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ABSTRACT: Polymer informatics tools have been recently
gaining ground to efficiently and effectively develop, design, and
discover new polymers that meet specific application needs. So far,
however, these data-driven efforts have largely focused on
homopolymers. Here, we address the property prediction challenge
for copolymers, extending the polymer informatics framework
beyond homopolymers. Advanced polymer fingerprinting and
deep-learning schemes that incorporate multitask learning and
meta learning are proposed. A large data set containing over 18 000
data points of glass transition, melting, and degradation temper-
ature of homopolymers and copolymers of up to two monomers is
used to demonstrate the copolymer prediction efficacy. The developed models are accurate, fast, flexible, and scalable to more
copolymer properties when suitable data become available.

■ INTRODUCTION

In less than a century, polymer consumption has become
significant in everyday life and high-technology.1,2 Extensive
efforts are underway more vigorously than ever before to shape
and design polymers to meet specific application needs. Given
the vastness and richness of the polymer chemical and
structural spaces, new capabilities are required to effectively
and efficiently search this space to identify optimal,
application-specific solutions. The burgeoning field of polymer
informatics3−12 attempts to address such critical search
problems by utilizing modern data-driven machine learning
(ML) approaches.13−19 Such efforts have already seen
significant successes in terms of the realization and deployment
of on-demand polymer property predictors13−15 and solving
inverse problems by which polymers meeting specific property
requirements are either identified from a candidate set or
freshly designed using genetic19 or generative algorithms.20

Data that fuel such approaches may be efficiently and
autonomously extracted from the literature using ML
approaches.21,22

In the present contribution, we direct our efforts toward
building ML models that can instantaneously predict three
important temperaturesthe glass transition (Tg), melting
(Tm), and degradation (Td) temperaturesof copolymers. Tg
and Tm determine the mechanical properties of copolymers,
while Td indicates the overall temperature stability of
copolymers. The focus on copolymers is opportune and very
timely. Past informatics efforts by us and others are dominated
by investigations involving homopolymers, but several
application problems may require the usage of copolymers,
owing to the flexibility copolymers offer in tuning physical
properties.23−25 Since typical copolymer search spaces are very

large, several authors26−28 have showcased feasible pathways to
efficiently explore this space or study possible synthesis
protocols29 using ML models.
The present work has several critical ingredients. The first

ingredient is the data set itself. We have curated a data set of
three temperatures for copolymers containing two distinct
monomer units and the corresponding end-member homo-
polymers. The data set utilized in this study includes a total of
18 445 data points, as detailed in Table 1. A “data point” is
defined as a tuple composed of the homopolymer or
copolymer specifications and one of the three temperature
values. The second ingredient of our work is the method used
to numerically represent each polymer using a modification of
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Table 1. Number of Homopolymer and Copolymer Data
Pointsa

property symbol homopolymer copolymer total

glass transition
temperature

Tg 5072 4426 9498

melting temperature Tm 2079 1988 4067
degradation temperature Td 3520 1360 4880
total 10 671 7774 18 445
aThe 7774 copolymer data points encompass 1569 distinct
copolymer chemistries, ignoring composition information.
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our past fingerprinting methodology. The final vital ingredient
is the multitask neural network13 that ingests the entire data set
of homopolymer and copolymer fingerprints and their
corresponding Tg, Tm, and Td values. Training is performed
using state-of-the-art practices involving cross-validation (CV)
and meta-ensemble-learning that embeds and leverages the
cross-validation models, as detailed below. The adopted
workflow is portrayed in Figure 1, and the final models have
been deployed at https://polymergenome.org.

■ RESULTS AND DISCUSSION

Data. As mentioned above, and summarized in Table 1, our
data set includes Tg, Tm, and Td values for homopolymers and
copolymers involving two distinct monomers at various
compositions. Of the entire data set of 18 445 data points,
10 671 (≈60%) data points correspond to homopolymers
(collected from the previous studies6,13,15,16) and 7774
(≈40%) data points pertain to copolymers (collected from
the PolyInfo repository30) that encompass 1569 distinct
copolymer chemistries, ignoring composition information.
For the sake of uniformity and consistency, only Td data
points measured via thermogravimetric analysis (TGA) and Tg
and Tm data points measured via differential scanning
calorimetry (DSC) were utilized in this work. All copolymers
are furthermore assumed to be random copolymers because
information about the copolymer types was not uniformly
available. For similar reasons, the degree of polymerization and
molecular weights of the polymers are neglected in the data set.
Before training our multitask neural networks, the property
values (namely, Tg, Tm, and Td) were scaled to the range of [0,
1].

Cross-Validation. Up to this point, we have described our
copolymer data set and how to numerically represent
copolymers using fingerprints. The next step concerns the
actual ML model building process. For this, the data is split
such that 80% is used to develop five cross-validation models
and 20% is used by the meta learner (see below). The five
cross-validation models are concatenation-based conditioned
multitask deep neural networks (see Figure 1b) and are
implemented using Tensorflow.31 They take in the copolymer
fingerprints as well as the three-component selector vector,
which indicates whether the data point corresponds to Tg, Tm,
or Td and outputs the property chosen by the selector vector.
We used the Adam optimizer combined with the Stochastic
Weight Averaging method and an initial learning rate of 10−3

to optimize the mean-square error (MSE) of the property
values. Early stopping, combined with a learning rate
scheduler, was deployed during the optimization. All hyper-
parameters, such as the initial learning rate, number of layers,
neurons, dropout rates, and layer after which the selector
vector is concatenated, are optimized with respect to the
generalization error using the Hyperband method, as
implemented in the Python package Keras-Tuner.32 The
optimized hyperparameters are summarized in Table S1 of the
Supporting Information.
The low root-mean-square errors (RMSEs) and small

confidence intervals of the five cross-validation models in
Figure 2 attest to the strength of our copolymer fingerprints
and multitask approach. Multitask deep neural networks have
recently shown advantages in efficiency, scalability, and
accuracy over Gaussian processes in an extensive comparison
and benchmark for many polymer properties.13 The 5-fold

Figure 1. Data flow and machine learning model. (a) Shows the data flow through the machine learning model and sketches the copolymer
fingerprint generation. ID2 indicates a homopolymer, and ID1 and ID3 indicate copolymers. The two dangling bonds of the polymer repeat units
are denoted using “[*]” in the SMILES strings. (b) Shows a concatenation-based conditioned multitask neural network. It takes in the copolymer
fingerprint and a binary selector vector (e.g., (100) if the property is Tg, (010) if Tm, and (001) if Tg) as inputs (light red nodes) and outputs
the data processed through an optimized number of dense layers (gray nodes). The 1 in the selector vector indicates the selected output property
of the final layer (white node): glass transition (Tg), melting (Tm), and degradation (Td) temperature. (c) Shows the meta learner that is composed
of the five cross-validation models (blue nodes) and a neural network.
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averaged RMSEs (red bars) of Tg, Tm, and Td are 29, 38, and
59 K, respectively, which are similar to the values reported in
other studies13,15 that focus on homopolymers and of the order
of experimentally expected uncertainties. Additionally, the
RMSE for Tg is the lowest, and that for Td is the highest (with
the Tm RMSE being intermediate). These excellent results
suggest that the proposed copolymer fingerprints create a well-
conditioned learning problem for multitask models.
Meta Learner. The next and last element of this study is a

meta learneressentially, an ensemble learnerthat makes
the final property forecast based upon the predictions of the
ensemble of cross-validation models, as illustrated in Figure 1c.
It may be useful to think of it as consisting of two levels: at the
first level, predictions are made using the five cross-validation
models, and at the second level, these predictions are utilized
in a neural network to predict the final value. The meta learner
is trained on the 20% of the data points that were set aside
before cross-validation and implemented using a neural
network composed of the five cross-validation models (with
fixed weights) as the first layer and two fully connected, dense
layers as second and third layers. For the meta learner, just as
for the cross-validation models, we use the Hyperband method
to optimize all hyperparameters (documented in Table S1 of
the Supporting Information). The 95% confidence intervals of
the meta learner’s predictions are estimated using the Monte

Carlo dropout method.33 Such error estimates are particularly
of interest for high-throughput predictions of copolymer
screening. In the following, we will first assess the performance
of the meta learner using parity plots (Figure 3) and second
examine the meta learner’s prediction performance on the basis
of four copolymer examples (Figure 4).
With RMSE (R2) values as low as 21 (0.96), 24 (0.94), and

36K (0.90) when predicting Tg, Tm, and Td, respectively, the
parity plots in Figure 3 show the exceptional fitness of the meta
learner. Because the meta learner’s predictions are based on the
cross-validation models, it can infer from all five models,
effectively rendering its RMSEs lower than the average RMSEs
of the cross-validation models, as illustrated in Figure 2.
Figure 4 shows the predictions (--) of the meta learner along

with experimental data points (•) for Tg (blue), Tm (red), and
Td (green) of four selected copolymers across the entire
composition range. The 95% confidence intervals of the
predictions are shown as shaded bands. In all cases, there is a
high level of agreement between predictions and experimental
data points. Interestingly, the meta learner predicts averaged
trends through the experimental data points. For example, in
the case of copolymer (b), the predicted trend of Td takes an
averaged pathway through the scattered experimental data
points across the range of the copolymer compositions. Also,
the predicted trends display an appropriate level of smooth-
ness, which indicates that the meta learner was regulated
properly during training (we are using dropouts), thus avoiding
both overfitting or underfitting. Another interesting finding is
that the meta learner is capable of distilling key knowledge
from the data set, as shown for Tm of polymer (b) in Figure 4:
although no experimental data point is present at weight
fraction 0, the meta learner predicts an upward trend for Tm.
This Tm trend is inferred from the Tg trend for the same
polymer. Apparently, the data on which the model is based
condition the meta learner to predict similar trends for Tg and
Tm. Clearly, the use of inherent knowledge and correlations in
data sets allows for accurate ML models using fewer data
points and makes our method the preferred one for small data
sets.13

■ CONCLUSIONS
This work is a first step toward creating general property-
predictive ML models for copolymers. Using a copolymer data

Figure 2. Five-fold cross-validation (CV) and meta learner (Meta)
root-mean-square errors (RMSEs) of homopolymers (h) and
copolymers (c). The orange bars indicate the average of the 5-fold
cross-validation RMSEs for the validation data set, and the error bars
are the 68% confidence intervals of these RMSE averages.

Figure 3. Meta learner parity plots. The predictions are displayed for 80% of the data set that was used to train the cross-validation models. The
parity plots in (a), (b), and (c) display the glass transition (Tg), melting (Tm), and degradation temperature (Td), respectively. The root-mean-
square errors (RMSEs), coefficient of determination (R2), and data point count (Ct.) are indicated in each subplot. The frequencies of the
homopolymer and copolymer data points are indicated in black and red, respectively, in the margins of the parity plots.
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set for the glass transition (Tg), melting (Tm), and degradation
(Td) temperatures captured in 18 445 data points, we first
developed a scheme to numerically represent and fingerprint
copolymers. These fingerprints were used as the inputs to five
cross-validation multitask neural networks. Based on the
trained cross-validation models, a meta learner was built for
production deployment thatas expectedsurpasses the
performance of the cross-validation models. The meta learner
leads to final models with unprecedented accuracies (overall R2

of 0.94) and small prediction times for homopolymers and
copolymers alike. The entire workflow proposed here is
generalizable to copolymers with more than two monomers
and for a broader range of properties. The implications of this
work are far-reaching as they lay the ground work for future
advancements of polymer informatics beyond homopolymers.
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