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ABSTRACT
One of the key bottlenecks in the development of high voltage electrical systems is the identification of suitable insulating materials capable
of supporting high voltages. Under high voltage scenarios, conventional polymer based insulators, which are one of the popular choices of
insulators, suffer from the drawback of space charge accumulation, which leads to degradation in desirable electronic properties and facil-
itates dielectric breakdown. In this work, we aid the development of novel polymers for high voltage insulation applications by enabling
the rapid prediction of properties that are correlated with dielectric breakdown, i.e.,the bandgap (Egap) of the polymer and electron injec-
tion barrier (Φe) at the electrode–insulator interface. To accomplish this, density functional theory based methods are used to develop
large, chemically diverse datasets of Φe and Egap. The deviation of the computed properties from experimental observations is addressed
using a statistical technique called Bayesian calibration. Furthermore, to enable rapid estimation of these properties for a large set of poly-
mers, machine learning models are developed using the created dataset. These models are further used to predict Egap and Φe for a set
of 13k previously known polymers. Polymers with high values of these properties are selected as potential high voltage insulators and
are recommended for synthesis. Finally, the models developed here are deployed at www.polymergenome.org to enable the community
use.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0044306., s

I. INTRODUCTION

Fueled by rising environmental concerns and economic factors,
there is an increased drive to improve the efficiency of electrical
energy transfer and utilization. This has brought about technolo-
gies such as the High Voltage Direct Current (HDVC) system1 and
more electrical aircraft (MEA) systems,2 which transmit electric-
ity and operate machinery at high voltages. One of the key bottle-
necks in the development of such high power electrical systems is
the identification of suitable insulating materials.3,4 Polymers have
long been used as insulators in electrical applications owing to their

low-cost, flexibility, attractive insulation properties, attractive chem-
ical and thermal stability, and ease of processability.5,6 However,
under high voltage scenarios, conventional choices of polymers such
as polyethylene (PE) and polypropylene (PP) and rubber-like poly-
mers suffer from the drawback of forming internal space charge,
which culminates in dielectric breakdown of the insulation.7,8 There-
fore, to facilitate the development of insulation polymers in order
to design more resilient polymeric insulating materials for high
power applications, it is important to find new polymer dielectrics
that are resistant to space charge accumulation and dielectric
breakdown.
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The origin of space charge accumulation in insulating poly-
mers can be attributed to the presence of excess mobile charges in
them.9 Primarily, these excess charges include electrons/holes that
are injected from the metal electrode in contact with the insula-
tor (Schottky injection)9 or the charges that are excited from the
valance band of the polymer to its conduction band.10 These excess
charges increase the local field inside the insulator, resulting in
the creation and accumulation of local electronic defects,11 which
over a period of time leads to large electrical stresses and finally
dielectric breakdown.7 In a recent study,12 we demonstrated that
dielectric breakdown in polymers (Ebd) is indeed correlated with
the electron injection barriers in a conventional capacitor assembly
and established ϕe and Egap as proxies of breakdown. The com-
putational accessibility of these proxies then opens up a pathway
for finding new high voltage insulators. However, computational
methods such as Density Functional Theory (DFT), which can be
used to reliably estimate these properties, are too time intensive to
explore the vast chemical space that makes up the polymer universe.
One way of tackling this problem is to use data-driven approaches
to build a surrogate model that can, to some accuracy, emulate a
physics-based theoretical simulator. Recently, within the materials
science and chemistry community, several such Machine Learning
(ML) based surrogate models have been contributed toward accel-
erating the discovery of new materials for several applications.13–15

A few such works have also been published in the domain of poly-
mer properties.16,17 If such ML based surrogate models could be
developed for Egap and Φe, which can reliably predict these prop-
erties for a large chemical space, we could then use these models
to screen for potential high breakdown polymers. The key difficulty
in developing such models is the creation of a chemically diverse
dataset of Egap and Φe, which well represents the polymer chemical
space.

In this paper, we attempt to facilitate the discovery of novel
high voltage insulators by developing reliable ML models for Egap
and Φe. To achieve this, we start by creating a chemically diverse
dataset of Egap and Φe using DFT based high-throughput computa-
tions. While examining the parity between experimental values and
DFT-calculated values of these properties, we found that while
experimental properties are correlated with calculations for both
Egap and Φe, there is a lack of numerical parity in the case of Φe.

Taking advantage of the correlation between the computed and
observed values of Φe, the observed difference in numerical parity
was addressed using a statistical tool called Bayesian calibra-
tion (BC). Furthermore, after representing the polymers in terms
of machine-readable Polymer Genome fingerprints,16,18,19 we use
Gaussian process regression (GPR) to learn the relationship between
the numerical representation of the polymer and the properties.
These models are further used to screen for potential high break-
down polymers from a list of 13 000 known polymers. The mod-
els developed here are deployed in Polymer Genome to enable the
community to use it.

II. TECHNICAL DETAILS
A. Data creation

The overall machine learning model development workflow is
depicted in Fig. 1. The first step in the process is to develop reli-
able datasets for ϕe and Egap using DFT computations. This section
provides the technical details of the data creation.

1. Polymer models
Modeling polymers is notably challenging. In fact, polymer

morphology is highly complex, typically containing crystalline,
semi-crystalline, and amorphous domains coexisting with the degree
of crystallinity falling somewhere between 0 and ≃80%.20 Since Egap
and ϕe can only be evaluated using electronic structure-based meth-
ods such as DFT, polymers must be modeled as perfect (infinite)
crystals or chains, whose periodical unit cell contains no more than
a few hundred atoms.21,22 This approximation turns out to be pretty
good, reasonably capturing the true values of Egap, ϕe, and their
respective trends.23–26 Therefore, the datasets of Egap and ϕe required
for this work were developed using DFT computations on polymer
chain and crystal models.

For a vast majority of known polymers, the only available
structure-related information is their atomic connectivity—in fact,
there are just a few dozens of polymers whose crystal structures
have been resolved experimentally.24 Therefore, the computation-
ally predicted polymer structure is usually required for polymer

FIG. 1. A high level overview of the model development workflow used in this work. DFT based high-throughput computations are used to obtain Egap and Φe. BC is used to
correct the high-throughput data if the computed property value deviated from experimental observations, considering a handful of known cases where we have experimental
observations. The electron injection barrier results from DFT were subjected to BC here. The corrected property is then used to develop the ML model.
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modeling. Herein, we used the polymer structure predictor (PSP),27

an efficient method in order to create the required polymer chains
and crystals. Starting from their atomic connectivity, the PSP has
been used to successfully predict the chain and crystal structures
of many linear polymers.27 By all accounts, predicting a poly-
mer crystal structure is at least two orders more expensive than
predicting a polymer chain structure. Therefore, the polymer
bandgap was evaluated at two levels of polymer models, i.e., chains
and crystals, leading to two datasets of Echain

gap and Ecrystal
gap , where the

former is substantially bigger than the latter. Moreover, because set-
ting up a crystal model required for computing charge injection
barriers is even more cumbersome,12,23 only polymer chain models
were used for our high-throughput computations of ϕe.

2. Computational methods
Our DFT computations were performed using the version as

implemented in Vienna Ab initio Simulation Package (VASP).28–30

Within this scheme, a plane-wave cutoff of 600 eV and a k-point
density of 0.1 Å−1 were used. The van der Waals dispersion inter-
actions, which are important for describing the polymer bulk and
metal–polymer interfacial interactions, were estimated with the
non-local density functional vdW-DF2.31 Refitted Perdew–Wang
86,32 the exchange–correlation (XC) functional associated with
vdW-DF2, was also used. During the geometry optimization, con-
vergence was assumed when the atomic forces become less than
0.01 eV/Å. Finally, to accurately compute the electronic properties
such as the conduction band minimum (CBM), the valence band
maximum (VBM), and the bandgap, the Heyd–Scuseria–Ernzerhof
(HSE06) XC functional33 was used on top of the optimized
structures.

3. Calculations of bandgap and electron
injection barrier

Representation of polymers as periodically repeating monomer
units provides a simple way to incorporate the long range interac-
tion between atoms in the polymer, which are critical in modeling
the electronic properties of polymers. Plane-wave DFT was cho-
sen for the computations here as it is better at handling periodicity.
Within the plane-wave DFT framework, bandgap calculations are
straightforward, i.e., Egap is the energy difference between the VBM
and the CBM, and both of them are obtained while solving the
Kohn–Sham equations. By definitions, the estimation of charge
injection barriers involves computing the electronic properties of the
interface between the metal electrode and the insulating polymer.
Here, to keep the study consistent, we considered only one electrode
material, i.e., aluminum (Al). Conventionally, to compute ϕe using
DFT, three properties are required. They are the maximum energy
at which electrons reside in the metal or the metal fermi level EF;
the energy of the first vacant energy level in the polymer, which is
the CBM; and the interaction between Al and polymer, which intro-
duces an interface dipole moment D and shifts the polymer CBM
with respect to Al EF by ΔΦ = −eD/(2a).23,34,35 Finally, the electron
injection barrier is then determined using ϕe = EF − ECBM + ΔΦ.
Recently, we established12 that this approach can be effectively sim-
plified by ignoring ΔΦ and considering the polymer single chain
model. This simplification allows us to decouple the computation

into two parts where we independently determine the CBM of the
polymer and the EF of Al. Hence, the computation of ϕe finally boils
down to the computation of the CBM of the polymer. A compar-
ison between this scheme and the standard model is reported by
Kamal et al.12 This scheme is employed to perform high throughout
ϕe computations within this work.

4. Statistical adjustment
One of the drawbacks created by the assumptions—ignoring

the metal–polymer interfacial interaction and bulk interactions—
made to simplify DFT calculations is that it underestimates the com-
puted value of ϕe when compared to the experimental observations.
This difference in numerical parity can be observed in Fig. 2(e).
However, despite the numerical difference between ϕexp

e and ϕDFT
e , it

can be seen that both values are correlated. Hence, to create a model
that can predict ϕexp

e , we utilize this correlation to bridge the gap
between computed results and experimental observations. Here, we
do this using a statistical adjustment technique called the Bayesian
Calibration (BC) method.36,37

Within this method, the experimental observation of ϕe, ϕexp
e ,

for a given polymer x is thought of to be random due to the presence
of noise (uncontrollable) factors and measurement errors, ε. Then,

ϕexp
e = μ(x) + ε, (1)

where μ(x) is the mean of ϕexp
e and ε ∼ N (0, σ2). The objective of

this method then is to find the unknown function μ(x), given ϕDFT
e

for a large number of polymers and the experimental value of these
properties for a limited number of cases. This is achieved by assum-
ing that we have a DFT model f DFT(x) that gives us access to ϕDFT

e
for a given polymer x and using it to postulate a prior distribution
for μ(x) within a Bayesian framework. Specifically, the value from
f DFT(x) is taken as the mean of the prior distribution of μ(x). The
posterior distribution is then computed using the Bayes theorem
using the experimental observations for a few polymers. The pos-
terior distribution thus derived incorporates the information from
the DFT model as well as the experimental observations. The BC
result used here is just the mean of this posterior distribution. In our
case, we use a location-scale model37 to postulate the prior for μ(x)
because of the limited data. Thus, μ(x) is estimated by

μ̂(x) = f DFT(x) + β̂0 + β̂1( f DFT(x) − f̄ ), (2)

where β̂0 = max(1 − 1/z2
0 , 0)β̃0, β̂1 = max(1 − 1/z2

1 , 0)β̃1, f̄
= ∑n

i=1 f
DFT(xi)/n, z0 =

√
nβ̃0/σ, z1 =

√
Sβ̃1/σ, S = ∑n

i=1{ f DFT(xi)
− f̄ }2, β̃0 = ∑n

i=1 ϕ
exp
e, i /n − f̄ , β̃1 = ∑n

i=1{ϕ
exp
e, i − f

DFT(xi)}f DFT(xi)/S,
and n is the number of observations.

B. Fingerprinting and machine learning
The process of developing a ML based model contains several

steps. First, we represent the polymers in a numerical machine-
readable manner, referred to as fingerprint. In this work, inspired
by the success of our past property prediction models,16,38 we use
a four-level hierarchical fingerprint first introduced by Tran et al.19

This leads to a fingerprint of about 800 components for each prop-
erty. Then, recursive feature elimination39 (RFE) is used to reduce
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FIG. 2. (Top row) The distribution of computed values of Ecrystal
gap (a), Echain

gap (b), and ϕe (c). (Bottom row) A comparison between Ecrystal
gap and Echain

gap for a selected set of polymers
(d), a comparison between ϕe computed using a single chain polymer model (red) and crystalline polymer model (green) with experimental observations for a selected set of
polymers (e), and the distribution of polymers used for computing Ecrystal

gap , Echain
gap , and ϕe in the chemical and conformational space defined by Polymer Genome fingerprints,

overlaid against that of 13k known polymers (f).

the size (the number of components) of the fingerprint. The final
fingerprint size and details are provided in Sec. III A. Here, Gaus-
sian process regression (GPR) was chosen over other ML methods
such as graph neural networks (NN) and convolutional neural net-
works,40–42 which indeed show great promise, mainly because the
dataset that we are using is comparatively small and because GPR
provides a more robust estimate of prediction uncertainty com-
pared to that provided by NN based methods. Within GPR, we
employ a squared exponential kernel of the following form to learn
the relationship between the fingerprint of the polymer and the
properties:

k(xi, xj) = σf exp(− 1
2σ2

l
∥xi − xj∥2) + δijσ2

n , (3)

where σf , σ l, and σn are the hyper-parameters controlling the
characteristics of the prior. During this (model training) step, the
posterior distribution is obtained by maximizing the log marginal
likelihood of the observed data. Having the trained model, predic-
tions were made by maximizing the conditional likelihood, given
the fingerprint of the polymer in consideration. We used the scikit-
learn package43 for training the models and predicting the polymer
properties.

III. RESULTS AND DISCUSSIONS
A. Dataset

To enable the development of ML models, which can reliably
predict Egap and Φe for new polymers, we used DFT calculations
to create large datasets containing 4100 data points of the polymer
chain bandgap Echain

gap and 1800 data points of Φe. A dataset of Ecrystal
gap

containing 200 polymers was also created to assess the reliability of
the single chain based Echain

gap calculations.
To enhance the generalizability of the models developed in

this work, the diversity in terms of the property range and chem-
istry of the polymers was ensured while creating the dataset.
Figures 2(a)–2(c) and 2(f) depict the diversity of the dataset.
Figures 2(a)–2(c) show the number of polymers in each dataset and
their distribution over property space. The dataset of Ecyrstal

gap and
Echain

gap contains values ranging from 0 to 10 eV, covering the range
of bandgap expected for polymeric materials. The dataset of Φe con-
tains values ranging from −2 to 6 eV, which also covers the typical
range of electron injection barriers reported for aluminum polymer
interfaces.12,44 The negative value of electron injection barriers here
is an artifact caused due to the method used to compute them and
is addressed in Sec. III A 2. To ensure chemical diversity, polymers
containing nine common elements including C, H, B, O, N, S, F, Cl,
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and Br and various polymer classes, including polycarbonates, poly-
imide, polyamide, polyolefins, polyvinyl, polyethers, and polyesters,
were chosen from a the list of 13 000 known polymers and included
in the datasets. Figure 2(f) shows the distribution of the polymers
contained in each of the datasets in terms of the first two prin-
cipal components obtained from a Principal Component Analysis
(PCA) of the Polymer Genome fingerprint19 of the polymers. It can
be observed that the distribution of the data points in each dataset
(represented by color) chemically and morphologically encompasses
the diversity of the known polymer space (represented in gray) to a
good extend.

1. Bandgap
For semiconductors and insulating materials (including poly-

mers), the bandgap computed for their crystal models at the HSE
level of DFT was established10,45,46 to be a good estimation of the
experimentally measured property. Here, we argue that the polymer
chain model is also good for estimating the bandgap using DFT.
Indeed, Fig. 2(d) clearly shows that two levels of polymer models,
i.e., polymer chains and crystals, could lead to the comparable DFT-
computed values of the bandgap. This suggests that in most linear
polymers, the inter-chain interactions are weak and do not con-
tribute significantly to the electronic structure. Therefore, using the
single chain model to compute Egap of a polymer could be a rea-
sonable approximation. We also note that deviations of ∼1 eV from
this general behavior can be observed throughout the plot, hinting at
the importance of considering bulk effects to accurately determine
polymer Egap.

2. Electron injection barrier
In the case of ϕe, a strong correlation between experimental val-

ues and DFT computations was established by Kamal et al.12 and
shown in Fig. 2(e). However, there seem to be some “systematic”
deviations between the results of the two methods. To develop an
ML model that can predict the experimental values of ϕe, this gap
in numerical parity was removed using the BC method. To assess
the robustness of the method, a leave-one-out cross-validation was
performed on a subset of the high-throughput dataset for which

the experimental observations of interfacial electron injection were
available. The blue points in Fig. 3(a) show the results of this exer-
cise. It can be seen that numerical parity was greatly improved using
this technique. Having validated the BC method, it was employed
to adapt the DFT-computed electron injection barriers of all poly-
mers in the dataset to estimate their experimental values. Figure 3(b)
shows the values of ϕe before and after BC.

B. Machine learning results
The next important step toward building accurate and reliable

ML models is to generate relevant features that uniquely represent
each polymer. To capture the polymer chemistry, a total of about 800
chemical features were used to numerically fingerprint polymers in
each dataset. After a dimensionality reduction step using RFE, the
polymers in Ecrystal

gap , Echain
gap , and ϕe datasets were represented by 126

features, 600 features, and 400 features, respectively.
Using the curated and pre-processed data described in

Sec. III A, we developed three ML models to predict Egap and Φe. As
described previously, GPR was employed to learn the relationship
between the numerical representation of the polymer and the prop-
erties. Figures 4(a)–4(c) show the learning curves for models trained
on the Ecrystal

gap dataset, the Echain
gap dataset, and the Φe dataset, respec-

tively. To perform model training, the datasets are split into two:
training set, containing 80% of the total data, and test set, containing
20% of the data. The x-axis of these figures shows the percentage of
the training dataset used for training the model. The performance
of the GPR models when evaluated on the training and test sets is
represented along the y axis in terms of Root Mean Square Errors
(RMSEs) in blue and red, respectively. The error bars on each of the
points denote the 1σ deviation in the reported RMSE values over
50 runs. From Figs. 4(a)–4(c), we can see that the ML models in all
three cases tend to saturate when at least ≃80% of the training data
are used for model training, indicating that the inherent data in the
dataset are sufficiently representative of polymers in the chemical
space described.

Looking more closely at the performance of the models,
Figs. 4(d)–4(f) represent parity plots that depict the prediction per-
formance of the models trained on 80% of the data. To evaluate the

FIG. 3. (a) A comparison between the
experimental value of the electron injec-
tion barrier ϕexp

e and the leave-one-
out cross-validation (blue) result of BC
applied to the computed value (red) and
(b) the distribution of magnitudes of com-
puted electron injection barriers before
and after correction.
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FIG. 4. Learning curves characterizing the performance of the ML models for the polymer crystal bandgap, chain bandgap, and charge injection barrier, respectively,
are shown in (a)–(c). Note that each point in these plots was obtained by averaging the RMSE of 50 models trained on a given training set size. The best performing
ML models of these properties are shown in (d)–(f). Each parity plot was obtained from a model trained on 80% of the data and tested on the remaining 20% of the
data.

overall performance of the model at a high level, the RMSE and coef-
ficient of determination (R2) of the model is evaluated on the train-
ing and test sets. For the Ecrystal

gap models, RMSE on the test set is 0.5 eV
and R2 is 0.94, which is similar to the bandgap model performances
reported by Patra et al.47 For the ϕe model, the RMSE on the test set
is 0.3 eV and R2 is 0.78. A more local perspective can be obtained
by looking more closely at the parity plots shown in Figs. 4(d)–4(f).
It can be seen in all cases that most of the training and test points
are on the parity line. A few points can be seen to be quite far from
the parity line, especially in Figs. 4(e) and 4(f). However, interest-
ingly, the model has a high uncertainty at the point, meaning that
points such as the outlier are underrepresented in the dataset. The
uncertainty of the predictions can hence be used as a tool to evalu-
ate our confidence in the model. On visual inspection of Fig. 4(f), we
can see that the low value of R2 for ϕe is due to only a few outliers.
From Figs. 4(d) and 4(e), it can hence be seen that all three models
are robust and dependable when their uncertainties are low. Finally,
to create the final models, 100% of data were utilized. Out of abun-
dance of caution to prevent overfitting, fivefold-cross-validation
was employed to make 50 sets of models, and the best model
among them was chosen based on the magnitude of validation
errors.

C. Candidates for high voltage insulation
applications

Now, to find polymers that may be useful for high voltage
applications, we attempt a high-throughput screening exercise. This
is very similar to the DFT data based screening for high break-
down polymers attempted by Kamal et al.,12 for ∼1000 polymers.
The major difference here is that since we are equipped with ML
models, we screen from a much larger list set of ≃13 000 previously
known polymers. Figure 5(a) shows the predictions for the list of
≃13 000 polymers. To reduce the space charge accumulation and
hence facilitate the longer life span of the insulation, we choose poly-
mers with high Egap and Φe values. Here, a criterion of Egap ≥ 5 eV
and ϕe ≥ 3 eV is employed to achieve this. To also account for the
thermal stability of the polymer, we further add an extra screening
criterion based on the glass transition temperature (Tg) of the poly-
mer. To do this, Tg models developed by Jha et al.48 were used. A
criterion of Tg ≥ 400 K was used for the purposes of downselection.
Using these criteria [indicated by the shaded region on the top right
of Fig. 5(a)], we identified 81 polymers that potentially could be suit-
able for high potential insulation applications. Because of the past
synthesis evidence of all the selected polymers, we hope that they
will be re-synthesized and tested for high potential applications. A
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FIG. 5. (a) Egap, ϕe, and Tg predicted for the dataset of 13k polymers. Polymers in the shaded area with Tg ≥ 400 K are predicted to be suitable for high voltage insulators.
(b) Chemical features that are more frequent in the proposed list of potential high breakdown polymers compared to those of the list of 13 000 known polymers. Note that the
numbers beside the atomic triplets shown in the plot depict the number of atoms the group is bonded to (e.g., C4 means carbon bonded to four groups).

full list of these candidate polymers with details is given in Sec. III E
of the supplementary material.

To reveal what chemical features stand out in the proposed list
of high breakdown polymers, a frequency analysis of different chem-
ical groups was performed. The analysis considered the frequency of
occurrence of different atomic triplets and common chemical blocks
proposed by Tran et al.19 [going forward, referred to as “feature(s),”
short for chemical feature(s)] in the proposed polymers and com-
pared it with that of their occurrence in the list of ∼13k known
polymers. Finally, the ratio of the frequency of occurrence of each
feature in the list of proposed and known polymers was used as the
metric to ascertain feature importance. The frequency ratio (f ratio)
used here is given by the following formula:

fratio =
Nproposed

feature /N
proposed
polymers

Nknown
feature /Nknown

polymers

, (4)

where Nproposed
feature is the number of occurrences of a given feature in the

list of proposed polymers, Nproposed
polymers is the total number of polymers

in the list of proposed polymers, Nknown
feature is the number of occur-

rences of a given feature in the list of known polymers, and Nknown
polymers

is the total number of polymers in the list of proposed polymers.
Figure 5(b) shows the features that are more than ten times more
frequent in the list of proposed polymers than in the list of known
polymers.

Several features stand out from this analysis. It can be seen
that non-aromatic hydrocarbon rings are prolific in the proposed
polymers. Block-3, block-4, block-5, block-7, and block-8
are examples of such ring structures. This observation is fairly intu-
itive as the presence of rings in the monomer structure results in the
restriction of chain mobility, which in turn results in the increase in
Tg . In addition, the non-aromatic nature of the ring will ensure a
high bandgap as the rings are composed of sp3-hybridized carbon
atoms. Terminal halogen groups are also profuse in the proposed

list. Block-3 and Cl1-C4-F1 are examples of terminal halides that
are prolific in the proposed list. The features C2-C4-C1, though
shown to have a high value of frequency ratio, only occur two times
in the proposed list. However, the fact that it only occurs two times
in the list of known polymers makes it worth further consideration.
The presence of a large number of terminal halogens could be
explained by the fact that the presence of halogens in the polymer
tends to shift the conduction band minima of the polymer with
respect to those of the Fermi level of Al12 increasing the electron
injection barrier at the metal-polymer interface and by the fact that
they tend to increase Tg due to the increase in inter-chain inter-
actions. Cellulose-like groups shown in block-1 are also seen to be
prolific. This is also intuitive when considering high Tg in cellulose-
like polymers49 and their high bandgap with their composition of
sp3-hybridized carbon and oxygen atoms. The high frequency of
these features suggests that a polymer that contains one or more
of these features has a greater chance of being a high breakdown
polymer compared to a polymer picked at random. The presence of
these features can then be considered as design principles to design
the next generation of high breakdown dielectrics.

D. Outlook
In an attempt to develop novel polymer dielectrics, in a previ-

ous work,12 we established that Egap and ϕe are both correlated to Ebd
and laid out computational pathways to rapidly estimate them. This
allowed us to reformulate the difficult problem of finding breakdown
resistant polymers into an easier problem of finding polymers with a
high bandgap and electron injection barrier. In this work, we take a
step further toward discovering novel polymer dielectrics by devel-
oping large datasets of the bandgap and electron injection barrier
by drawing from a set of 13 000 known polymers. Furthermore, ML
models were then built using these datasets to enable rapid reliable
prediction of Egap and ϕe. These ML models in conjunction with that
of Tg were then used to screen for high breakdown dielectrics from
the larger list of 13 000 known polymers.
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While the approach taken here is a good starting point toward
the discovery of high breakdown polymers, further refinement in
multiple aspects considered here can make the adopted strategy
more effective. One such avenue is the properties considered here
to look for high breakdown polymers, Egap, ϕe, and Tg . While these
properties are desirable for high breakdown polymers, several other
properties can be used to further refine the choice of potential high
breakdown polymers. These include polymer features such as the
cohesive energy density,50 dielectric constant of the polymer, charge
mobility in the polymer, and thermal conductivity of the polymer.
The bottleneck in using these properties currently is the lack of a
reliable dataset for them. Hence, development of a reliable dataset
of these properties would help further refine the strategy. Another
possible avenue is the use of advanced learning strategies such as
multi-task learning51 to learn multiple polymer properties using the
same NN based ML model. This method has the added advantage
that these models learn the correlation between the properties in
addition to the relationship between the fingerprint and the proper-
ties, which enables them to reliably predict properties that may have
fewer training data but correlated with other properties. Nonethe-
less, the ML models developed herein and the polymers selected
using them form a starting point in the exploration of high break-
down polymers using the proposed approach. Furthermore, the ML
models developed here can also be used in conjunction with gener-
ative methods such as the genetic algorithm,52 variational autoen-
coders,53 and graph to graph translations54 to systematically create
new polymers that satisfy set objectives.

E. Conclusions
In summary, in an attempt to facilitate the discovery of novel

high voltage insulators, we have developed and deployed ML mod-
els to predict the essential electronic properties of polymers, i.e.,
bandgap Egap and electron injection barrier Φe. To facilitate the
development of the ML models, we have created reliable datasets of
Egap and Φe using DFT computations and utilized statistical tech-
niques to address systematic deviations of DFT results from exper-
iments wherever necessary. Furthermore, Polymer Genome finger-
prints in conjunction with GPR were used to develop accurate ML
models of Egap and Φe, which are faster than modeling and exper-
iments. These models were deployed at www.polymergenome.org
to facilitate easy access for the community. These models were
also used to find novel high voltage insulators by screening from a
large list of known polymers. We hope that these polymers will go
through (re)synthesis and tests for high voltage electrical insulation
applications.

SUPPLEMENTARY MATERIAL

The full list of 81 potential high breakdown polymers that were
found using the methods described in this paper is presented in the
supplementary material. Details listed for each polymer include their
IUPAC name, a 2D representation of the polymer repeat unit, and
the mean prediction value (using ML models) of Egap, 2, and Tg.
References to synthesis method(s) for most polymers are also added
for the benefit of the community.
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