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Metal–organic frameworks (MOFs) are a class of porous 
and crystalline materials that are increasingly being stud-
ied for gas separation1,2, storage3,4 and catalysis5,6 applica-

tions. They consist of inorganic metal ions or clusters connected 
to organic ligands through coordination bonds, overall forming a 
highly porous three-dimensional (3D) crystalline structure7. They 
are known for their easily tunable components—modifications 
can be made to the metals, organic linkers, associated functional 
groups or the metal–ligand bond to customize their intrinsic prop-
erties for various applications8–10. From a theoretical standpoint, 
however, the infinite combinations possible between metal ions and 
organic ligands make it difficult to efficiently screen for MOFs with  
desired properties.

To be industrially applicable, a key property of a MOF is its 
water stability, because many industrial processes, such as gas sepa-
ration and storage, involve some amount of water. Unfortunately, 
the majority of MOFs (for example, MOF-511 and MOF-50812) are 
unstable in water vapour, which poses a challenge for future com-
mercialization efforts13,14. Based on past empirical and theoretical 
efforts, some general chemical trends elucidating the water sta-
bility of MOFs have been established13,15–17. Although MOFs with 
strong coordination bonds between the metal nodes and organic 
ligands are thermodynamically stable, the presence of significant 
steric hindrance or hydrophobic functional groups impart MOFs 
with high kinetic stability. Over the years, these general rules 
have been applied in the synthesis of several water-stable MOFs, 
including lanthanide-based [La(pyzdc)1.5(H2O)2].2H2O (ref. 18) and 
([Dy(Cmdcp)(H2O)3](NO3).2H2O)n (ref. 19), Zr-based PCN-228/-
229/-230 (ref. 20), the metal azolate framework (MAF) series21 and 
super hydrophobic fluorinated MOFs22,23. Although useful, these 
rules require a priori knowledge of the MOF atomic arrangement, 
which cannot be used to efficiently screen stable MOF candidates.

Thus, in this work, we have developed an efficient and instant 
machine learning (ML)-based strategy for screening water-stable 
MOFs, as portrayed by the schematic in Fig. 1. A dataset13 of experi-
mentally determined water stabilities for over 200 MOFs was used 

to construct a ML model capable of classifying a given MOF as stable 
or unstable. Starting from their activated formula unit, each MOF 
was fingerprinted, or uniquely represented by a vector of chemi-
cal features capturing information on the metal node, the organic 
linker and the molar ratios of the metal ions to the ligand and the 
associated H2O, OH and O sites. With these MOF fingerprints as 
inputs, two types of classification models were constructed to rep-
resent situations with different levels of water exposure. The first, a 
two-class model, distinguishes between unstable and stable MOFs, 
while the second, a three-class model, classifies MOFs as unstable, 
kinetically stable or thermodynamically stable. Three different ML 
methods were tested, and those with the best performance, evalu-
ated using learning curves and confusion matrix analysis on unseen 
cases, were selected for future predictions. Good performances of 
the trained ML models for MOFs that have been synthesized more 
recently, that is, after the publication of the dataset used to train the 
models, strongly suggest the applicability and merit of the surrogate 
models developed in this work. The penultimate step in the work-
flow presented in Fig. 1 was to screen new MOFs with unknown 
water stability behaviour. Thus, a ranked-ordered list of candidate 
MOFs predicted to be stable (with otherwise unknown water sta-
bility behaviour) is provided for future experiments. Further, sim-
ple chemical guidelines supporting water stability in MOFs were 
derived using the developed ML models and available experimen-
tal data. For example, the presence of metal ions of large atomic 
radius and lower ionization potential, or ligands with a low count 
of six-member rings and high number of cyclic divalent nodes, cor-
relate with enhanced water stability. Besides being able to efficiently 
screen MOFs with a desired water stability, these ML models can 
be iteratively improved as more empirical measurements on MOF 
water stabilities become available.

Data preparation and ML methods
MOF water stability datasets. Figure 2 summarizes the MOF water 
stability dataset used in this work. The dataset, which includes 207 
MOFs, was obtained from Burtch et al.13. Each MOF is categorized 

Prediction of water stability of metal–organic 
frameworks using machine learning
Rohit Batra   1, Carmen Chen2, Tania G. Evans2, Krista S. Walton2 and Rampi Ramprasad   1 ✉

Owing to their highly tunable structures, metal–organic frameworks (MOFs) are considered suitable candidates for a range 
of applications, including adsorption, separation, sensing and catalysis. However, MOFs must be stable in water vapour to be 
considered industrially viable. It is currently challenging to predict water stability in MOFs; experiments involve time-intensive 
MOF synthesis, while modelling techniques do not reliably capture the water stability behaviour. Here, we build a machine 
learning-based model to accurately and instantly classify MOFs as stable or unstable depending on the target application, or 
the amount of water exposed. The model is trained using an empirically measured dataset of water stabilities for over 200 
MOFs, and uses a comprehensive set of chemical features capturing information about their constituent metal node, organic 
ligand and metal–ligand molar ratios. In addition to screening stable MOF candidates for future experiments, the trained mod-
els were used to extract a number of simple water stability trends in MOFs. This approach is general and can also be used to 
screen MOFs for other design criteria.

Nature Machine Intelligence | VOL 2 | November 2020 | 704–710 | www.nature.com/natmachintell704

mailto:rampi.ramprasad@mse.gatech.edu
http://orcid.org/0000-0002-1098-7035
http://orcid.org/0000-0003-4630-1565
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-020-00249-z&domain=pdf
http://www.nature.com/natmachintell


ArticlesNaTurE MacHInE InTEllIgEncE

into one of four classes of stability: stable (S), high kinetic stability 
(HK), low kinetic stability (LK) or unstable (U). The classification 
was based on the type of water exposure (aqueous, humid or dry) 
tested, the length of each exposure (weeks, days or hours), the char-
acterization techniques (powder X-ray diffraction and Brunauer–
Emmett–Teller surface area measurements) employed to ascertain 
any material degradation, and some other additional exposure con-
ditions (acidic/basic environment or boiling temperatures). From 
an applications standpoint, the most important design criterion 
is the amount of water to which a MOF can be exposed without 
degrading. In terms of chemical diversity, the dataset consists of 22 
different metal nodes and 128 different ligands (a few example cases 
are shown in Fig. 2). Additional statistics on metals favouring high 
water stability are included in Extended Data Fig. 1. Hereafter, we 
will refer to this dataset as the Burtch dataset.

It is important to note that the number of MOFs within each 
stability class is slightly imbalanced: there are 25, 118, 42 and 22 
MOFs for S, HK, LK and U, respectively. However, in contrast to the 
Burtch dataset, we expect a large percentage of MOFs to fall under 
the LK or U categories24,25. To diminish the impact of class imbal-
ance and the implicit bias towards ‘positive examples’ or MOFs with 
high water stability, the aforementioned four classes of MOFs were 
combined strategically. Two classes were obtained by combining S 
with HK (denoted class 1) and U with LK (denoted class −1), giv-
ing 143 and 64 cases, respectively. From a classification standpoint, 
the boundaries between classes U and LK, or S and HK, are less 
clear and defined compared to the boundary between U and S. 
Accordingly, the ML models should be considered poorly perform-
ing when a MOF of class S is mistakenly predicted as U, as opposed 
to a prediction of HK. For the three-class model, only U and LK 
were combined, giving the following three classes: S (denoted as 1),  

HK (denoted as 0) and LK + U (denoted as −1), as illustrated in 
Fig. 3. Such a grouping also makes sense from an application stand-
point—a MOF of type LK is probably unsuitable for industrial pro-
cesses in which small amounts of water cannot be avoided12,26.

Beyond this Burtch dataset of 207 MOFs, which was specifically 
used for ML model development, two additional datasets were col-
lected from the literature. The first of these consists of 10 MOFs 
synthesized and assessed for their water stability after publication of 
the Burtch dataset. These 10 cases allow for an unbiased evaluation 
of the ML models. The second dataset includes 88 MOFs for which 
no water stability measurements have been reported, but have been 
found to be useful for other applications, such as C2H4 or CO2 cap-
ture. This dataset will be used to screen for MOF candidates likely 
to exhibit high water stability.

MOF feature set and dimensionality reduction. To build accurate 
and reliable ML models, it is important to include relevant features 
that collectively capture the water stability trends across different 
families of MOFs. The features should uniquely represent a MOF, 
and be readily available for new cases. Thus, in line with the general 
definition of a MOF, we used three sets of chemical descriptors: (1) 
the metal set, to capture information about the metal node(s), (2) 
the linker set, representing the organic ligand(s), and finally (3) the 
molar set, which encodes the molecular ratios of the linkers and the 
O, OH and H2O species with respect to the metal nodes. The dif-
ferent subtypes of descriptors included within each set, along with 
their counts, are provided in Table 1.

Starting from a MOF activated formula unit, which is typically 
available via various empirical methods and is often reported in 
the literature, we extracted their constituent metal ions, organic 
ligands and molar ratios. Although commonly available chemi-
cal properties (Table 1) were used to describe the metal ions, the 
organic ligands were converted to their corresponding canoni-
cal SMILES representation27, from which a hierarchy of features 
were derived. Based on our previous experience in fingerprinting 
polymers28,29, we used hierarchical descriptors that capture differ-
ent geometric and chemical information about ligands at multiple 
length scales. At the atomic scale, a count of a predefined set of 
motifs30 consisting of atomic triplets (for example, C3–O1–N1, 
where C3, O1 and N1 define three coordinated C (two single and 
one double bond) and single coordinated O (double bond) and N 
(triple bond) atoms, respectively) are included. At a slightly larger 
length scale, quantitative structure–property relationship (QSPR) 
descriptors, often used in chemical and biological sciences, and 
implemented in the RDKit Python library, were used31,32. Finally, at 
the highest length scale, ‘morphological descriptors’ such as length 
of the largest side chain, shortest topological distance between 
rings and so on were considered. More details on the different hier-
archical descriptors are provided in Supplementary Table 1 and our 
previous works28,33. In cases where multiple metal ions and ligands 
are present, the descriptors were obtained by taking a weighted 
molar average of all individual species. Finally, to uniquely repre-
sent a MOF, we added four features corresponding to the molar set 
described above and in Table 1.
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Fig. 2 | MOF water stability training data. Details are provided for four 
different categories of MOFs, along with the associated humidity condition 
for stability and a pair of exemplary cases. A few representative metal 
nodes and linkers constituting this dataset are also included.
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To retain only the relevant features, and to simplify the learning 
process, recursive feature elimination (RFE) using a support vector 
machine (SVM) algorithm (with fivefold cross-validation (CV) and 
linear kernel) was performed on the initial 149-dimensional finger-
print and the Burtch dataset. RFE recursively eliminates irrelevant 
features by ranking their importance and pruning the least impor-
tant ones (one at a time in this work)37. The feature importance is 
obtained from the ML model itself (here, coefficients of the linear 
kernel SVM model), and the pruning procedure is repeated until 
the feature set with minimum CV score is achieved. For both the 
two-class and three-class models, RFE not only increased the model 
accuracy, but also reduced the model dimensionality from 149 to 
37 and 29, respectively. The post-RFE reduced feature sets for both 
models contained many (~25) common descriptors, providing more 
confidence to the dimensionality reduction step performed here 
(the complete set of features is provided in Supplementary Table 1). 
Furthermore, features from each of the different subcategories were 
retained post-RFE, highlighting the need for capturing information 
at multiple length scales.

ML algorithms. Three ML classification methods were tested in 
this work: SVMs, random forest (RF) and gradient boosting (GB). 
Each method was used to train two MOF water stability classifi-
cation models (two-class and three-class) using the Burtch dataset, 

with their respective hyperparameters determined using fivefold 
CV. For this work, SVM, RF and GB classifier libraries were used as 
implemented in the scikit-learn Python package38.

SVM is a non-probabilistic binary linear classifier, in which 
the hyperplane or the classification boundary separating any two 
classes (for example, stable or unstable MOFs) is obtained by maxi-
mizing the margin between some special data points, called sup-
port vectors, and the hyperplane. Although, by definition, SVM 
performs linear classification, a kernel trick is often employed 
to obtain nonlinear classification boundaries. For this work, the 
SVM method with the radial basis function (RBF) was used. 
The SVM hyperparameters, RBF length scale and the regulariza-
tion C parameters were estimated by minimizing the validation 
error during fivefold CV, which better generalizes the models and  
avoids overfitting.

Both RF and GB fall under the umbrella of ensemble methods, 
which are often the winning solutions in ML competitions. RF is 
an ensemble of decision trees that averages predictions from a large 
group of ‘weak models’ to result, overall, in a better prediction. The 
main hyperparameters for RF include the number of decision trees 
and the count of features accessible to an individual decision tree. 
Similarly, GB builds a set of additive models in a stagewise manner, 
wherein the next predictor is fit to the residual errors made by the 
previous predictor. The GB hyperparameter optimized in this work 
was the number of predictors.

To tackle the problem of class imbalance, the models were 
trained by minimizing the class-weighted accuracies. The per-
formances of the ML models were evaluated using overall and 
class-weighted accuracy and per-class recall, precision and F1 
(the harmonic mean of precision and recall) scores. To estimate 
prediction errors on unseen data, learning curves were generated 
by varying the sizes of the training and test sets. Test sets were 
obtained by excluding the training points from the Burtch dataset. 
Additionally, for each random test–train split, statistically mean-
ingful results were obtained by averaging over 10 runs. Another 
dataset of recently reported MOFs (containing 10 points) was not 
included in the learning process and was used solely for model 
evaluation purposes.
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Table 1 | The MOF chemical descriptors used to numerically 
represent a MOF to learn ML-based water stability models

Category Descriptors Count

Metal node Valency, atomic radius34, affinity35,
ionization potential35, electronegativity36

5

Atomic triples 99

Organic linker QSPR 32

Morphological 8

Molar ratio Linker, O, OH and H2O w.r.t. metal 4
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Model performance and validation
Figure 3 presents the performance results for the two- and 
three-class MOF classification models. The learning curves provide 
the class-weighted accuracy (with error bars denoting 1σ deviation) 
on the training and test sets, using both the initial 149-dimensional 
(labelled ‘-Full’) and reduced (labelled ‘-RFE’) feature sets. We 
include results for the best performing ML methods, that is, RF for 
the two-class and SVM for the three-class (the comparative perfor-
mances for the different algorithms are provided in Extended Data 
Figs. 2 and 3). From the learning curves, it is clear that the RFE 
dimensionality reduction scheme resulted in a better set of features 
by eliminating redundant cases. This caused an improvement in the 
model performance: the RFE test accuracy increased from 80 to 83% 
and 64 to 71% for the two- and three-class models, respectively. As 
expected, the test accuracy for the two- and three-class models (for 
both the RFE and full feature set) increased when the training set 
included more cases. The RFE-based models reached convergence 
in the test accuracy at 83% (two-class) and 71% (three-class). Owing 
to the class imbalance, the corresponding overall (unweighted) 
accuracy was found to converge at slightly higher values of 86 and 
72%. For the case when the training set constitutes 90% of the data, 
there are not enough test examples from different classes, especially 
from class −1, to calculate adequate error statistics. This case is only 
included in Fig. 3 for completeness.

Other important error metrics to consider, especially when deal-
ing with an imbalanced classification problem, are the precision, 
recall and F1 score. For a class, the former is defined as the ratio 
of correctly labelled points (or true positives) divided by the total 
number of data points predicted to belong to that class. Recall is 
defined as the number of true positives divided by the total number 
of data points that actually belong to a class. F1 score is the har-
monic mean of precision and recall, and is often used as an impor-
tant metric for imbalanced data. Because all the model parameters 
were optimized to maximize the class-weighted accuracy or recall, 
the classes with lower representation (that is, class −1) have a higher 
recall rate than precision, while the opposite is true for classes with 
higher representation. This is because the class-weighted accuracy 
metric penalizes the classifier more when it incorrectly classifies a 
data point from the underrepresented class. As a result, the classifier 
learns to predict a larger number of cases as belonging to the under-
represented class, thereby lowering the precision in these cases. For 
example, in the three-class model, the precision and recall values 
for classes with increasing order of representation were 60, 73 for 
class 1; 63, 66 for class −1 and 81, 73 for class 0. However, all of the 
recall, precision and F1 scores for the different classes were found 

to reasonable. For example, for the two- and three-class models, the 
F1 scores for the underrepresented classes were 76 and 63%, respec-
tively, although they constituted only 30 and 12% of the overall data. 
This clearly demonstrates that the ML models developed here are 
not biased towards the more represented classes. In Fig. 3, example 
confusion matrices for both the two- and three-class models also 
confirmed the accuracy trends discussed above. Additionally, for 
the three-class model, a higher misclassification rate for the neigh-
bouring classes can be observed—when predicted incorrectly, class 
1 and −1 points are classified as class 0, but not each other. The 
high classification accuracy, recall and precision rate achieved by 
the two models, along with the misclassification preference in the 
neighbouring classes for the three-class model, suggest that good 
quality surrogate models have indeed been learned.

To further validate the generality and accuracy of our water sta-
bility models, we used the two- and three-class models trained on 
the entire Burtch dataset of 207 points to predict the water stabil-
ity for 10 MOFs reported after the year 2014. The same classifica-
tion criteria used for the Burtch dataset were used to determine the 
true water stability values (S, HK, LK or U) of these 10 MOFs. This 
comparative exercise presents a clean and unbiased evaluation of 
the ML scheme and the final two- and three-class models trained in 
this work. From the results presented in Table 2, it is clear that both 
models performed well. The two- and three-class models had 9 out 
of 10 and 6 out of 10 predictions correct, respectively—3 of 4 incor-
rect predictions in the case of the three-class models are between 
the more similar S and HK classes, which can still be considered 
acceptable. Furthermore, both models made consistent stability 
predictions; that is, for cases where the two-class model predicted 
class 1 (S or HK), the three-class model also predicted either class 
1 (S) or class 0 (HK). Both models incorrectly predicted the MOF 
Cd2(TBA)2(bipy)(DMA)2 to be stable, although our literature analy-
sis suggests it has LK water stability.

Chemical insights from ML models
Past works have already suggested some chemical trends that pro-
mote water stability in MOFs, including inertness of the metal 
node, stronger and larger number of metal–ligand bonds through 
higher ligand basicity and higher-valent metal nodes, and higher 
steric shielding16. However, in the following we employ the devel-
oped ML methods to mine more such chemical trends or insights. 
For this, we first identified the most important features using the 
two-class RF models. In RF, the relative importance of a feature can 
be defined using the relative rank (or depth) of that feature when 
used as a decision node in a tree, because features used at the top 

Table 2 | Model validation on recently synthesized MOFs

ID Common name Activated formula True stability Two-class ML 
prediction

Three-class ML 
prediction

1 CAU-1(Al) [Al4(OH)2(OCH3)4(H2N-bdc)3] S S,HK HK

2 [Cd2(TBA)2(bipy)(DMA)2] LK S,HK S

3 [La2(pyzdc)3(H2O)4] S S,HK S

4 MAF-X25ox [Mn2(OH)Cl2(bbta)] HK S,HK HK

5 MIL-68 Fe(OH)(bdc) HK S,HK HK

6 MIL-160 Al(O5C6H2)(OH) S S,HK HK

7 Na-HPAA Na2(OOCCH(OH)PO3H)(H2O)4 HK S,HK S

8 NU-1100 Zr6(OH)4(OH)4(L)4 HK S,HK HK

9 PCN-230 Zr6(OH)4O4(TCP-3)3DMF30(H2O)10 HK S,HK HK

10 PCP-33 (Cu4Cl)(BTBA)8((CH3)2NH2)(H2O)12 HK S,HK HK

Shown is a comparison of water stability predictions using two-class and three-class models against measurements reported in the literature for MOFs available after publication of the Burtch dataset. Text 
bolding in the ‘Two-class prediction’ and ‘Three-class prediction’ columns reflects if the model predictions were correct (bold) or not (non-bold). In increasing order of the MOF IDs, the following references 
were used to determine the true water stability18,20,39–46.
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of a tree contribute towards the final prediction for a larger fraction 
of the input samples. Based on this philosophy, the relative impor-
tance of different features towards MOF water stability prediction is 
presented in Extended Data Fig. 4. As expected, the atomic radius 
and ionization potential of the metal ion and the ligand versus 
metal ratio were found to be quite important. However, a variety 
of molecular quantum numbers (MQNs)47 for the ligands were 
also found to be important descriptors; topological features, such 
as the number of cyclic divalent nodes (MQNs30) or six-member 
rings (MQNs36), and polarity-based descriptors, such as the num-
ber of hydrogen-bond acceptor sites (MQNs20), were among the  
top features.

Next, using these top identified features, we searched for sim-
ple chemical rules for water stability in MOFs. As illustrated in 
Fig. 4 by blue shaded regions, the MOFs from the Burtch dataset 
containing metal ions of large atomic radius and lower ionization 
potential, and ligands with low MQNS36 and high MQNS30 were 
found to display high water stability. In particular, 66 of 75 (88%), 
71 of 82 (87%), 75 of 90 (83%) and 51 of 55 (93%) cases were 
found to be stable (S or HK) when the metal ion atomic radius 
was >1.4 Å, the metal ion ionization potential was <7.5 eV, the 
ligand had MQNS36 <0.04 and the ligand had MQNS30 >0.01, 
respectively. Furthermore, when considering two properties at a 
time, 21 of 22 (95%) MOFs with metal ion atomic radius >1.4 Å 
and the ligand with MQNS36 <0.04, or metal ion ionization poten-
tial <7.5 eV and the ligand with MQNS36 <0.04 were found to be 
stable. Similar insights derived from linear correlations between 
MOF features and water stability are provided in Extended Data 
Fig. 5. The identified trends provide new insights on water stabil-
ity in MOFs and can serve as guidelines for future exploration of 
stable MOFs.

Screening new water-stable MOFs
Having established the accuracy levels achieved by the models, we 
next used them to screen MOF candidates with unknown water sta-
bilities. This test demonstrates the ease with which instant water 
stability predictions can be made for ‘new’ MOFs, if given only 
their activated formula unit. Eighty-eight MOFs were selected 
from the literature based on their adsorption, separation or cata-
lytic capabilities, and predictions were made for each using the 
two- and three-class models. In Table 3, we list the top five can-
didates, rank-ordered based on their probability to be of class 1 
(that is, S or HK for the two-class model and S for the three-class 
model), while predictions for all 88 candidates are provided in 
Supplementary Table 2. This exemplifies how the developed ML 
models can be used to screen or prioritize MOF synthesis, and 
efficiently explore water-stable MOFs. We note that, for most cases  
(75 of 88), the predictions for the two models were consistent. 
Although the true water-stability nature of these 88 new candidate 
MOFs is not entirely unknown, following a literature search, we 
found some information regarding 12 of these candidates. Among 
those, the ML models correctly identified the two stable MOFs, 
that is, [Ca(C4O4)(H2O)]48 and [AgTPB]49. Furthermore, 5 of 6 HK 
stability MOFs were correctly identified by the two-class model, 
while only 1 of 4 of the cases was correctly classified as U. Although 
these cases are too limited to draw statistical conclusions, they sug-
gest that the developed ML models are indeed helpful in screening 
water-stable MOFs.

A caveat should be noted for the developed ML models. 
Analysis of the model predictions on the 88 new MOFs suggested 
a bias towards water-stable MOFs. Although the two-class model 
predicted only ~20% of the MOFs to be unstable, the three-class 
model predictions had a distribution of 28, 32 and 40% of new 
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Fig. 4 | Mined chemical trends. Water stability trends in MOFs from the Burtch dataset using the important features obtained from the two-class RF 
models. MOFs with metal ions of large atomic radius (M_AtomicRadii > 1.4 Å) and lower ionization potential (M_Ionization < 7.5 eV), and ligands with low 
MQNS36 (L_mfpMQNs36 > 0.04) and high MQNS30 (L_mfpMQNs30 > 0.01) are shown to capture many water-stable MOFs (of the Burtch dataset).

Table 3 | Screened water-stable MOFs

ID MOF DOI Two-class ML 
prediction

Three-class ML 
prediction

1 [Ca3(NTB)2(DEF)2(H2O)2] 10.1134/S0022476619110192 1 (S, HK) 1 (S)

2 [Ca3(BTB)2(NMP)2(H2O)2] 10.1134/S0022476619110192 1 (S, HK) 1 (S)

3 [Cd3(OABDC)2(eurea)4] 10.1080/00958972.2016.1180371 1 (S, HK) 1 (S)

4 [Mn2(HL6)(DMF)(H2O)] 10.1039/C6DT02846B 1 (S, HK) 1 (S)

5 [Ce(BTC)(H2O)] 10.1002/ejic.201000541 1 (S, HK) 1 (S)

Shown are the top five identified ‘new’ water-stable MOFs using the two-class RF and three-class SVM models. The meaning of class definition 1 for the two-class and three-class models are provided in 
parentheses and can be seen from Fig. 3. More details on the MOFs can be found by using the DOIs.
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MOFs to be in category U or LK, HK and S, respectively. Two 
potential sources could lead to such a bias in the model predic-
tions. First, the ML models are biased towards water-stable MOFs 
as the Burtch training dataset is dominated by MOFs of classes 
HK and S. Second, the dataset of 88 new MOFs, although collected 
randomly from the literature, suffers from an inherent publication 
bias, that is, selective reporting of only those MOFs that have some 
degree of stability. Although the lack of a truly unbiased test data-
set precludes resolution on the source of bias, we note that the 
classification distribution of the 88 new MOFs matches reasonably 
well with that of the Burtch dataset, which was taken from a com-
prehensive review paper reporting an unbiased state of this field 
in 2014, without any presumption that this dataset would be later 
used for ML studies. Additionally, some of the best ML practices 
(class-balanced accuracy and CV) have been adopted to avoid 
class bias in the models.

It is important to note that, because all the features used in this 
work (metal, linker and molar set) can be derived using only the 
MOF formula unit, no structural information is required a priori, 
making these proposed ML models versatile and easily applicable. 
However, this also highlights a limitation of the current models; 
that is, they cannot differentiate between different phases of a MOF 
or when ligand arrangement varies despite preserving the same 
metal–linker molar ratio. Although this issue could be resolved 
by expanding our feature set to include structural information 
(for example, pore limiting diameter and density), all of which is 
expected to improve the accuracy of the current water-stability 
models, adding structural features will limit the applicability of the 
ML model to only those MOFs for which accurate structural mea-
surements are available. For this reason, we opted to not add more 
MOF structure-based features to our models, instead choosing to 
rely on the more readily available information given by the MOF 
formula unit.

Conclusions
In summary, we have developed simple and generalized ML models 
to predict the water stability of MOFs. Two classification models 
(two-class and three-class) were learned using a dataset of experi-
mentally determined water stabilities for 207 MOFs. These models 
provide a quick and inexpensive estimate of MOF water stability. 
To train the models, a comprehensive set of chemical features was 
compiled to capture information about the MOF metal node, the 
organic linker and their molar ratios. These feature sets were further 
refined using dimensionality reduction schemes. The classification 
models were trained using RF and the SVM algorithm, while their 
performance was evaluated through class-weighted accuracies and 
per-class precision and recall rates. Not only were the models used 
to predict the water stabilities of 10 recently reported MOFs that 
have had experimental stability measurements done, they were also 
used to screen new MOF candidates predicated to be stable under 
aqueous conditions. Overall, this work can be used for the rational 
design and screening of new MOFs with a desired level of water sta-
bility, as well as for obtaining a better fundamental understanding of 
MOF degradation behaviour.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
Article.

Data availability
The MOF water-stability data (illustrated in Fig. 2) used to train the 
models were obtained from ref. 13. The water-stability data used for 
validation (recent 10 MOFs) and screening (88 new MOFs) were 
obtained from the literature as cited in the Article. These datasets, 
including MOF features, are deposited at https://doi.org/10.5281/
zenodo.4014333. Source data are provided with this paper.

Code availability
The machine learning training and prediction codes underlying 
this work are freely available for general use under GNU General 
Public Licence v3.0 and are deposited at https://doi.org/10.5281/
zenodo.4014333.
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Extended Data Fig. 1 | Statistics on water stability in MOFs. Distribution of MOFs into 4 categories of water stability based on the constituting metal node.
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Extended Data Fig. 2 | Performance comparison of ML algorithms for 2-class model. Performance comparison of SVM, RF and GB methods for the 
2-class model (’S’, stable and ’U’, unstable MOFs) using the RFE based reduced feature set. Left panel shows the overall class-weighted accuracies, while 
the right two panels show the per-class test scores, that is F1, area under the ROC curve (AUC), precision (P) and recall (R), for the RF and SVM models. 
The RF model can be seen to outperform in all accounts and was selected as the 2-class model in this work.
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Extended Data Fig. 3 | Performance comparison of ML algorithms for 3-class model. Performance comparison of SVM, RF and GB methods for the 
3-class model (’S’, stable, ’HK’, high kinetic stable, and ’U’, unstable MOFs) using the RFE based reduced feature set. Left panel shows the overall 
class-weighted accuracies, while the right two panels respectively show the per-class F1 and recall scores, for the RF and SVM models. The RF model can 
be seen to have poor performance for the underrepresented stable (S) class, although it was trained to maximize the class-weighted accuracy. Similar 
results were found for GB algorithm as well. Thus, SVM with best performance for all classes was selected as the 3-class model in this work.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


Articles NaTurE MacHInE InTEllIgEncEArticles NaTurE MacHInE InTEllIgEncE

Extended Data Fig. 4 | Important MOF water stability descriptors. Relative feature importance as extracted from the random forest (RF) 2-class model. 
The feature importance in case of RF is based on the concept of mean decrease in impurity (MDI), as explained here (G. Louppe, Understanding Random 
Forests: From Theory to Practice, PhD Thesis, U. of Liege, 2014). The features with relatively high importance were selected to mine important chemical 
trends of water stability in MOFs. The first letter of the descriptor, that is, M or L, denotes the metal or the ligand associated features, respectively (see 
main article for details). Features with high importance were used to derive important stability trends as discussed in the main article.
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Extended Data Fig. 5 | Correlation between MOF water stability and its descriptors. A subset of post-RFE features were analyzed to see if linear 
correlations between MOF water stability for the case with two classes (S+HK and U+LK) and the features values could be used to derive some chemical 
trends. This figure suggests that the presence of certain chemical motifs, especially those containing N or ketone groups, and 5-member rings, tend to 
enhance the water stability in MOFs. Each marker in the figure represents a MOF from the Burtch data set. See Supplementary Information for details on 
the different descriptors.
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