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A B S T R A C T   

Artificial intelligence (AI) based approaches are beginning to impact several domains of human life, science and 
technology. Polymer informatics is one such domain where AI and machine learning (ML) tools are being used in 
the efficient development, design and discovery of polymers. Surrogate models are trained on available polymer 
data for instant property prediction, allowing screening of promising polymer candidates with specific target 
property requirements. Questions regarding synthesizability, and potential (retro)synthesis steps to create a 
target polymer, are being explored using statistical means. Data-driven strategies to tackle unique challenges 
resulting from the extraordinary chemical and physical diversity of polymers at small and large scales are being 
explored. Other major hurdles for polymer informatics are the lack of widespread availability of curated and 
organized data, and approaches to create machine-readable representations that capture not just the structure of 
complex polymeric situations but also synthesis and processing conditions. Methods to solve inverse problems, 
wherein polymer recommendations are made using advanced AI algorithms that meet application targets, are 
being investigated. As various parts of the burgeoning polymer informatics ecosystem mature and become in-
tegrated, efficiency improvements, accelerated discoveries and increased productivity can result. Here, we re-
view emergent components of this polymer informatics ecosystem and discuss imminent challenges and 
opportunities.   

1. Introduction 

Over the course of less than a century, polymers have become 
pervasive in everyday life and high-technology [1–10]. Mass production 
of niche polymers, such as polyethylene, polypropylene and poly-
styrene, has outstripped the production scale of iron and steel, which 
have been the staple materials for millennia [11]. Different parts of the 
practically infinite chemical space of polymers display a dizzying variety 
of distinctive properties, which can be tuned exquisitely through control 
of their chemical and morphological structure [1,2]. Extensive efforts 
have been devoted to searching the chemical space and tinkering with 
their structure and chemistry to optimize their properties for specific 
applications. Traditional intuition-driven and/or trial-and-error ap-
proaches have already revealed the promise that the polymer class of 
materials holds. Nevertheless, given the vastness of the chemical and 
structural space, new methods are required to effectively and efficiently 
search this space to identify optimal, application-specific solutions. 

The field of polymer informatics attempts to address this daunting 
search problem by the utilization of modern data- and information- 
centric approaches, inspired by emerging artificial intelligence (AI) 
and machine learning (ML) methods [12–19]. Polymer informatics ef-
forts are seeing heightened activity and successes in recent years 
[19–25], but many of the ideas and concepts have gradually taken shape 
over a period of decades [19–21,24,26]. 

Fig. 1 illustrates the essential elements of polymer informatics. The 
first vital ingredient is the polymer data, derived from experiments and 
(high-throughput) computations. Unlike hard materials, only limited 
well-organized/clean polymer data is available to be used for ML or AI- 
based techniques, e.g., in polymer handbooks [27] and online re-
positories [28]. Large volumes of experimental data remain trapped in 
the scientific literature, which is occasionally mined via laborious 
manual excerption. An emerging alternative approach is natural lan-
guage processing (NLP) to continuously and dynamically extract poly-
mer data, but significant future efforts are needed to effectively and 
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accurately extract polymer data from literature. Another important 
resource of polymer data is high-throughput computations using density 
functional theory (DFT) [29–31] and classical molecular dynamics (MD) 
simulations [32–39]. The recent development of autonomous compu-
tational agents, composed of machine learning modules and 
high-throughput computations, holds great promise for polymer data 
generation [40]. 

The second important component of polymer informatics is a suit-
able framework to create machine-readable polymer representations. 
Linear notations are commonly adopted to describe the chemical in-
formation of polymers, for instance, using Simplified Molecular-Input 
Line-Entry System (SMILES) [41]. With SMILES as input, polymers are 
either directly fingerprinted using hierarchical polymer fingerprints [22, 
23] or molecular fingerprints [42,43] that are widely used in chem-
informatics. Alternatively, optimal fingerprint representation (or latent 
knowledge) of polymers can be obtained using variational [44] or graph 
autoencoders [45,46]. Designing fingerprints that fully capture not just 
the chemical and morphological information of polymers, but also how 
they were synthesized and processed is one of the most challenging parts 
of polymer informatics. 

Using the numerical polymer fingerprints and target property data as 
input, we move to the third part of the polymer informatics: polymer 
property prediction and design. In the former, various machine learning 
algorithms, e.g., non-linear regression [22], multi-fidelity information 
fusion [47,48] and deep neural networks [43,49], can be applied to 
learn the relationship between polymer fingerprints and their target 
property, resulting in a surrogate property prediction model for poly-
mers. The developed surrogate model can instantly predict various 
properties of new polymers defined by the user. Another key benefit of 
the polymer informatics ecosystem is to accelerate the discovery of 
polymers with target properties for various applications. Several poly-
mer design algorithms have been proposed, e.g., screening candidates 
based on the ML predicted properties from a huge list of enumerated 
polymers, iteratively selecting the next interesting polymer using active 
learning, and producing desired hypothetical polymers using genetic or 
generative deep learning algorithms. These design approaches have 
significantly accelerated the polymer design process for capacitors 
[50–52], membrane separation [42], organic solar cells [53], among 
others. 

Once the desired polymer candidates are proposed, the next step is to 

validate the polymers via computational methods and physical synthe-
sis. The former is manageable using AI-automated data generation 
agents that control computational workflows (but are applicable to only 
those properties that are accessible through computations). The latter is 
a challenge, as the synthesis of the selected polymer candidates is not 
straightforward. Chemical reactions, precursors, reagents and process-
ing conditions (temperature, pressure and solvents) must be identified 
for each polymer to successfully synthesize them. Attempts are being 
made to expedite this process by using AI-assisted synthesis planning 
and robotic/autonomous (retro)synthesis. Although computer-aided 
synthesis design for molecules was recently accomplished [54,55], 
there remains lots of scope and challenges for polymer synthesis plan-
ning, which is expected to blossom rapidly in the next several years. 
Moreover, the data obtained from these synthesized polymers and/or 
from their computations can be added into existing polymer repositories 
to re-optimize ML models and re-design or re-imagine the next 
experiments. 

In this paper, we review these emergent components of the polymer 
informatics ecosystem and discuss imminent challenges and opportu-
nities. In Section 2, we discuss protocols available for polymer data 
generation, acquisition and management. It is followed by a survey of 
various schemas for polymer representations in Section 3. Next, we 
move on to review machine learning algorithms utilized and adapted for 
polymer property prediction (Section 4) and design for various appli-
cations (Section 5). We then list several representative application ex-
amples that have benefited and may benefit from the polymer 
informatics philosophy in Section 6 and identify critical next steps that 
the community will need to address and surmount in the near future in 
Section 7. 

2. Data generation, acquisition and management 

The central tenet of polymer informatics is that if a sufficient volume 
of polymer data can be appropriately generated or curated, it can 
facilitate discovery/design of functional polymers with targeted per-
formance. Below we discuss how polymer data can be accumulated from 
the literature or generated using high-throughput and autonomous 
computations. 

Fig. 1. Essential elements of Polymer Informatics Ecosystem: (1) polymer data, derived from (high-throughput) computations and/or experiments (through manual 
or natural language processing-aided excerption); (2) polymer representations, transforming polymers into numerical fingerprints and making it amenable to ML/AI 
models; (3) developing surrogate models for polymer property prediction and design polymers with desired properties for specific applications; (4) Online user 
interfaces provide easy and quick public access to the developed surrogate models and/or the underlying polymer data; (5) AI-aided computational and synthesis 
validation, feeding new information to existing polymer repositories. 

L. Chen et al.                                                                                                                                                                                                                                    



Materials Science & Engineering R 144 (2021) 100595

3

2.1. Scientific literature 

A reliable and enormous data resource for polymer data is the sci-
entific literature, including printed handbooks [56–59], online re-
positories [28] and journal articles. As listed in Table 1, polymer 
handbooks, such as the Polymer Handbook [56] and Properties of 
Polymers [58], are introductory materials containing chemical, property 
and synthesis information on polymers. More recently, several polymer 
databases have been digitalized, allowing for easy access to polymer 
data. A few representative databases include PoLyInfo supported by the 
National Institute for Materials Science of Japan (NIMS) [28], CROW 
Polymer Property Database [60], Polymers: A property database [61], 
CAMPUS [62], LANDOLT-BORNSTEIN [63] and Polymer Property 
Predictor and Database (NIST) [64]. In contrast to the field of inorganic 
materials, only a few computation-based property databases for poly-
mers are available. This can be attributed to the high computational 
complexity of polymers due to their complicated physical and chemical 
structures. A good example of a database of computational data poly-
mers is Khazana [65], which includes DFT computed band gap, dielec-
tric constant, refractive index and charge injection barriers. The third 
important resource of polymer data is the ever-increasing corpus of 
published journal articles. 

Timely dynamical extraction of polymer data from the literature in a 
machine-readable format can be challenging and is achieved using 
either the laborious manual excerption and/or machine-learning 
methods usually classified as NLP. Manual text excerption refers to the 
old-fashioned procedure of collecting data from the literature and en-
tails laborious efforts for data extraction, validation, and normalization 
owing to the absence of standard journal policies for publishing polymer 
data. Nonetheless, researchers have painstakingly collected important 
information on polymer types, their chemical structures (repeat units), 
names and class, their properties (e.g., physical, thermal, mechanical, 
dielectric, physicochemical and solution properties), and their synthesis 
recipes (e.g., polymerization paths, reactants and reagents) [28,56–59]. 
Crucially, easy access to the resulting databases has been provided 
through online repositories, as discussed earlier. 

Machine learning-based NLP has emerged as an alternative approach 
for information excerption from the literature in the last few years. NLP 
can be used to automatically scan the literature corpus and extract 
relevant polymer properties, which can be organized in a tabular fashion 
based on the NLP model predicted text relations. The use of NLP in 
materials science is still in its infancy, due to the difficulty in inter-
preting technical languages and incorporating domain knowledge. It is 
further complicated by the absence of standard journal policies for 
publishing scientific data. Several initial attempts have tried to use NLP 
to collect materials synthesis recipes, capture latent knowledge and to 
even predict potentially superior thermoelectrics [18,67,68]. These 
successes motivate the further application of NLP in polymer 

informatics, such as the extraction of properties, synthesis recipes or 
processing conditions from past literature. Despite initial success, many 
unique challenges are posed in the case of polymers, for example, 
non-uniform polymer names. More details are described in Section 7. 

2.2. High-throughput and autonomous computational agents 

High-throughput computations using first-principles theory and 
classical MD are important approaches to amass polymer data. However, 
this task is non-trivial because of the enormously complicated chemical 
and physical structures of polymers at the atomic scale; polymers usually 
display either amorphous or semi-crystalline phases. Given the expen-
sive computational cost of first-principles computations, small length- 
scale models (<100 atoms) have been developed to represent poly-
mers and approximate their physical, electronic and dielectric proper-
ties [29–31,40,51]. The computed results, however, generally suffer 
from certain accuracy issues depending on the methodology. To model 
polymers in the large-scale, classical MD with empirical force fields have 
been applied to study the structural dynamics [69–76] and diverse 
properties (e.g., dielectric, thermal, mechanical and ion transport 
properties) [32,34,35,37,38,71,77–82] of polymers. However, such 
parameterization schemes are also restricted by the availability of force 
fields and the high computational cost to simulate very large systems 
(>thousands of atoms). 

Balancing the trade-off between cost and accuracy, past efforts have 
led to the computation of the electronic, dielectric and optical properties 
(such as band gap, charge injection barriers and dielectric constant) of 
thousands of polymers using DFT [29–31,40,83]. A hierarchy of models, 
i.e., single-chain, pure crystal and amorphous, has been developed to 
represent realistic polymers, as shown in Fig. 2a). The simplest 
single-chain model is composed of only a chain of monomers in vacuum, 
while crystal and amorphous models represent the crystalline and 
amorphous regions of polymers, respectively. In spite of this simplifi-
cation, the creation of correct low-energy crystalline structure of a 
polymer, especially for novel polymers, remains a major challenge [40]. 
To address this issue, Huan et al. developed a general computational 
workflow, referred to as polymer structure predictor (PSP), to predict 
crystal structures of linear polymers. In this workflow, a polymer is 
defined in terms of its chemical composition and atomic connectivity, 
using the SMILES notation (more details in Section 3). Reasonable 
single-chain and crystal models of the polymer can be predicted/created 
[40] using this scheme. Such efforts have led to formation of the largest 
dataset for polymers using computations, which can be accessed from 
https://khazana.gatech.edu. Some of the important computed proper-
ties include the crystal band gap, single-chain band gap, charge injection 
barriers, atomization energy, ionization energy, electron affinity, 
dielectric constant and refractive index [29,40]. Other researchers have 
spent extensive efforts on estimating thermal conductivity [78,79,84, 

Table 1 
Available polymer data resources.  

Source Name Data type 

Handbook Polymer Handbook [56], Handbook of Polymers [57], Empirical  
Properties of Polymers [58], Polymer Data Handbook [59] Empirical  
Polymer synthesis: theory and practice [66] Empirical  

Online Repositories PoLyInfo [28] Empirical  
CROW Polymer Property Database [60] Empirical  
Polymers: A property database [61] Empirical  
CAMPUS [62] Empirical  
LANDOLT-BORNSTEIN [63] Empirical  
Polymer Property Predictor and Database (NIST) [64] Empirical  
Khazana [65] Computational  

Published journal articles Various Empirical/Computational  
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85], Young’s modulus [82], tensile strength [34,80,81], and the lithium 
conductivity [33,36,37] of representative polymers using classical MD 
simulations. However, it is still challenging to compute these properties 
for a diverse range of polymers, especially those that have not been 
studied well. 

Given the vast chemical space of polymers, a new strategy aided by 
an autonomous computational agent has been developed to dynamically 
select the next-candidate polymer with target properties [40]. As visu-
alized in Fig. 2b), by utilizing the available (seed) computational data-
set, machine-learning models are developed with the capability to 
instantly predict target properties for a large number of new polymers. 
Candidate polymers that meet the desired properties are selected, fol-
lowed by a “3D structure” conversion step (involving generation of hi-
erarchical models as shown in Fig. 2a)). The newly created structures are 
then modeled using high-throughput calculations, and the obtained re-
sults are added to the seed dataset iteratively. This autonomous platform 
is applicable for single or multiple polymer property predictions, and 
offers an efficient way to discover/design polymers with desired 
performances. 

2.3. Hypothetical polymers 

Data derived from experiments or the computations mentioned 
involve only known polymers. But how can we expand and explore 
beyond the known polymer chemical space? Variations of this question 
have already been tackled by different communities within chemical 
and materials sciences, such as drug discovery, inorganic solid state, 
metal-organic frameworks, 2D materials, etc., by exploiting various 
theoretical tools to construct databases of hypothetical molecules (e.g., 
ZINC) or materials (e.g., Materials Project). Further, computational 
tools, such as first-principles or classical methods, have been employed 
to estimate properties of these hypothetical cases, and screen promising 
candidates for future synthesis efforts. Some databases even estimate the 
synthesizability of a candidate using multiple models (e.g., based on free 
energy, synthetic accessibility scores, etc.) to ensure only realistic and 
plausible candidates are included. The successes of such molecule/ 

materials databases are inspiring the creation of similar libraries for 
polymers. 

In this regard, Batra et al. [44] devised an approach to explore the 
vast unknown chemical polymer space by generating new, but realistic, 
hypothetical polymers. As illustrated in Fig. 2c), they first obtained 
SMILES representation of ∼12,000 polymers successfully synthesized in 
the past. Next, using the concepts of breaking of retrosynthetically 
interesting chemical substructures (BRICS) [86,87], polymer “building 
blocks” — each with two or more chain ends denoted by symbol [*], e. 
g., [*]c1ccc([*])cc1, [*]C(=O)[*], [*]CC[*] — were obtained 
along with their frequency of occurrence. Following this, hypothetical 
polymer SMILES strings were created by combining (at the [*] location) 
various numbers of building blocks, ranging from 2–7, resulting in a 
total of ∼250,000 hypothetical polymers. This approach can be 
extended to create nearly infinite polymer candidates that may later be 
used to screen target properties. Care is taken to preserve the frequency 
of occurrence of different building blocks, making the constructed hy-
pothetical SMILES dataset realistic and representative of the initial 
collected empirically known polymers. Moving forward, different 
chemical constraints or block neighbor restrictions can be introduced to 
limit the possible combination of building blocks, and generate more 
realistic/synthesizable polymers. 

3. Polymer representation 

Once the polymer structural, chemical, property and synthesis data 
are collected from the aforementioned resources, it should be processed/ 
transformed to make it amenable to AI/ML based methods. Depending 
on the target polymer property or the input data type, different polymer 
representations may be chosen. Below, following a short discussion on 
the group contribution method, we discuss some of the more recent and 
successful polymer representation methods. 

The group contribution technique developed by Van Krevelan and 
coworkers assumes that a polymer property can be estimated as a 
weighted sum of contributions arising out of its constituting fragments 
(referred to as quantitative structure-property relationships (QSPR) 

Fig. 2. (a) Hierarchy of models to represent polymers, i.e., single-chain, pure crystal and amorphous phases. This figure is taken from Ref. [40] with permission from 
ACS Publications. (b) Autonomous computational agents to generate polymer data. (c) Design of hypothetical polymers using the BRICS scheme, along with some 
common polymer building blocks. ‘*’ represents the possible linking position for each building block. 
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fingerprints) [88]. Using this and subsequent variations of this method, 
models describing a range of polymer properties have been developed 
with/without machine learning, including glass transition temperature, 
dielectric constant, refractive index, electrical conductivity, thermal 
conductivity, gas and aqueous diffusion, and intrinsic viscosity [88–91]. 
However, the developed models rely on the available fragment library 
and have little predictive capabilities for new polymers containing 
chemical fragments outside this pre-defined library. 

To efficiently encode chemical information of molecules into 
machine-readable format, line notations have been designed to describe 
molecules using a line of text strings. Examples of such approaches 
include SMILES, the Wiswesser line notation (WLN), SYBYL Line Nota-
tion (SLN) and IUPAC International Chemical Identifier (InChi). SMILES 
is one of the most popular methods to represent molecules, because it is 
both human-readable and machine-friendly [41]. Further, various mo-
lecular fingerprinting algorithms have been developed to transform 
SMILES of small molecules into numerical vectors. Avalon, Daylight and 
Extended-Connectivity [93] fingerprints are examples of common 
fingerprinting algorithms that can be accessed through the open-source 
RDkit library [87]. Within these fingerprints, the presence or absence of 
substructures within a molecule is encoded into binary vectors, which 
can be used as inputs to data-driven models. SMILES representations of 
molecules can also be utilized (or transformed as graphs) in generative 
neural networks for fingerprint learning and molecular generations 
[46], but can also be directly used as input language in text-based ma-
chine learning algorithms [94,95]. The use of SMILES and similar line 
notations for molecules has transformed data-driven research in chem- 
and bio-informatics. 

In contrast to small molecules, polymers are macromolecules 
composed of many repeat units, and require unique ways to capture 
their structural information. As illustrated in Fig. 3a), in modern data- 
driven models, SMILES of oligomers with several repeat units (< 5) 
have been applied to represent polymers, which can be fingerprinted 
using regular molecular fingerprinting algorithms [42,43,85]. The ML 
models developed using such oligomer fingerprints can predict various 
properties of polymers fairly well, although the effect of polymer 
morphology on the target property is excluded. In a similar develop-
ment, modified SMILES representations for polymers have been devel-
oped which represent endpoints or connection points of repeat units 
using special symbols. For example, polyethylene is represented as [*] 
CC[*], where CC is the repeat unit of polyethylene and * represents the 
connecting points between repeat units [22,23]. Furthermore, a 

hierarchy of hand-crafted fingerprints for polymers have been devel-
oped to capture the connectivity and morphology information of poly-
mers in order to improve the property prediction accuracy [22,96–99]. 
Fig. 3a) shows details of the hierarchical fingerprint, including the (1) 
atomic-level, (2) block-level, and (3) chain-level components. At the 
atomic-level, the number fraction of atomic-level fragments within the 
polymers, defined by the generic label “AiBjCk”, are considered. The 
block-level fingerprint components are the number fraction of 
pre-defined building blocks that constitute the polymers, such as C6H4, 
C=O, CH2 and CO. Chain-level features capture information at the 
morphological scale, including the length of the longest or shortest side 
chains with or without rings. Further, QSPR fingerprints, such as the 
volume to surfaces ratio and van der Waals surface area, are also 
considered. Using this approach, models to predict many properties of 
polymers have been developed, including band gap, glass transition 
temperature and dielectric constant [22,23]. Detailed examples are 
provided in Section 4. 

Additionally, BigSMILES has been recently developed for describing 
macromolecules, e.g., homo-and co-polymers [92]. It is an extension to 
SMILES, expressed as {RepUnit1, RepUnit2, RepUnit3, …}. Here, 
RepUnit1, RepUnit2, RepUnit3 are a list of (same or different) repeat 
units within polymers, with random positions. For example, Poly 
(ethylene-co-propylene) is denoted by {CC, CC(C)}, as shown in 
Fig. 3b). In this representation, branched, network and terminal group 
information of polymers may be also incorporated. However, there are 
no available fingerprinting algorithms to transform BigSMILES into 
numerical vectors yet. 

Molecular structures can also be represented as a graph via an input 
of SMILES, where atoms and bonds are represented by nodes and edges, 
respectively. Such a method has been widely utilized for molecular 
structure generation and property prediction in cheminformatics, bio-
informatics and materials science with great success [100–104]. Since it 
is challenging to use graphs to represent polymers, due to its large-scale 
morphology, researchers have attempted to use oligomers (including 
less than 5 repeat units) to label polymer graphs with atom-based or 
substructure/motif based-methods [45,46,105]. Motifs refer to larger 
size substructures. However, because monomers of many polymers are 
large and complicated, this leads to monomer generation failures using 
small substructures. Further, polymers are composed of large numbers 
of monomers, and it is not clear how one can incorporate large-scale 
morphological information as graphs. These critical issues are dis-
cussed in Section 7. 

Fig. 3. Polymer representations: SMILES and BigSMILES [92]. Using the input of SMILES, molecular [42] and hierarchical polymers fingerprints [22,23] were 
developed to numerically represent polymers. 
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4. Property prediction schemes 

The selection of suitable learning algorithms to map polymer fin-
gerprints and properties is a critical step. Depending on the complexity 
of the target property, the volume and the nature of the available 
datasets, various learning algorithms have been applied, such as linear 
or non-linear regression algorithms, multi-fidelity information fusion 
and deep neural networks. 

4.1. Linear/Non-linear regression 

The linear regression algorithm assumes that the property being 
modeled is a linear function of the fingerprints, which is the simplest 
method to build machine learning models. For polymers, various prop-
erty prediction models have been developed using group contribution 
methods [88], multiple linear regression [89,90], and least-squares 
regression [21,107,108], with QSPR or quantum-chemical finger-
prints. These models are limited by the neglect of the non-linear re-
lationships between polymer fingerprints and their properties. To 
overcome this issue, non-linear regression algorithms have been 
employed, such as support vector machine (SVM), kernel ridge regres-
sion (KRR) and Gaussian process regression (GPR). For instance, Yu et al. 
used SVM to train glass transition prediction models using QSPR fin-
gerprints and experimental property values [89,109], while KRR has 
been applied to develop models for a series of high-throughput 
computed polymer properties (e.g., band gap and dielectric constant) 
[110]. 

In recent years, the GPR algorithm has been broadly utilized to build 
machine learning models for polymer property prediction [22,23,42,52, 
111]. As illustrated in Fig. 4a), the key advantage of GPR is that pre-
dicted uncertainties are provided by learning a generative and proba-
bilistic distribution with the mean representing the prediction and the 
confidence interval estimating the uncertainty. Fig. 5a) illustrates four 
representative GPR models, including chain band gap, glass transition 
temperature, frequency-dependent dielectric constant and gas perme-
ability. These models were trained using 3881 DFT computed, and 5076, 
1193 and 1779 experimental values, respectively. 5-fold 
cross-validation (CV) was employed to avoid model overfitting. R2 

and RMSE denote the coefficient of determination and the 
root-mean-square error, respectively. RMSE100% and RMSECV,test 

respectively denote the RMSE errors on the whole dataset used for model 
training or on the test subset during 5 fold-CV. In the case of the gas 
permeability model, 6 gases, i.e., O2, N2, CH4, He, CO2 and H2, were 
considered and numerically represented using one-hot encoding. Like-
wise, in the dielectric constant model the frequency value (at 9 different 
frequencies) was used as a feature to obtain a frequency-dependent 

dielectric constant model. We note that the developed GPR models 
exhibit very high R2 and acceptable RMSECV,test with respect to the wide 
property range of the training datasets. Additionally, the performance of 
these models has been further validated by using systematic analysis, 
involving the effect of feature reduction, various levels of train-test splits 
(i.e., learning curves) and validation on completely unseen datasets. 

The GPR algorithm can be used to build accurate and reliable ML 
models for a single property while also providing prediction un-
certainties. However, the GPR method has two issues: (1) it requires a 
manageable dataset size. Large datasets (>5000) become prohibitively 
expensive to train. (2) It does not have the capability to train multiple 
properties in one single model. Therefore, more advanced algorithms 
have been utilized to improve these issues, such as multi-fidelity infor-
mation fusion and deep learning methods as discussed below. 

4.2. Multi-fidelity information fusion approaches 

It is quite common to encounter problems where several datasets 
have varying levels of accuracy, data generation cost and noise levels are 
present. Typically, the most precise experimental measurements (or 
computations) also tend to be the most time and resource intensive, the 
so-called high-fidelity (HF) data. However, polymer properties of in-
terest can also be estimated via cheaper methods at lower accuracy. For 
instance, empirical trends, simple group-contribution methods and 
computationally demanding quantum mechanical simulations can 
generate this low-fidelity (LF) data. Given such a situation, a multi- 
fidelity (MF) information fusion model aims to consolidate all the 
available information from the varying fidelity sources to make the most 
accurate and confident property predictions at the highest level of fi-
delity [47,48,112–116]. Comparative studies have shown that the 
multi-fidelity approach performs better than any single-fidelity based 
method in terms of prediction accuracy, especially for small (high--
fidelity) data sets. Typical strategies for MF learning are discussed in 
Ref. [47]. Among them, the Gaussian processes-based co-kriging 
regression method [117] is viewed as a powerful method and has been 
utilized to predict polymer properties, such as band gap and degree of 
crystallinity [48,118]. As shown in Fig. 4b), this MF approach is 
composed of two models: the Gaussian processes ZLF(x) of the 
low-fidelity function and the Gaussian processes Zd(x) related to the 
difference between the low-fidelity and the high-fidelity functions. The 
property prediction at the high-fidelity level (ZHF(x)) is ZHF(x) = ρZLF(x)
+ Zd(x). Here, ρ is a scaling factor that quantifies the correlation be-
tween the two fidelities of data. 

Fig. 5b) shows two successful examples of MF approaches being 
applied to polymer property predictions [48,106], i.e., the tendency to 
crystallize and the band gap. For the former, a MF model was trained 

Fig. 4. (a) Gaussian process regression (GPR) model to learn the correlation between fingerprints and target property, providing predicted values and uncertainty 
(shaded regions). (b) Multi-fidelity (MF) co-kriging approach depends on two models: the Gaussian processes ZLF(x) of the low-fidelity (LF) function mapping the 
fingerprint space and low-fidelity property (yLF) and the Gaussian processes Zd(x) to map the fingerprint space and difference between the low-fidelity and the high- 
fidelity (HF) functions. The property prediction at the high-fidelity level (ZHF(x)) is ZHF(x) = ρZLF(x)+ Zd(x), where ρ is a scaling factor that quantifies the correlation 
between the two fidelities of data. (c) General Neural network workflow, including input, hidden and output layers. 
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using 107 high-fidelity data directly measured by experiments and 429 
low-fidelity data estimated using a combination of experimental and 
group-contribution methods. In the latter, 382 hybrid and PBE 
computed band gap values were used as high- and low-fidelity data in 
the MF model. Fig. 5b) compares the learning performance of the MF 
models against single-fidelity GPR models trained on the respective 

high-fidelity polymer property data, i.e., the RMSE on the training and 
the test set as a function of the training size of the high-fidelity data. We 
note that MF models surpass the GPR model accuracy (trained on the 
high-fidelity data alone) at a much smaller fraction of the high-fidelity 
training data. This is mainly because the relatively large volume of the 
low-fidelity data, although somewhat inaccurate, allows the MF model 

Fig. 5. (a) Parity plots of GPR predicted and true values of the glass transition temperature, band gap of sing-chain polymers, dielectric constant and gas perme-
ability. In the case of the gas permeability model, 6 gases, i.e., O2, N2, CH4, He, CO2 and H2, were considered and dielectric constant at 9 different frequencies was 
used in the dielectric constant model. CV-test RMSE is the average RMSE of the test subsets in 5 fold-CV [23]. Error bars represent GPR uncertainty. (b) A comparison 
of learning-curves for the GPR and multi-fidelity (MF) predicted band gap [48] and tendency to crystallize [106]. (c) Neural network-based solvent prediction 
accuracy of soluble (top) and insoluble (bottom) polymers for 24 solvents, including non-polar, polar-aprotic and polar-protic solvents, along with results from GPR 
models trained by Hildebrand parameters [49]. Figure (a), (b) and (c) are taken from Ref. [23], Ref. [48,106] and Ref. [49], respectively, with permission from AIP, 
ELSEVIER and ACS Publications. 
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to learn polymer property trends. These findings indicate that there are 
benefits to employing the MF approach, especially in situations wherein 
resource demanding high-fidelity experimental data can be combined 
with a large number of low-fidelity and inexpensive computational data. 

While the first proof-of-principle examples are just beginning to 
appear, MF models could have a considerable impact in the field of 
polymer informatics. It is worth pointing out that the accuracy of MF 
models depends on the ability of the shared subset of high- and low- 
fidelity data to learn the latent space of the two fidelities. Further, 
there is a necessity to improve upon the MF scheme. For instance, 
several levels of fidelity hierarchies can be present simultaneously in the 
polymer property datasets. The number of the co-kriging model pa-
rameters can significantly increase in such scenarios, leading to expen-
sive computational cost. Consequently, advanced MF learning 
algorithms should be developed to speed up the learning process, 
particularly when several levels of fidelities are present in the polymer 
data sets. 

4.3. Deep neural networks 

Conventional machine learning techniques described above provide 
good property prediction accuracy. However, these methods are 
computationally efficient for systems with small dataset size only. Given 
the surge in the available computational/experimental data in materials 
science, deep neural networks (NN) are being increasingly utilized in 
polymer informatics. Fig. 4c) presents the general architecture of NNs, in 
which molecular or polymer fingerprints form the input layer. The 
following hidden layers are constructed with a specific activation 
function, e.g., the parametrized rectified linear unit (PReLU). The final 
output layer of the NN consists of neuron(s) for target properties, also 
with a specific activation function depending on the problem at hand 
(classification or regression). The details of various types of NNs and 
their uses in materials science are well-reviewed in Refs. [119–121]. 
Below we discuss the initial attempts to apply NNs for polymer prop-
erties prediction [43,49,122–125]. 

The selection of suitable polymer-solvent pairs is a critical step for 
polymer synthesis. Chandrasekaran et al. have developed a deep neural 
network model for solvent prediction [49]. In this work, 4595 polymers 
and 24 solvents, forming a total of 11,958 polymer + good-solvent pairs 
and 8469 polymer + non-solvent pairs, were used to train a binary 
classification NN model (i.e., given a polymer-solvent pair the model 
predicts if it a good-solvent or non-solvent for that polymer). A multi-
layer perceptron with special architecture was used: the first part of the 
NN composed of two input branches, one for the polymer descriptors 
generated using hierarchical fragment-based fingerprint described in 
Section 3 and the other for the solvent descriptors represented by 
one-hot encoding. In the second part, polymer and solvent latent space 
were concatenated into a single merged latent vector. Fig. 5c) shows the 
neural network prediction accuracy of soluble (top) and insoluble 
(bottom) polymers for 24 solvents, including non-polar, polar-aprotic 
and polar-protic solvents. Performance results for the GPR models 
trained using Hildebrand parameters of about 100 polymers [118] are 
also compared. In general, the performance of the NN model greatly 
outperforms that of the GPR model, mainly due to the higher level of 
diversity in the training data. Further, the Hildebrand parameter is only 
an approximate empirical approach to distinguish good-solvent against 
non-solvents, based on the notion of “like dissolves like”. This deep 
neural network-based framework provides a more general, accurate, and 
efficient way to predict good-solvents vs. non-solvents for new polymers. 

Additionally, researchers have applied NNs to build prediction 
models for glass transition temperature [122–124], polymer perme-
ability to gases [91] and thermal conductivity (κ) of polymers [43,85, 
125]. For the glass transition temperature and polymer permeability, 
small datasets (<= 150 polymers) were applied to train NNs, raising 
concerns on the generality of obtained models for new cases. In the case 
of κ, Zhu et al. have used classical MD computed κ values of single-chain 

polymers and molecular fingerprints to train the NNs models. One po-
tential concern is that the computational uncertainty, arising from the 
model difference between the adopted single chain and realistic poly-
mers, may introduce additional noise in the ML models [85]. An alter-
native approach is to directly use experimental κ to train the model, 
although, only sparse data is available. To overcome this issue, Wu et al. 
[43] has utilized the transfer learning approach to learn the κ of poly-
mers (58 data points), via training other properties of polymers with 
large data size (e.g., melting temperature, glass transition temperature 
and heat capacities). The performance of the obtained model is better 
than those trained only on the thermal conductivity data, because the 
shared features between κ and other properties and large training 
dataset are considered in the transfer learning algorithm. However, 
there are still challenges, as discussed in Section 7. 

4.4. Polymer genome online platform 

Significant efforts are also being made to provide easy access to the 
aforementioned polymer prediction models. In this regard, the Polymer 
Genome online platform (www.polymergenome.org) has been devel-
oped to instantly provide property predictions for polymers. As sum-
marized in Fig. 6a), various polymer property prediction models have 
been implemented, including electronic, dielectric, thermal, mechanical 
and other important properties. The source and size of the training data, 
the applied algorithms and the expected errors (RMSECV) for each of the 
property models are also provided. Fig. 6b) shows a typical output of 
Polymer Genome, taking the example of Polynorbornene. The SMILES 
([*]C=CC1CCC([*]C1)), which forms the repeat unit of Poly-
norbornene, is provided as the input to Polymer Genome, where [*] 
denotes the connection points of the repeat units. ML predicted prop-
erties of this polymer are shown in a tabular format. The 3D visualiza-
tion of the structure with atomic coordinates is also provided at the 
bottom of the page. More detailed information is available in Ref. [22, 
23]. 

5. Polymer design algorithms 

Once the polymer surrogate models are trained, they can be utilized 
to accelerate the polymer discovery process. Below we outline two 
distinct strategies for this. While the first relies on screening candidates 
that meet target property requirements based on predictions for a pre- 
determined candidate pool, the other utilizes genetic and generative 
models to directly produce desirable candidates. 

5.1. Enumeration 

One of the dominant applications of machine learning techniques is 
to significantly accelerate the rational design and discovery of new 
materials by efficiently searching a pre-determined chemical space. The 
previously discussed ML models are used to predict the properties of a 
large pool of candidate polymers enumerated based on some physically 
or chemically motivated scheme, followed by a down-selection pro-
cedure based on certain screening criteria. The end result is a rank- 
ordered list of promising candidates for the target application. The 
initially enumerated candidates may be previously synthesized poly-
mers, or hypothetical polymers made by human experts or machine (e. 
g., genetic algorithm). Fig. 7a) shows the trends, in a form similar to 
“Ashby plots”, of various ML predicted properties (such as glass transi-
tion temperature, band gap, dielectric constant (at THz) and density) for 
ten-of-thousands of known/synthesizable polymers. These synthesized 
polymers have been manually accumulated from various resources, as 
discussed in Section 2. Depending on the property requirements for 
specific applications, different combinations of properties can be 
selected. For instance, polymers that are tolerant to extreme tempera-
tures require large band gap, high glass transition temperature and 
dielectric constant, whereas polymers electrolytes used in Li-ion 
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batteries require desired electron affinity, band gap, and ionization en-
ergy. Polymer membranes, on the other hand, require suitable gas 
permeability-selectivity pairs. 

Following this forward design pipeline, Mannodi Kanakkithodi and 
co-workers identified promising polymer dielectrics with desired 
dielectric constant and band gap from a series of human-designed hy-
pothetical polymers, made up of 4, 6 and 8 building blocks (e.g., –CH2–, 
–CO–) [51]. Likewise, Chen et al. proposed five representative polymer 
candidates satisfying high glass transition temperature and required 
dielectric constant for high temperature, energy density capacitors and 
microelectronic devices from a pool of synthesized polymers [52]. 
Additionally, Wu et al., on the other hand, used a surrogate thermal 
conductivity model based on transfer learning to screen promising 
candidates with target glass transition and melting temperatures, 
resulting in the synthesis of polymers with thermal conductivities of 
0.18–0.41 W/mK [43]. Another successful example is from Kumar [42], 
wherein two polymer membranes with excellent CO2/CH4 separation 
performance were discovered from over 11,000 homopolymers, guided 
by GPR based gas permeability prediction models. These findings 
strongly advocate the success of machine learning assisted forward 
design approach to discover polymer candidates for specific 
applications. 

5.2. Sequential (Active) learning 

The polymer design algorithms discussed above provide a subset of 
promising polymer candidates with tailored properties for further vali-
dation via experimental synthesis or high-fidelity computations. How-
ever, these models are passive, with inherent errors in the property 
predictions owing to the limitations, such as bias or limited size of the 
training data. Thus, how one can dynamically and efficiently optimize 
polymers for the next experiment (or computation) is an important 
problem in materials discovery. It is far from trivial to select optimal 
candidates based purely on human intuition. In recent years, active- 
learning algorithms that exploit Bayesian optimization frameworks 
have been developed to effectively guide experiments or high- 
throughput computations for materials design, e.g., optimizing GaN 
LED structures, BaTiO3 based piezoelectrics, and other inorganic ma-

terials for thermoelectric and electronic devices [127]. 
As illustrated in Fig. 7b), active learning algorithms consist of three 

important components: (1) a surrogate model for the target property 
prediction; (2) an acquisition function to select the optimal point for the 
next experiment; (3) addition of the newly performed experiment to the 
knowledge dataset [126,127]. The surrogate models in part (1) can be 
trained using various algorithms introduced in Section 4. To provide 
both prediction and uncertainty values of the target property, Gaussian 
process-based algorithms are common approaches used in active 
learning. There are other methods, such as support vector regression or 
decision trees in combination with bootstrapping methods, that estimate 
both the target property and its uncertainty. In part (2), the user can 
search unlabeled data by either using the prediction uncertainties 
(called exploration), or by maximizing the target prediction values 
(called exploitation), or by balancing between exploration and exploi-
tation. In the last part, the newly generated data from the new experi-
ment is supplemented into the knowledge dataset to retrain the 
surrogate model. The whole pipeline is repeated until the target candi-
date is achieved. 

In the polymer domain, Kim et al. benchmarked the use of active 
learning to efficiently search polymers with Tg > 450 K [126]. Fig. 7b) 
illustrates the average number of experiments required to discover 1–10 
polymers with a glass transition temperature of above 450 K, starting 
from an initial training dataset of 5 polymers. The error bars denote the 
standard deviation across the 50 different runs. We note that on average 
30, 46, 98 and 234 experiments were required to discover 10 high-glass 
transition temperature polymers using acquisition function definitions 
based on balanced exploitation and exploration, exploitation, explora-
tion and random approaches, respectively. These findings indicate that 
the balanced exploitation and exploration method showed the best 
performance in terms of discovering promising polymer candidates. 
Additionally, Huan et al. have applied the active learning to automati-
cally select polymer candidates for high-throughput DFT computations 
and find polymer dielectrics with a large band gap. More details are 
shown in Section 5. It is evident that the integration of active-learning 
within the materials discovery pipeline can guide materials design and 
dataset expansion in an efficient and targeted fashion. 

Fig. 6. (a) Summary of various property prediction models implemented in the Polymer Genome online platform (www.polymergenome.org). RMSE(CV) denotes the 
average RMSE errors on the test subset during the 5 fold-CV. (b) Overview of the Polymer Genome platform. Polynorbornene is used as an example of user input to 
show the obtained ML predicted properties and 3D structure visualization. Figure (a) is taken from Ref. [23] with permission from AIP Publications. 
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5.3. Evolutionary strategies 

Another approach to polymer discovery is the “inverting the pre-
diction pipeline”. Contrary to the enumeration approach that relies on 
virtual screening of polymers from a pre-defined candidate set using 
instantaneous property prediction from surrogate models, inversion 
problems focus on directly generating polymers that satisfy given 
property objectives, making it a more general approach to materials 
discovery. Two approaches for direct materials design have emerged: 
first, the use of evolutionary methods, such as the genetic algorithm 
(GA) [128,130], and second, generative ML approaches, such as varia-
tional autoencoders (VAE) [131] and generative adversarial networks 
(GAN) [132]. We describe the evolutionary approaches here, while 
generative methods are discussed in Section 5.4. 

GA is based on the principle of natural selection. The inherent 
structure of a polymer makes its treatment using GA straightforward-a 
polymer can be thought of as a sequence of chemical building blocks 
(e.g., CH2, C6H6, or blocks B12, B13 in Fig. 8a) connected to each other by 
covalent bonds (analogous to DNA base pairs), and the properties of a 
polymer are functions of the sequence of constituent chemical building 
blocks (analogous to how oculocutaneous albinism II (OCA2) gene 
sequence mostly dictates human eye color). Within the GA approach a 
series of crossover, mutation and selection operations are applied to 

discover new candidate polymers with desired properties. It starts with a 
random generation of (say, 100) polymers, whose chemical building 
blocks are modified using crossover-pruning and mixing of monomer 
building blocks-and mutation-random alterations to monomer building 
blocks-operations to obtain a large set of offspring polymers, as illus-
trated in Fig. 8a). Next, the top offspring candidates with desired 
properties are selected based on their user-defined objective score to 
form the next generation of polymers. This GA cycle is repeated until a 
sufficient number of candidates with desired properties are obtained, as 
in Fig. 8b). Besides polymer discovery, GA has also been utilized to solve 
other problems in materials science, such as developing functional forms 
of interatomic potentials [133], and discovering hidden material prop-
erty relations [134]. 

A critical component of the GA design scheme is the evaluation of the 
objective function during the selection stage. This step has been a major 
bottleneck for polymer discovery since property estimation through 
experiments or computations is very expensive and time-consuming 
[135]. However, with the recent development of cheap and reliable 
polymer property models (Section 5.1), the objective function can now 
be computed in a fraction of a second. This allows the GA process to truly 
explore a very rich chemical polymer space, going well-beyond the 
pre-defined candidate sets. Furthermore, by setting-up a property 
weighted objective function, polymers that simultaneously satisfy 

Fig. 7. (a) ML predicted properties of ten-of-thousands of enumerated known/synthesizable polymers. Different combinations of properties can be selected to screen 
polymers for the specific application, for example, large band gap, high glass transition temperature and dielectric constant for polymers tolerant to extreme 
temperature and electric field. (b) Sequential (active) learning workflow (left) and its use for polymer design (right): number of experiments required (on average) to 
discover 1–10 polymers with glass transition temperature greater than 450 K when starting with an initial dataset size of five polymers. The average is calculated 
using 50 different runs and the standard deviation is denoted by the error bar. This figure is taken from Ref. [126] with permission from Cambridge University Press. 
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multiple property criteria can be targeted. 
Kim and co-workers used GA to design polymers with high glass 

transition temperature and large band gap, which are useful for high- 
energy capacitors because of their stability at both high temperatures 
and electric fields [128]. Notably, this is a difficult design problem, with 
only 4 out of thousands of known polymers displaying glass transition 
temperature > 500 K and band gap > 6 eV. Two interesting aspects of 
their design process was the choice of the chemical building blocks, and 
the underlying property prediction models. The former consisted of a 
comprehensive list of 3045 chemical blocks, extracted from ∼12,000 
synthetically known polymers using the concept of BRICS—similar to 
the hypothetical polymer design work in Section 2. Each block had 1–4 
connection points that were used to form/break bonds with other 
chemical blocks during the crossover and mutation operations. For the 
latter glass transition temperature and band gap prediction models, they 
used two independent GPR surrogate models based on a hierarchical 
polymer fingerprinting scheme (Section 3) that were trained on an 
experimental and DFT computed dataset of 5072 and 562 polymers, 
respectively. During 100 generations of the GA cycle, they successfully 
designed 132 new polymers that meet the target properties, as opposed 
to only 4 previously known cases (see Fig. 8c)). Furthermore, their 
analysis of the identified polymer candidates revealed insights about the 
key fragments that promote high glass transition temperature and large 
band gap in polymers, such as the presence of terminal difluorocarbon or 
trifluoromethyl, saturated 5-or 6-membered rings, oxolane, etc. These 
findings are compatible with known chemistry. For instance, fluorine 
atoms induce large band gap through the formation of lower (higher) 
C–F sigma bonding (anti-bonding) orbitals. A similar approach has been 
utilized to design polymers with high dielectric constant, although it 
considered a relatively small number of possible chemical building 
blocks [51]. 

In a different study, Pilania et al. used GA to design bio-advantaged 

(biosynthesizable and biodegradable) Polyhydroxyalkanoate (PHA)- 
based polymers with desired glass transition temperature values [129]. 
A machine learning model trained on an experimentally-measured and 
carefully-curated glass transition temperature values for a wide range of 
PHA homo- and co-polymers were combined with a GA-based search 
and optimization routine to explore a much wider chemical space 
formed by multi-component polymer chemistries, beyond co-polymers. 
Furthermore, by explicitly integrating the prediction uncertainties and 
number of polymer components in the GA objective function, they were 
able to focus their search on polymers containing desired number of 
components (ternary, quaternary, etc.) where the confidence level in the 
machine-learned glass transition temperature predictions were higher 
than a pre-specified cutoff value. 

5.4. Generative models 

Based on the concept of unsupervised learning, VAE and GAN offer a 
different route for targeting inverse polymer design. They learn a 
mapping from a continuous latent space to the polymer space, using 
which new candidates with desired properties are generated after 
solving the optimization problem in the more amenable latent space. For 
example, in the case of VAE, the encoder unit learns to represent a 
polymer in a high-dimensional (say, 100–200) continuous (latent) 
space, while the decoder unit learns to map back a vector in the latent 
space to a valid polymer, as shown in Fig. 8d). Both mappings are 
important from a materials design perspective: the encoder provides a 
fingerprinting scheme that can be exploited by different “forward 
models”, while the decoder provides a pathway to systematically search 
polymers in a proxy latent space using different optimization schemes, 
and later generate the desired polymer candidate associated with the 
optimal latent point. Although the VAE and GAN approaches have 
received attention for molecule or drug discovery [136–140], they are 

Fig. 8. Polymer inverse design using machine learning. Use of evolutionary algorithms, such as GA, for design of polymers with target properties; (a) basic operations 
of crossover and mutation to generate polymer offsprings, taken from Ref. [128] with permission from ELSEVIER Publications; (b) the different stages of the iterative 
evolutionary process, involving population of new candidates, evaluation of fitness function using property-prediction models, and selection of the next generation 
with best fitness, taken from Ref. [129] with permission from ACS Publications; (c) results for an exemplary polymer design problem of high glass transition 
temperature and large band gap, taken from Ref. [128] with permission from ELSEVIER Publications; (d) Use of variational autoencoders (VAE) for polymer design. 
The latent space is searched to find polymers with desired properties, which are ‘generated’ using the decoder mapping. 
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only beginning to be exploited for extended systems such as polymers. 
A key challenge in developing such a generative model is that the 

decoder unit should map a continuous latent space to a discrete and 
structured material space, which should represent a valid candidate 
material as dictated by chemistry. For example, in case of polymers, the 
decoder output should necessarily have two chain ends, or the involved 
C and O atoms should display a valency of 4 and 2, respectively. This 
goal of enforcing the decoder to output valid polymers was recently 
achieved by Batra et al. [44] using syntax-directed VAE. The strategy 
involves representing the polymers using their SMILES representation, 
and then imposing the decoder to obey both the syntactic and semantic 
constraints associated with the class of polymers; syntactic refers to the 
grammatical rules inherent to the SMILES language, while semantic 
refers to the contextual constraints driven by polymer chemistry. The 
inclusion of explicit syntax and semantics in the VAE model improves 
the quality of the learned latent space. It also leads to a high occurrence 
of valid polymer SMILES upon decoding, making the process of dis-
covery efficient. 

Batra et al. coupled the unsupervised syntax-directed VAE with the 
supervised GPR method to discover polymers with high glass transition 
temperature and large band gap [44]. They used the encoder unit to 
fingerprint the polymers, which were then mapped to the respective 
glass transition temperature and band gap values using GPR. To train the 
VAE model they had to overcome a crucial data sparsity challenge: 
to-date the total number of chemically diverse polymers synthesized is 
∼12,000, while a VAE model usually requires >100,000 points for its 
training. They used retro-synthetic ideas to generate a representative 
hypothetical dataset of ∼250,000 polymers, constructed from the pre-
viously discussed set of 3045 chemical building blocks. For the discovery 
of polymers with target properties, they first encode a few known 
polymers that satisfy the given design criteria to find regions in the 
latent space where desirable polymers are expected to be present. Linear 
interpolations within these preferred regions of the latent space are then 
used to select latent points for which GPR property predictions meet the 
desired goals. Finally, the decoder is used to obtain the polymer SMILES 
associated with such selected latent vectors. Several hundreds of new 
polymers that meet the target property objectives were generated using 
this process. We anticipate that the concepts of transfer learning, 
multi-task learning and semi-supervised learning will advance the use of 
generative models for polymer discovery. 

The following comparisons between the GA and the generative 
techniques for inverse design can be made. First, GA is relatively easy to 
interpret and entails little efforts to tune the involved parameters (mu-
tation chance, initial population, etc.). In contrast, VAE models being 
based on NNs are almost impossible to interpret and often entail hefty 
parameter tuning efforts. Second, the space explored by GA is somewhat 
constrained by the polymer building blocks, but the SMILES based 
polymer representation allows VAE to explore a much wider chemical 
space in a truly unconstrained manner. Lastly, prior knowledge can be 
easily incorporated in GA, for instance, by biasing the initial population 
and/or the mutation operation towards favorable building blocks. 
However, more comparative studies would be needed in the future to 
establish methods that are appropriate under different scenarios. 

6. Application examples 

Polymers are useful in a range of applications. To be a good candi-
date for any specific application, they must meet multiple desired 
property requirements, as summarized in Table 2 for selected applica-
tions. Below, we comment on a few such applications, with an emphasis 
on key properties relevant for those applications which may be used to 
formulate screening criteria (also captured in Table 2). 

6.1. Polymer dielectrics design for high energy density capacitors 

Polymer-based dielectric capacitors are widely used in energy stor-
age devices [5,4,141–145]. Given the increasing needs of high energy 
density capacitors, the development of polymer informatics can signif-
icantly facilitate the discovery of novel polymer dielectrics [25,29,98, 
99,143]. Typically, good polymer dielectrics for high energy density 
capacitors need to satisfy several property requirements, e.g., high 
dielectric constant and high breakdown strength (which is positively 
correlated with band gap and charge injection barriers of metal/polymer 
interfaces [146]). Further, polymers with high glass transition temper-
ature are desired for high-temperature capacitors to enhance the ther-
mal stability at extreme temperature [144,145]. Thus, the criteria of 
high glass transition temperature and ε, large band gap and high charge 
injection barriers can be utilized, in combination with machine learning, 
to screen polymer candidates tailored to extreme high-temperature and 
electric field. For instance, several representative dielectrics films with 
high dielectric constant and band gap, have been successfully designed 
and synthesized using computation- and data-driven strategies [25,99]. 
Additionally, many representative polymer dielectrics are being pro-
posed for high-temperature capacitors by either screening known/hy-
pothetical polymers using the enumeration method [52,146] or using 
the generative models, such as GA [128] and VAE [44], as described in 
Section 5. 

6.2. Polymer membrane design for gas separation 

Polymers are also promising candidates for gas separation due to 
their high surface area [42,147,148]. A typical class of polymers called 
polymers of intrinsic microporosity, has attracted great attention since 
the early 1990s [147]. The present polymer membranes suffer from low 
selectivity and physical aging, calling for the exploration of novel 
polymeric membranes. However, it is non-trivial to find promising 
polymer membranes with a combination of high permeability and 
selectivity (or above the upper bound of “Robeson plots” [149]) for 
different gas pairs, e.g., O2/N2. Some initial attempts have been per-
formed to speed up the polymer membrane search using data-driven 
approaches, for instance, building gas permeability prediction models 
[111] (see Section 4) and identifying polymer membrane candidates for 
CO2/CH4 separation using the enumeration method [42]. 

6.3. Polymer electrolytes design for Li-ion batteries 

Rechargeable Li-ion batteries have been widely adopted in many 
applications from micro-electronics to aerospace. Motivated by their 

Table 2 
Desired properties of polymer candidates for various applications  

Applications Representative desired polymer properties 

Capacitors (polymer dielectrics) Large band gap, high charge injection barriers, high glass transition temperature 
Li-ion batteries (polymer electrolytes) Large electrochemical stability window, high ionic conductivity, high Li-ion transference and mechanical strength 
Polymer membrane High permeability and selectivity for gas pairs 
Electronic devices (conducting polymers) High electrical conductivity  

L. Chen et al.                                                                                                                                                                                                                                    



Materials Science & Engineering R 144 (2021) 100595

13

commercial need, the development of novel and safer solid polymer 
electrolyte materials has caught ever-increasing attention [10, 
150–152]. To optimize the performance of Li-ion batteries, the polymer 
electrolytes should have a wide electrochemical stability window, high 
ionic conductivity and Li-ion transference, and low glass transition 
temperature. Since it is time-consuming to search optimal electrolytes 
using experiments, data-driven aided polymer design strategies provide 
a great opportunity. For example, we previously noted that Wang et al. 
designed novel polymer electrolytes with high ionic conductivity using 
machine learning aided coarse-grained molecular dynamics simulations 
[37]. Additionally, the property prediction models (Section 4) and the 
design algorithms (Section 5) discussed above are powerful methods to 
screen/design polymer electrolytes satisfying multiple property 
requirements. 

6.4. Conducting polymers design for electronic applications 

Although polymers are usually insulators, there is a class of intrin-
sically conducting polymers used in electronic devices, such as light- 
emitting diodes, field-effect transistors and organic solar cells [6,153, 
154]. Molecular doping is often used to further increase the conductivity 
of polymers [153], but it slows down the discovery of optimal 
polymer-dopant pairs with high conductivity because of the complex 
nature of the electron transfer mechanisms, dopants and polymers in-
teractions, and processing conditions. This situation can be improved 
using polymer informatics, e.g., developing conductivity prediction 
models and screening optimal polymer-dopants pairs using the 
enumeration method. It is supported by the discovery of several 
high-performing donor/acceptor pairs for organic solar cells using 
random forest and boosted regression trees based property prediction 
models [53]. 

6.5. Biodegradable and depolymerizable polymers discovery 

Bioplastics, such as those derived from plants and bacteria, are rich 
in highly oxygenated molecules. They can be utilized in the production 
of monomers capable of facile conversion to plastic materials that are 
easily degradable in the environment [155]. However, to fully harness 
the power of these nonconventional biosynthesis routes, it needs to 
establish structure-property relationships to identify desired 
application-specific optimal chemistries. To understand this problem 
better, Pilania et al. have proposed a machine learning route to learn 
structure-property mappings in PHA-based polymers from polymer data 
[129]. Moreover, it is critical to discover new biodegradable polymer 
candidates with high biodegradability. Because low crystallinity, 
melting temperature and glass transition temperature lead to large 
amorphous regions and favor biodegradation, ration-design of biode-
gradable polymers satisfying these properties using data-driven methods 
can be an important research topic. For instance, some new biode-
gradable polymers with desired glass transition temperature have been 
designed recently using GA [129] (see Section 5). 

Additionally, depolymerizable polymers are playing an increasingly 
important role in practical applications, especially in drug delivery, 
recyclable plastics, self-healing and recyclable coating materials [156, 
157]. Such great interest is motivated by the fact that depolymerizable 
polymers, upon exposure to particular stimuli, can be triggered to 
rapidly depolymerize into monomers at moderate to relatively low 
temperatures. As a result, polymers with low ceiling temperatures are 
desirable, where ceiling temperature is the temperature at which the 
polymerization and depolymerization rates are in equilibrium. Because 
of the limited available number of known polymers with low ceiling 
temperatures, it is greatly desired to propose computational strategies to 
estimate the ceiling temperature. Further, the data-driven design tools 
involved in polymer informatics could be applied to rapidly screen such 
depolymerizable polymers. 

7. Critical next steps 

7.1. Beyond homopolymers 

So far, many data-driven approaches have been limited to homo-
polymers. The space of co-polymers, polymer blends and polymers with 
additives/nanocomposites remains largely unexplored but has great 
practical significance. Brinson and co-workers have spent significant 
efforts to develop “NanoMine” for polymer nanocomposites analysis and 
design [158]. However, it is still non-trivial to treat these types of 
polymers, because of their complicated chemical and physical struc-
tures. Co-polymers consist of two/more monomer or basic building unit 
types, and could be branched or linear co-polymers (further classified as 
block, alternating and random co-polymers based on the structural 
arrangement of different monomers). Polymer blends are mixtures of 
two or more polymers, including homogeneous, immiscible and het-
erogeneous polymer blends. The ratios and structural arrangements of 
different monomers (or polymers) significantly impact properties of 
co-polymers and polymer blends, but only sparse data is available on 
this topic. Moreover, it is challenging to systematically and dynamically 
collect such data from various resources. Thus, advanced techniques 
need to be developed to collect, represent and learn data of more com-
plex varieties of polymers. 

7.2. Sustainable data capture 

The core requirement for polymer informatics is a broad-based data 
acquisition and management infrastructure. In addition to the limited 
number of available polymer databases and polymer handbooks, a large 
amount of scientific data remains untapped in numerous scientific 
journals, including text, tables or figures. While the manual text 
excerption of such journals is very time consuming and laborious, ma-
chine learning-based NLP methods are more powerful and promising 
tools to expedite and automate this process. The application of NLP tools 
in material science is still in its infancy. More efforts are needed to 
incorporate materials or polymers domain knowledge into existing NLP 
algorithms (e.g., word2vec [159]) to train word-vectors (numerical 
vectors that represent distinct words) for scientific information retrieval. 
To achieve this goal, Named Entities Recognition (NER) is the most 
important step, i.e., tokenizing the words into scientific meanings (e.g., 
chemical species, synthesis conditions and characterization methods). 
ChemDataExtractor [160], ChemSpot [161] and ChemTagger [162] are 
available toolkits for extracting chemical information of materials from 
scientific articles, such as inorganics and molecules. Similar tools need 
to be developed for the polymer domain. 

However, polymers pose additional challenges [21,26], as there is no 
standard or complete polymer name entity dictionaries. A collection of 
source-based, structure-based, traditional and abbreviation names are 
interchangeably used to name polymers [26]. For example, poly-
ethylene is also called PE, poly(ethylene) and poly-(ethylene), but all 
these possible names should be treated as the same entity (in a process 
referred to as “normalization” by the NLP community). In addition to 
names, more efforts are required to assign polymer notations for specific 
categories, e.g., properties, synthesis recipes and characterization 
technologies. Therefore, it is of great importance to create unique and 
standard polymer related dictionaries in the future. Other important 
issues include building efficient toolkits to interpret monomer SMILES 
from polymer names, identifying structure (or polymer names)-property 
relationships in texts, and extracting valuable material property con-
tained in images and tables. 

7.3. Polymer representation and learning 

As discussed in Section 3, molecular or polymer-based fingerprints 
can provide acceptable prediction accuracy for many polymer proper-
ties, e.g., glass transition temperature, band gap, dielectric constant and 
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gas permeability. This is because the chemical structure of the mono-
mers plays a dominant role in determining these properties. However, 
other important polymer properties, including crystallinity, mechanical 
properties (e.g., tensile strength) and solution behavior, strongly depend 
on their molecular weights, morphologies (linear or cross-link) and 
processing conditions (temperature, pressure and cooling-rates). Incor-
porating these descriptors in the fingerprint framework is critical to the 
creation of accurate, robust and universal property prediction models. 

In addition to enriching the polymer fingerprint definition, more 
advanced neural networks algorithms can be applied for learning the 
latent knowledge, property prediction and polymer generations. For 
instance, the transfer-learning or multi-task learning approaches have 
great potential to deal with the sparse data issue in polymers. The former 
modifies the latent features learned using one source task to learn a 
different target task, while the latter trains multiple source tasks and the 
shared features used to learn a target task. The key concept common 
between these two methods is the learning of a shared (polymer) rep-
resentation between related properties (or materials). These algorithms 
have been successfully applied in the domain of drug design and bio-
informatics [163–165]. In polymers, as mentioned in Section 4, Yamada 
et al. have used the transfer-learning method to predict properties of 
polymers using pre-trained models of molecules and inorganic materials 
[125]. However, large and diverse datasets of related property (tasks) 
are essential for the success of such models, as only then there is a high 
chance of learning transferable features and achieving accurate pre-
dictions for the target task. 

Another important topic is the use of graph neural networks (GNN) 
in polymer informatics. In contrast to traditional manually designed 
fragment-based ML models, GNN represents materials as graphs (typi-
cally, atoms as nodes and their bonds as edges) and automatically find 
their optimal fingerprint representation depending on the downstream 
learning task, leading to its wide applications for molecules. However, 
the use of GNN for polymers has been limited [104,124] owing to the 
difficulty in treating large-scale polymers using graphs. Further, poly-
mers are made up of numerous repeat units, and the best way to treat 
connection points between repeat units in a graph is unclear. Using 
oligomers to replace polymers is a potential solution [104,124], how-
ever, its prediction capability needs to be tested. Additionally, ideas on 
graph generative methods for molecules, e.g., atoms- and 
substructure-based encoder-decoder methods [45] could be extended 
for polymers using GNN. Another interesting approach of 
graph-to-graph translation was recently put forth to optimize molecules 
with desired properties, by assembling one molecular graph with 
another of the target properties [46]. All of these techniques can be 
adapted for polymers, provided the following challenges are addressed. 
Many polymers have large-sized monomers (>50 atoms), making it 
difficult to correctly assemble potential fragments during the decoding 
process. Motifs-based methods can greatly increase the reconstruction 
and validation accuracy for polymer generation by using large-size 
motifs as building blocks [45]. However, other concerns remain, such 
as chemical or thermodynamic stability of generated polymers and their 
synthetic feasibility. 

7.4. Polymer retro-synthesis planning 

Even with the knowledge of which polymer to make for a given 
application (designed, for instance, using intuition, computation or 
machine learning), the realization of the polymer can still be very slow 
because of synthesis challenges. There are various uncertain factors, 
such as unavailability, toxicity or high cost of the raw materials or 
demanding technical steps. In the past, the synthesis pathways adopted 
for a target polymer have been heavily dependent on the domain 
knowledge and personal preferences of experimenters. Computer- 
assisted retro-synthesis techniques have been widely developed in the 
last several decades to identify a series of reaction pathways leading to 
the synthesis of a target product. In the domain of molecules, either 

template-based [54,166] or template-free [105,167,168] machine 
learning approaches have been built for product prediction and have 
achieved promising results. However, no such method has been devel-
oped yet for the case of polymers. Complications in the polymer syn-
thesis processes, e.g., various polymerization mechanisms (such as 
addition, ring-opening and condensation polymerization), the selection 
of optimal monomers and solvent pairs, processing conditions (such as 
cooling rates or annealing temperatures) will need to be considered. 
Further, unlike molecules, there is no library of reaction templates for 
polymerization. Nevertheless, experimental polymer synthesis data is 
plentiful, which can be accumulated manually or using NLP methods, 
and processed appropriately to develop machine learning models for 
polymer synthesis and retro-synthesis planning. 

7.5. Autonomous integration of experimental and computational 
workflows 

As all the different pieces of AI-assisted chemical search, retro- 
synthesis planning and processing optimization come together, the 
idea of autonomous polymer synthesis and design is expected to become 
a reality. In fact, examples of autonomous robot researchers with the 
ability to synthesize drugs for tropical diseases [169], carbon nanotubes 
with targeted growth rates [170], layered superlattices [171], and even 
perform X-ray scattering measurements [172], have already been 
demonstrated recently. However, polymers owing to their structural, 
chemical and processing complexity pose unique challenges for auton-
omous design. For instance, the average molecular weight of a polymer, 
which predominantly dictates its properties, is highly sensitive to the 
processing time and conditions. Learning such complex relations, from 
the data alone, will be challenging for an autonomous researcher. The 
real-time/in-line characterization of polymers is also difficult owing to 
their complex semi-crystalline/amorphous structure, or due to the 
different degree of branching or stereochemical relationships. None-
theless, the prowess of autonomous labs in terms of time and cost ben-
efits, experimentation consistency, long hours of operation, and efficient 
and robust search of parameter spaces is expected to guide polymer 
discovery in the future. 
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