocols and utilized ML-based

surrogate models for the rapid prediction of the rel-

evant properties (in the screening criteria) of new

polymers, scoring their fitness based on their pre-

dicted property values [14]. In the present work, we

have made further modifications to achieve the fol-

lowing goals: expand the number of property criteria,

increase chemical diversity, improve synthetic

accessibility, and facilitate user-friendly chemical

block selection. These modifications are summarized

in Table 2.

To test if the modifications achieved these goals,

virtual experiments were performed. Each experi-

ment consisted of five runs of the GA. Each run

continued for 100 generations and was seeded with

one of the following five random number generator

seeds: 4, 663, 703, 873 or 974. The first generation of

polymers was randomly generated for the first

experiment and then manually selected for subse-

quent ones, so each experiment had the same first

generation of polymers based on the seed (the first

generation was different between seeds). During the

segmentation phase, polymers were segmented at the

center with a standard deviation of 0.2 blocks to the

left or right. This allowed predicted polymers to grow

or shrink. During crossover, all combinations of 10

parent polymer segments were generated (* 180

children were created). During the mutation phase,

unless otherwise specified, 0.2 * the number of blocks

in a child polymer (with a standard deviation of 0.25

blocks) would mutate. There was also a 5% chance of

an additional random block being appended to the

end of the polymer chain. In the next section, we will

describe each of the enhancements listed in Table 2 in

greater detail.

Enhancements to the genetic algorithm

Expand property criteria (‘‘clamp’’ fitness function)

Setting up GA to achieve a single target property is

trivial. For two target properties, using a weighted

summation of the properties after min-max normal-

ization (i.e., with property values scaled to be in the

0–1 range) works effectively. However, if more than

two target properties are involved and if some pair of

properties are inversely related to each other, a

weighted summation is not effective as the exact

weighting required to improve all property values

above their targets can be challenging to find. Since

we have five target properties, and since our pre-

liminary analysis indicated an inverse relationship

between some pairs of properties, e.g., Tg and Eg, the

GA struggled to find the ideal chemical space with a

weighted summation fitness function alone.

A clamping fitness function helps alleviate this

problem. It is defined as:

Table 2 Modifications added to the genetic algorithm to improve polymer design

Goal Modification Summary

Expand property criteria Clamping fitness

function

During fitness scoring, all values exceeding target property goal are clamped at goal

Increase chemical

diversity

Duplication

check

Polymers that have already been discovered are deleted or mutated prior to parent

selection

Improve synthetic

accessibility

Chemical rules

Size restrictions

Frequency-based

selection

Polymers are screened for chemical realism, only a certain minimum or maximum number

of blocks are allowed, and/or blocks are chosen according to the frequency at which they

exist in a reference set of existing polymers

User-friendly chemical

block selection

Functional group

screening

Functional groups are automatically screened from the block list according to chemist

specifications before running the GA

Each modification was added to achieve one of the four goals
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yij ¼
�max xij; targetj

� �
; goalj ¼ less than targetj

min xij; targetj

� �
; goalj ¼ greater than targetj

8<
:

ð1Þ

with xij representing the jth property value of

polymer i, targetj representing property j’s target

value, goalj representing if the goal is to have poly-

mers achieve less than or greater than values of the

target, and yij representing the clamped value of

property j for polymer i used for min-max normal-

ization and fitness scoring. For instance, if the target

value for Eg is a value greater than 5 eV, and if pre-

dicted values for three child polymers are 4, 5.5, and

6 eV, then the fitness function values for Eg would

first be clamped at 5 eV (i.e., 4 eV will remain 4 eV,

but 5.5 eV and 6 eV will be clamped at 5 eV) then

scaled (to 0, 1, 1). This allowed the GA to weight

polymers achieving all target properties higher than

those that only excel at specific properties and avoi-

ded the need to fine-tune weights in a weighted lin-

ear summation. In the results section, we will show

that with this modification, the GA can quickly find

polymers achieving five different property targets.

Increase chemical diversity

A common problem with GAs is that they quickly

find a local optimum and then stay within that area.

This can lead to duplicate polymer predictions and a

lack of chemical diversity in the design outcomes. To

explore a larger, more diverse chemical space,

duplication checking was added.

Duplication checking compares the string equiva-

lency of the canonicalized SMILES strings of all child

polymers with the canonicalized SMILES of all pre-

viously generated polymers. A canonicalized SMILES

string is one that has a standardized format [36]. For

instance, [*]COCCCO[*] and [*]CCO[*] are both poly

(ethylene glycol), but comparing their string equiva-

lency returns false. Canonicalization transforms

[*]COCCCO[*] into [*]CCO[*], and comparing string

equivalency will now return true. The general pro-

cedure for canonicalization of polymers involves first

ensuring the joint atoms are equivalent (e.g.,

[*]COCCOC[*]—[ [*]CCOCCO[*]) and then remov-

ing repetitions (e.g., [*]CCOCCO[*])—[ [*]CCO[*]). If

a child polymer occurred in a previous generation, it

was either deleted or one fragment of the repeat

polymer was mutated until a previously unseen

polymer was generated. This step increased the

number of unique polymers the GA predicted but

did not affect diversity as hoped.

Improve synthetic feasibility

Regardless of diversity, many of the predicted poly-

mers tend to be unrealistic from a practical (or syn-

thetic feasibility) point of view. They may have bonds

that are unlikely to occur or have many chemical

fragments, increasing monomer molecular weight

and synthetic complexity. To address this, specific

chemical screening (CS) rules were integrated into

the GA to screen child polymers. These rules (shown

in Table S2) were a list of desirable and undesirable

bonds. If no undesirable bonds were present and at

least one desirable one was present, polymers were

kept, else, they were discarded. The size (number of

blocks) in a hypothetical polymer was also restricted.

Additionally, it was previously hypothesized that

biasing chosen blocks based on the frequency they

appeared in the reference set of polymers would

improve chemical realism (frequency-based selection

(FBS)) [14]. To assess this, the ability to select blocks

with or without frequency weighting was added.

To test for synthetic complexity, a polymer ret-

rosynthesis algorithm [27] was used to generate a

synthesizability score for the predicted polymers.

This algorithm compares the Tanimoto similarity

score of the predicted polymer with a database of

known polymers. The Tanimoto similarity score is

defined as:

Tanimoto x; yð Þ ¼
P

xiyiP
x2

i þ
P

y2
i �

P
xiyi

ð2Þ

where x and y are either both polymers or both

monomers and i is their ith fingerprint. A Tanimoto

score of 0 means x and y are completely different

while a value of 1 indicates they are the same.

The synthesis pathway, whether it be condensa-

tion, addition, or ring-opening, of the closest scoring

known polymer was taken, and the reverse reaction

was performed on the predicted polymer. The reac-

tants from this reverse reaction had their Tanimoto

score compared against a database of known polymer

reactants, with the highest scoring reactants being

saved along with their score. The similarity score

between the predicted polymer and known polymer

and the scores between the predicted reactants and

known reactants were then combined to create one
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synthesizability score. The exact calculation for this

score can be found in [27], but a medium score is one

classified as 0.5\ score � 0.7, and a high is a

0.7\ score � 1.

User-friendly chemical block selection

Even if a GA-designed polymer was synthetically

accessible according to our algorithm, it may still not

be favored by a synthetic chemist. Synthetic-friendly

polymers that meet target property criteria may

include functional groups that are undesirable (due

to functional, cost or toxicity reasons). For high-tem-

perature polymer dielectrics, for instance, –OH

groups are beneficial towards achieving the five

property goals but can participate in H-bonding,

restricting the ability for dipoles to orient in an elec-

tric field. Thus, to further target polymer design to

chemist intuition, the ability to automatically remove

certain functional groups from the block list was

added to our framework.

Results and discussion

Expand property criteria

Clamping improved the GA’s ability to design poly-

mers achieving all target properties. A comparison of

the number of polymers achieving all target proper-

ties for experiments with just an evenly weighted

linear combination (LC) fitness function and ones

with LC ? clamping is shown in Fig. 1. LC experi-

ments, on average, predict 63 � 120 polymers that

achieve all target properties, while clamping ? LC

runs predict 1380 � 528 polymers.

Average child values for each property in a GA run

with LC ? clamping fitness function improved until

all were close to achieving their targets, as shown in

Fig. 2. Ue started with most polymers achieving the

target property of 3 eV. Within one to three genera-

tions, average values for Eg and ecoh achieved their

targets of 5 eV and 80 cal cm-3. Over 10 generations,

average Tg values gradually increased and then pla-

teaued until a sharp step-up occurred between gen-

erations 18 and 20. This step also resulted in a

reduction in Ue. This long period of limited change

followed by a sudden evolutionary step is known as a

punctuated equilibrium and commonly occurs within

GAs and nature [37]. e experienced a similar jump

between generations 40 and 50. Overall, 11,113

unique polymers were predicted with 1217 achieving

all property targets for this run. Similar behavior was

observed in the other four runs.

Clamping automatically tunes the GA chemical

search space during a run. After a property target is

achieved, the GA focuses on improving properties

that have not yet been achieved, while maintaining

the achieved property above or below its target. For

instance, when, in Fig. 2, Tg increases above its goal

while lowering Ue, because the Ue average is still

larger than 3 eV, the GA permits this. Without

clamping, this jump in Tg would not occur if the

reduction in Ue was too severe.

Clamping target values must be realistic, however.

For instance, if the Tg target was 1000 K, clamping

would never take effect since no polymer would have

that predicted Tg. If none of the goals were achiev-

able, then the fitness function would behave like a

typical LC run.

A non-evenly weighted LC scheme may also be

suitable for finding polymers that achieve all target

properties; however, nine runs were attempted with

different weights being used for each property and

none successfully generated large numbers of poly-

mers achieving all targets.

Figure 1 Average number of polymers that achieve all target

properties (Tg[ 500 K, e[ 4, Eg[ 5 eV, ecoh\ 80 cal cm-3,

and Ue [ 3 eV) per GA run. Average values and standard

deviations per run are shown for runs using a linear

combination (LC) fitness function, runs using a clamping ? LC

fitness function, runs using a clamping ? LC fitness function, and

either duplicate delete (DD) or duplicate mutate (DM). Five runs

of 100 generations were done for each experiment.
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While clamping helped the GA predict more

polymers that achieved all property targets, many

polymers were repeated throughout a GA run, and

the polymers were not chemically diverse. For

instance, in one run of a clamping ? LC experiment,

3859 hypothetical polymers achieved all target

properties, but only 1486 (39%) were unique. Of these

unique polymers, the average Tanimoto similarity

score, seen in Fig. S1, was * 0.96.

Increase chemical diversity

By adding duplication checking, whether with

mutating the polymer further (duplicate mutation

(DM)) or removing it entirely (duplicate deletion

(DD)), the number of polymers achieving target

properties went up slightly on average, as seen in

Fig. 1, with clamping ? LC ? DD generating 2019 �
796 polymers and clamping ? LC ? DM generating

1549 � 1283. A larger spread occurs because one run

can get unlucky and find zero polymers, whereas

when another run finds an ideal space, it will explore

it more thoroughly. Unfortunately, duplication

checking did not influence similarity scores, as seen

in Fig. S1.

Duplication checking allows a larger chemical

space to be explored as repeat polymer configura-

tions are further mutated; however, it does not

increase diversity because the microevolution caused

by mutations does not dramatically alter polymer

compositions [13]. Other researchers have success-

fully increased the diversity of runs by creating

‘‘niches’’ of polymers that may fail some targets but

that excel at others. These niche polymers get passed

along to the next generation along with the polymers

best suited for the overall fitness function [15]. A

similar methodology will be implemented in the

future to further improve chemical diversity within

runs.

Still, because each initial, randomly generated first

generation is composed of different polymers, the

evolutionary process finds different optimal chemical

spaces between runs. Thus, although there is a lack of

diversity within runs, between runs of an experi-

ment, the diversity is greater, as shown in Fig. S2. By

varying the first generation of the GA and

Figure 2 Average property values for parent and child polymers

in each generation of the genetic algorithm run with a linear

combination ? clamping fitness function. The target design region

for each property is shaded gray. The region between the parent

min and max for each generation is shaded red, and the region

shaded between the child average � standard deviation is shaded

blue.
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performing multiple runs, this diversity issue was

somewhat mitigated.

Improve synthetic feasibility

Frequency-based selection

In addition to increasing the diversity of predicted

polymers, the GA should generate polymers that are

synthesizable. Despite the increased number of

polymers achieving target properties with clamping,

only 23 unique polymers out of 6898 polymers gen-

erated in all five runs of the LC ? Clamping experi-

ment had a medium or high retro-synthesis score.

Adding DM increased this to 257 out of 7744. These

257 polymers had a high average Tanimoto similarity

score of 0.88. This is because only two of five runs

found a feasible polymer, and similarity scores are

high within the runs.

Frequency-based selection (FBS), when combined

with LC ? clamping ? DM, increased the number of

unique, synthetically feasible polymers predicted

from 257 to 358; however, the average similarity score

increased slightly to 0.89. The number of runs that

found at least one synthetically feasible polymer

increased from two to four, but the majority came

from only two runs, which is why there is a high

average similarity.

While there is a slight increase in feasible polymers,

this could be due to serendipity. Evidence to support

this is shown in Figs. S3 and S4. As seen in Fig. S4,

when FBS is added to an experiment with chemical

screening (CS), seed 4 (which always has the same

first generation) goes from finding zero medium ret-

rosynthesis scoring polymers to 298. Yet, when FBS is

added to a run without CS, it reduces the number of

medium or high scoring polymers found from over

100 to close to zero. A comparison of the CS run with

and without FBS is illustrated in a uniform manifold

approximation and projection (UMAP) in Fig. S3.

UMAP is a method to map high-dimensional finger-

prints down to two dimensions, similar to principle

component analysis, and can offer some insight into

the chemical spaces being explored [38]. FBS imme-

diately guides the GA search space to an area distinct

from the run without FBS. Thus, it could just be a

matter of luck that more are synthesizable. Even if a

true improvement occurred, the space explored is

biased towards chemical substructures prominent in

already existing polymers. This will hinder the

exploration of chemical spaces that have yet to be

fully explored by chemists, slowing the discovery of

novel spaces. Thus, FBS does not seem to be effective

at exploring further spaces and may be detrimental to

discovering novel ones.

Chemical screening

CS also did not consistently affect realism. As seen in

Fig. S4, for some runs it increased the number of

realistic polymers found, but for others, it decreased

it. CS after FBS improved the GA’s ability to find

feasible polymers in three runs but hindered it in one.

With only CS, one run was improved, but two were

hindered.

The reason CS is inconsistent is the same as for FBS;

it guides the GA to different chemical spaces. For

instance, CS could make the GA throw out predicted

polymers that have mutations that are beneficial

towards achieving target properties, but that have a

bond unrealistic for polymers. This prevents that

beneficial mutation from occurring in the next gen-

eration, and the GA explores a different chemical

space. This new space may or may not have polymers

that can achieve target properties while being

synthesizable.

Restricting size

Restricting size had a positive effect on finding ret-

rosynthetically feasible polymers when the mutation

rate was not optimized. Figure 3 shows the results of

modifying mutation rate for an LC ? clamp-

ing ? DM run. In Fig. 3a, no size restrictions were

used. When the mutation rate was too low (0 � 25%),

the GA could not mutate to find an ideal chemical

space that improved target properties. Thus, it com-

pensated by increasing the size of the polymers.

When the mutation rate was too high (75 � 25%), the

GA could not determine which mutations improved

the target properties and shrank the polymer sizes.

Once all polymers shrank to a length of two, the

crossover could no longer alter polymer sizes. The

random appending of a block to the end of a polymer

did increase the size once more, but polymers shrank

back down. At the ideal mutation rate (20 � 25%) the

polymer size was stable, and the GA could find an

ideal chemical space that achieved all target

properties.
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By restricting size to lengths of three to six, as

shown in Fig. 3b, retrosynthesizability was improved

for low mutation rate runs, as shown in Fig. 3c.

However, ensuring the polymer length never reached

two did not improve the performance of high muta-

tion rate runs. The GA still could not find the ideal

chemical space. For these experiments, even a 50%

mutation rate was too high, and the GA was unable

to bring all averages to their target goals. Given the

ineffectiveness of restricting the minimum size, it is

best to only restrict the maximum size of polymers to

improve realism. Even then, one should experiment

to find a mutation rate that maintains a stable poly-

mer length that is relatively low.

User-friendly chemical block selection

While the GA can find realistic polymers that achieve

target properties, these polymers may still not be

useful for specific design applications. Take the

table of high scoring polymers predicted by the GA

displayed in Table 3. Polymer 1 comes from an

experiment that includes LC ? clamp-

ing ? DM ? FBS, with a restricted max block size of

6. It achieves all target values and has a very high

retrosynthesis score, but it also has –OH groups.

These –OH groups would participate in H-bonding,

restricting rotation and making it hard for dipoles to

orient themselves in an electric field. Dipole orienta-

tion can improve the dielectric constant, so restricting

rotation should be avoided. Thus, even though

hypothetical polymers with these hydroxyl groups

can achieve all target properties, because the

Figure 3 a Average number of blocks per generation for all

polymers the genetic algorithm generates with a linear

combination ? clamping fitness function and duplication

checking and mutation of repeat polymers. b Same as (a), but

with a minimum of three blocks allowed and a max of six for each

polymer repeat unit. c Number of retrosynthetically medium or

high scoring polymer repeat units for runs described in (a) and (b).
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hydroxyl groups are expected to negatively affect the

target application, they should be removed from the

block list so the GA does not get stuck in a local

optimum in a hydroxyl-containing chemical space.

To avoid this problem, we explicitly incorporated a

feature by which a user could avoid a chemical block

that they think would negatively impact the material

being designed. Polymer 2 in Table 3 is from an

experiment with the same parameters as polymer 1,

but that also included chemical screening and

removed all hydroxyl groups from the block list. The

GA successfully found a high scoring polymer

without hydroxyl groups, whereas previous experi-

ments did not. However, this also resulted in a fewer

number of polymers achieving target properties

being predicted on average. Additionally, the GA can

find high scoring polymers that do not have adverse

functional groups without explicitly removing them.

Polymer 3 of Table 3 shows one that came from a run

with LC ? clamping ? DM.

Polymer 4 comes from an experiment where the

first generation of polymers was manually selected

from 10 medium synthesis scoring polymers taken

from the experiment referenced for polymer 2. This

was done to assess if having a retrosynthetically

feasible starting point resulted in a larger number of

retrosynthetically feasible polymers. It did not,

however, that run did discover this high scoring

hypothetical polymer.

Targeting polymer designs further can improve the

GA’s predictions for specific design criteria but can

hinder the ability of the GA to achieve all target

properties since the chemical space being explored is

more restricted. While the GA can find a suit-

able space without restricting the chemical space, it

can get ‘‘stuck’’ after finding a chemical space that

achieves all target properties. Thus, it may be better

to guide it towards chemical spaces that are suit-

able for the specific design task. On the other hand, if

diversity can be improved, this may not be needed.

All polymers predicted by the GA have very high

uncertainties for ecoh values, as shown in Table 3.

They are of the same order of magnitude as the

predicted values because the model was trained on

Table 3 Table of polymers the

GA has predicted that achieve

all target properties

(Tg[ 500 K, e[ 4,

Eg[ 5 eV,

ecoh\ 80 cal cm-3, and

Ue[ 3 eV) and that have a

high retrosynthesis score

Polymer Structure Properties Predicted reactants Sscore

1 Eg: 5.6 � 0.4 eV

e: 4.7 � 1.5

Tg: 526 � 91 K

ecoh: 47 � 90 cal cm-3

Ue: 3.2 � 0.2 eV

0.88

2 Eg: 5.1 � 0.5 eV

e: 4.2 � 0.4

Tg: 539 � 88 K

ecoh: 57 � 85 cal cm-3

Ue: 3.04 � 0.17 eV

0.80

3 Eg: 5.3 � 0.4 eV

e: 4.5 � 0.5

Tg: 533 � 86 K

ecoh: 51 � 88 cal cm-3

Ue: 3.1 � 0.19 eV

0.77

4 Eg: 5.2 � 0.5 eV

e: 4.3 � 0.4

Tg: 530 � 81 K

ecoh: 67 � 81 cal cm-3

Ue: 3.2 � 0.16 eV

0.71

Predicted reactants are the reactants the retrosynthesis code generates when the inverse reaction known

to create a similar polymer is used on the polymer. The inverse reaction was found to be a

condensation reaction for each polymer, as opposed to addition or ring-opening. Each predicted

reactant, except the bottom one for polymer 2, have been found for sale in Reaxys

J Mater Sci



only 294 polymers. This exemplifies that the GA

method of polymer prediction will be heavily

dependent on model accuracy.

All predicted reactants, except for the bottom one

for polymer 2, are commercially available, as per the

Reaxys database [39]. Thus, three of these predicted

polymers could, in principle, be synthesized, and one

could be, if the monomer not in the Reaxys database

could be synthesized.

Conclusion

Our primary objective in this effort was to design

polymers suitable for high energy density applica-

tions, with the attributes of high temperature stability

at high electric fields. This objective leads to a highly

non-trivial materials search problem entailing the

achievement of multiple property objectives. Our

approach to achieving this objective was to impart

significant enhancements to the legendary genetic

algorithm (GA), specifically geared to address poly-

mer design. A public version of our GA code for

polymer design is released with this manuscript [40].

Several modifications were added to the GA to

achieve four goals: allowance for the consideration of

any number of target criteria, exploration of a diverse

chemical space during GA exploration, designing

polymers that are synthetically accessible and

choosing (or avoiding) specific chemical blocks dur-

ing design. Four retrosynthetically feasible example

designs were shown and an additional 19 high scor-

ing and 3665 medium scoring designs were provided

as supplementary material.

High temperature dielectrics are not the only

application accessible through this approach. Many

other applications, such as polymer membranes for

batteries and fuel cells [41], polymer membranes for

the separation of complex mixtures of gases or sol-

vents [42], polymers with metal-like conductivities

for electronics [33], and recyclable plastics [43] are

some other examples. Each application will require

materials that have numerous property requirements

and will require reliable property predictors (to

accompany the GA algorithm) to circumvent the

Edisonian guess-and-check experiments that are too

slow to search the vast polymer chemical space.
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