
Using available data or observations to formulate deci-
sions, conclusions and even theories is not new. In fact, 
this paradigm has been in existence during the entire 
course of human (or animate) history. A growing child, 
when continuously exposed to a variety of inputs and 
incentives, progressively learns to form strategies  
and hypotheses to deal with the world. Nature sets the 
asymptotic limit of the level of intelligence a species may 
be able to achieve, and nurture provides the exposure 
and avenues to achieve the asymptotic limit.

Reproducing experience-based learning and decision- 
making in machines, thus, producing ‘artificial intelli-
gence’ (AI), has led to a lot of excitement (and expec-
tations) in recent decades. Two aspects make the 
contemporary situation truly unique though. First,  
the size of available data, at least in some specific 
contexts, is enormous, of the same magnitude or 
much larger than that encountered by natural cog-
nitive systems. This situation has spawned new ways 

of representing, processing and learning from data. 
Second, in contexts where data are already immense, 
there is also a constant tsunami of new data. Learning 
models — or ‘machine learning’ (ML) models — thus, 
have the opportunity to continuously learn from the 
flux of incoming data, and, more importantly, demand 
new data in regions of sparse knowledge. The machine, 
much like a growing child, can progressively improve 
in intelligence or capability in a self-directed or autono-
mous manner. AI, at least in specific data-rich contexts, 
is very much a reality. Classic examples have emerged 
in diverse domains, such as in e-commerce, computer 
games, autonomous driving and, also, unfortunately, in 
human behaviour (for instance, voter) manipulation.

The above developments are rapidly beginning to 
impact science and engineering, both in terms of added 
value and of expectations of what might be achieved. 
Although much of materials science is not (yet) in a 
data-rich situation, AI tools and their far-reaching 

Emerging materials intelligence 
ecosystems propelled by machine 
learning
Rohit Batra   1, Le Song2 and Rampi Ramprasad   3 ✉

Abstract | The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by 
its successes and promises, several AI ecosystems are blossoming, many of them within the domain 
of materials science and engineering. These materials intelligence ecosystems are being shaped by 
several independent developments. Machine learning (ML) algorithms and extant materials data 
are utilized to create surrogate models of materials properties and performance predictions. 
Materials data repositories, which fuel such surrogate model development, are mushrooming. 
Automated data and knowledge capture from the literature (to populate data repositories) using 
natural language processing approaches is being explored. The design of materials that meet 
target property requirements and of synthesis steps to create target materials appear to be  
within reach, either by closed-loop active-learning strategies or by inverting the prediction 
pipeline using advanced generative algorithms. AI and ML concepts are also transforming the 
computational and physical laboratory infrastructural landscapes used to create materials data  
in the first place. Surrogate models that can outstrip physics-based simulations (on which they  
are trained) by several orders of magnitude in speed while preserving accuracy are being actively 
developed. Automation, autonomy and guided high-throughput techniques are imparting 
enormous efficiencies and eliminating redundancies in materials synthesis and characterization. 
The integration of the various parts of the burgeoning ML landscape may lead to materials-savvy 
digital assistants and to a human–machine partnership that could enable dramatic efficiencies, 
accelerated discoveries and increased productivity. Here, we review these emergent materials 
intelligence ecosystems and discuss the imminent challenges and opportunities.

1Center for Nanoscale 
Materials, Argonne National 
Laboratory, Lemont, IL, USA.
2Computational Science & 
Engineering, Georgia Institute 
of Technology, Atlanta,  
GA, USA.
3School of Materials Science 
& Engineering, Georgia 
Institute of Technology, 
Atlanta, GA, USA.

✉e-mail: rampi.ramprasad@
mse.gatech.edu

https://doi.org/10.1038/ 
s41578-020-00255-y

REVIEWS

Nature Reviews | Materials

http://orcid.org/0000-0002-1098-7035
http://orcid.org/0000-0003-4630-1565
mailto:rampi.ramprasad@mse.gatech.edu
mailto:rampi.ramprasad@mse.gatech.edu
https://doi.org/10.1038/s41578-020-00255-y
https://doi.org/10.1038/s41578-020-00255-y
http://crossmark.crossref.org/dialog/?doi=10.1038/s41578-020-00255-y&domain=pdf


potential are shaping a veritable materials intelligence 
ecosystem. Thanks to several independent develop-
ments, it is becoming a mainstream belief that materials 
data, if handled and harnessed appropriately, may be 
used to accelerate materials development and discovery, 
at a pace and scale that has never been seen before.

By definition, data-driven efforts start with data. In 
an attempt to respond to this need, materials repositories 
targeting several classes of materials have burgeoned. 
These repositories are populated with available exper-
imental or computational data, and progressively aug-
mented with data that are published, shared or created 
in a targeted manner (for example, via high-throughput 
experiments or computations). An area of active inquiry 
and growth is the development of sustainable and scal-
able protocols to create diverse and comprehensive data 
collections in a systematic and organized manner, for 
example, using active learning to drive experiments or 
computations, or natural language processing (NLP) to 
continuously capture data from the scientific literature 
and patents.

The next important component of a data-driven effort 
is the representation of the data themselves, so that they 
are converted to a machine-readable form. Materials 
data repositories provide datasets that are typically an 
enumeration of a variety of materials that fall within a 
well-defined chemical subclass (including some details 
on the manner in which the experiments — physical or 
computational — were performed) and relevant meas-
ured (or computed) properties or synthesis steps adopted. 
Converting such data to a machine-readable form 
involves numerically representing the materials and other 
relevant details. This step, referred to as ‘fingerprinting’, 
intrinsically depends on the context or application, and 
leads to a spectrum of numbers, or descriptors, that cap-
ture key attributes of the material or process, which may 
be either ‘handcrafted’ or automatically generated.

With a machine-readable representation at hand, 
and, of course, a large and diverse enough dataset, pro-
gress can be made to detect patterns in the data (via 
unsupervised learning) or to make predictions of pro
perties or synthesis recipes for new materials (via super-
vised learning). Unsupervised learning is a problem that 
involves just the machine-readable materials representa-
tions and looks for similarities and differences between 
the various cases. It learns patterns in the data, such as 
clusters and extremum data points. Supervised learn-
ing, by contrast, involves a training process that estab-
lishes a mapping between the representations and the 
properties or synthesis outcomes, leading to surrogate 
models of predictors. The last several years have seen 
enormous progress on these fronts for a variety of mate-
rials classes and phenomena. A dizzying spectrum of old 
and new algorithms have been utilized, ranging from 
linear regression and nonlinear methods (kernel-based 
or Gaussian-process-based) to decision trees and neural 
networks (NNs; shallow, deep or convolutional)1. More 
recently, emphasis has shifted to strategies for solving the 
‘inverse problem’, that is, the enumeration of materials 
or process/synthesis designs that are expected to meet 
a property or performance target with high probability.  
Inspired by capabilities developed by the image and 

video generation community, generative models — along 
with traditional approaches, such as active-learning and 
evolutionary algorithms — are making inroads into 
materials discovery. These models enable the search of 
superior materials in a proxy latent space, allowing the 
use of powerful optimization approaches for materials 
design. Screened candidate materials are then evaluated 
through experiments and computations, and become 
part of the ever-growing data repositories.

The computational and physical laboratory infra-
structures are also transforming, owing to the integra-
tion of AI tools2. On the computational side, AI agents 
that learn the input–output behaviour of simulation soft-
ware can be several orders of magnitude faster than tra-
ditional approaches3,4. Likewise, materials synthesis and 
characterization facilities are beginning to see dramatic 
improvements in efficiencies due to the integration 
of ML capabilities (which provide autonomy) and the 
incorporation of robotic control (which imparts auto-
mation)5. Although these AI agents need to be further 
nurtured, the natural evolution of such human–machine 
partnerships may lead to materials-savvy digital assis-
tants that will continuously and autonomously learn 
aspects of materials science and engineering.

Here, we review some of the mature and emergent 
key components of the materials intelligence ecosystem 
(Fig. 1). We pay special attention to the protocols for data 
acquisition and management, context-dependent rep-
resentation of data, transformation of data to surrogate 
predictive models and knowledge, and emerging strate-
gies for solving inverse problems6 that can autonomously 
drive a materials laboratory. Throughout, we provide 
examples of materials innovations that have resulted 
from the infusion of AI ideas within materials science and  
engineering, and highlight the imminent challenges  
and opportunities.

Data generation, acquisition and management
Powered by the Materials Genome Initiative, the gen-
eral data-management policies enforced by funding 
agencies and the recent awareness within the materials 
community of the positive impact of data sharing and 
dissemination, several efforts to build materials databases 
have blossomed. It is fair to say that a vast majority of 
materials databases have grown organically with pro-
active discussions on management standards, policies 
and on the associated challenges. Consequently, FAIR 
(findable, accessible, interoperable and reusable) data 
principles that provide guidelines for scientific data man-
agement and stewardship have been put forth7. A myriad 
of databases, both empirical and computational, span-
ning a large variety of materials properties — including 
structures, formation energetics, thermodynamic phase 
diagrams, electrical and mechanical properties — across 
different material classes — metals, ceramics, alloys, 
glasses, 2D materials and nanocomposites — have 
become available. A few notable examples are presented 
in Table 1. Importantly, several of these datasets are cou-
pled with data visualization or search tools, or are accessi-
ble through an application programming interface (API), 
thereby, allowing easy and quick access, and supporting 
the acceleration of materials discovery. The success and 
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potential impact of such repositories can be enhanced 
if materials data infrastructure challenges, such as the 
scarcity of open or common data standards and formats, 
the lack of e-collaborative platforms and tools, and the 
insufficient reward of data contributors, are addressed8.

To make data generation (and augmentation of exist-
ing repositories) a sustainable, painless and efficient 
enterprise, steps are being taken, as we discuss below.

Design of experiments. We start by summarizing a 
traditional approach: choosing a small subset of cases 
to perform experiments on from a potentially large 
candidate set, with the constraint that the former is 
representative of the latter. Experiments (empirical or 
computational) in materials science usually involve 
exploring or optimizing a large number of parameters; 
for example, organic photovoltaic materials require 
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Fig. 1 | Materials intelligence ecosystems. Materials intelligence 
ecosystems consist of four interconnected key components. First, online 
repositories provide user-friendly access to a range of materials data 
(including properties, structure, composition and microstructural images). 
Second, manually constructed or machine-based representation methods 
transform the available materials data into a numerical format, making it 
amenable to artificial intelligence (AI) and machine learning (ML) tools. 
Third, surrogate or generative models use the processed materials data to 
screen or generate new candidates with desired properties. The proposed 
candidates can either be new materials with superior properties, or 
potential synthesis routes (reactants, precursors) or processing conditions 

(annealing, calcination temperature) to obtain target materials. Lastly, 
the identified ‘best’ candidate is validated through experimental or 
computational tests, with the outcomes appended to the existing 
repositories. More recently, tools based on natural language processing 
(NLP) have been employed to directly mine the literature corpus, producing 
accessible and user-friendly materials data. DFT, density functional theory; 
MOF, metal–organic framework; NN, neural network. The image for the 
convolution NN is courtesy of V. Dumoulin and F. Visin. The image for 
property prediction and screening is reprinted with permission from ref.62, 
Elsevier. The graph for the graph neural network is reprinted with permission 
from ref.107, APS.
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optimizing the donor-to-acceptor ratio, the thickness of 
the heterojunction layer, the processing additives and the 
spin-casting speed. In most scenarios, the experimen-
tal budget is too limited to ensure adequate sampling of 
the entire parameter space. The design of experiments 
(DOE) approach is utilized to sample a large, multi
dimensional parameter space in a rational manner with 
minimal budget9,10. Naturally, the objective is to adopt a 
space-filling sampling approach that provides informa-
tion over the entire parameter space. But, as illustrated 
in Fig. 2a, a grid-based uniform sampling approach may 
lead to selecting the same parameter value multiple 
times, which can be avoided using an approach called 
the Latin hypercube design (LHD)11. In this approach, 

the design space is split into grid-based hypercubes 
(bins), and the points are sampled such that no two 
points have the same value for any of the design param-
eters. An exemplary LHD schema is illustrated in Fig. 2a, 
with the shaded regions highlighting the absence of any 
duplicate selection. Further, to distribute the points 
across the design space, a ‘maximin’ criterion is imposed 
that maximizes the distance between two sampled 
points, while simultaneously minimizing the number  
of points having similar distance values. More advanced 
versions of LHD include sliced-LHD12, MaxPro-LHD13 
and Pareto optimal LHD14, among others15, which may 
be used to create batches of physical or computational 
experiments that are simultaneously sparse and diverse. 

Table 1 | Notable materials repositories

Name Material types source No. of 
entries

access

NIST ICSD231 Inorganic Empirical 210,000 License

Pauling File232 Inorganic Empirical 156,274 Open

PoLyInfo233 Polymers Empirical 334,738 Open

Cambridge Structural 
Database234

Organic, MOFs Empirical >1 million Open/license

MatWeb235 Inorganic, organic Empirical 135,000 License

Total Metals236 Metals Empirical 350,000 License

INTERGLAD237 Glasses Empirical 350,000 License

Mindat238 Minerals Empirical 5,500 Open

ASM Databases & Handbooks239 Alloys Empirical – License

American Mineralogist Crystal 
Structure Database240

Minerals Empirical – Open

Citrination241 General materials Empirical, computational 350,000 Open

FIZ Karlsruhe ICSD242 Inorganic Empirical, computational >210,000 License

ChemSpider243 Organic Empirical, computational 81 million Open

MatNavi NIMS Databases244 General materials Empirical, computational – Open

NIST Materials  
Data Repository245

General materials Empirical, computational – Open

NanoMine246 Polymer nanocomposites Empirical, computational – Open

SpringerMaterials Databases247 General materials Empirical, computational – License

Crystallography  
Open Database248

General materials Computational 451,943 Open

Materials Project249 Inorganic Computational (DFT) >120,000 Open

OQMD250 Inorganic Computational (DFT) 637 ,644 Open

AFLOW251 Inorganic Computational 3,225,000 Open

Jarvis252 Inorganic Computational (DFT) >30,000 Open

f-Electron Structure 
Database253

Inorganic Computational 28,000 Open

CatApp254 Catalysis Computational (DFT) 1,054 Open

NOMAD255 General materials Computational (quantum) – Open

Novamag256 Rare-earth magnets Computational – Open

CALPHAD Databases257 Inorganic Computational – License

Computational Materials 
Repository258

Inorganic Computational – Open

MaterialsWeb259 2D/3D inorganic Computational – Open

For some databases, the information on the number of entries is not available and, for others, it changes too fast to provide an 
accurate value. DFT, density functional theory; MOFs, metal–organic frameworks.
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Despite its usefulness, the use of LHD in materials sci-
ence has been limited. Notable examples include opti-
mizing synthesis parameters for the design of efficient 
organic photovoltaics10 and determining simulation 
parameters to generate a mechanical-property database 
using finite-element simulations16,17. Nonetheless, the 
use of LHD in materials science is expected to rise, espe-
cially for the initial generation of diverse databases to be 
later expanded and exploited with other ML methods.

Active learning or Bayesian optimization. The DOE 
approach may lead to an economical but diverse selec-
tion of cases to perform experiments on, but decisions 
must be done ahead of time, and cannot be changed 
during the course of the experiments. An alternative 
approach is based on Bayesian optimization or active 
learning18,19 (Fig. 2b), in which successive experiments 
are decided based on the outcomes of past experiments. 
An initial set of experiments is performed, a model 
(for example, one based on Gaussian processes) is fit 
to the available data, predictions are made on a large 
set of potential experiments and the next experiment 
is selected based on some criteria related to the predic-
tions. In other words, decisions on what to do next are 
made not just by considering the possible experimen-
tal design space (as in the DOE approaches) but also 
based on the available experimental outputs, that is, the 
materials property space. Subsequently, the candidate 
for which the experiment is performed is added to the 
training set, and the procedure is repeated iteratively to 
build the dataset in a targeted manner.

The criterion used for selecting the next experiment —  
commonly referred to as the acquisition function — is 

critical. Methods such as Gaussian process regression 
(GPR)18, which can fit a model to the data from exper-
iments that have already been performed, can provide 
both a prediction and an uncertainty on the prediction 
for new cases. One may select the next experiment based 
purely on the uncertainty values. Large uncertainties 
indicate a region in the feature space with poor know
ledge. Acquisition functions defined in this manner 
will lead to exploration and visits to regions of sparse 
knowledge or data.

Alternatively, the objective may be to find the best 
material candidate with the desired property values. In 
such cases, the acquisition function is defined based 
on the model predictions themselves, that is, the next 
experiment is selected based on how close its predicted 
property value is to the desired value. This strategy is 
called exploitation.

Bayesian optimization combines the predicted value 
and its uncertainty in a single acquisition function to 
select the next location for measurement, hence, bal-
ancing exploration and exploitation20. The acquisition 
function can be designed in many different ways, includ-
ing maximum probability of improvement, maximum 
expected improvement21 and Thompson sampling22. 
These methods are collectively classified as Bayesian 
optimization or active learning, and are increasingly 
becoming a vital part of the materials science ML 
portfolio to plan experiments23,24.

As an example, Bayesian optimization was used to 
guide the discovery of piezoelectrics with the ABO3 per-
ovskite structure with large electrostrains through suit-
able quantities of dopant substitution at the A-site and 
the B-site25. Starting with experimental measurements 

Uniform grid sampling Latin hypercube

Distance

a b

Journal articles

XML, HTML

NLP tools

Materials database 

c

Pa
ra

m
et

er
 x

2

Pa
ra

m
et

er
 x

2

Parameter x
1

Parameter x
1

Test preprocessing

Conversion to 
clean plain text

• Tokenization
• Part-of-speech tagging
• Named entity recognition
• Phrase parsing
• Information extraction

Material Processing 
conditions

Property

Material 1 S1 P1

Material 2 S2 P2

Material N SN PN

Active
learning

Model predictions
(property predictions 
for all potential 
experiments)

Model training
(ML model, e.g. GPR)

Known datasets
(materials design
and  property values)

Selection and next 
experiment
(design choice using 
acquisition function)

Fig. 2 | strategies for materials data generation and acquisition. a | Schematic illustration of the design of experiments 
approach to select the set of experiments to perform. Whereas traditional grid-based selection leads to redundant 
experiments performed at the same parameter values, design of experiments strategies (such as the Latin hypercube) 
cover the parameter space with minimal redundancy and minimal experimental budget. b | Active learning and Bayesian 
optimization scheme for iterative data generation and model improvement. c | Steps involved in the extraction of 
materials data from the scientific literature using natural language processing (NLP). GPR, Gaussian process regression; 
ML, machine learning.

Nature Reviews | Materials

R e v i e w s



of only 61 cases from a total of 605,000 possible com-
positions, a bootstrapping method was used to generate 
statistically equivalent training datasets of 1,000 samples. 
An ensemble of 1,000 ML models consisting of poly-
nomial fits, support vector machines with a linear and 
radial-based kernel functions, and gradient tree boosting 
was then used to obtain predictions (with means and var-
iances) for all candidate compositions. These predictions 
were plugged into various acquisition functions (explo-
ration, exploitation, trade-off) to identify candidates 
for the next set of measurements. This active-learning 
scheme was iterated for five loops and resulted in the 
identification of (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3, which 
has an electrostrain of 0.23%, compared with the highest 
value of 0.15% in the training data. Similar works using 
Bayesian optimization for accelerating materials discov-
ery include the design of high-strength, high-entropy 
alloys26, shape-memory alloys with low thermal hyster-
esis (Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2)23 and piezoelectrics with 
vertical morphotropic phase boundary ((Ba0.5Ca0.5)
TiO3-Ba(Ti0.7Zr0.3)O3)27; review articles on this topic are 
also available28,29.

An important by-product of Bayesian optimization 
is the materials data generated as part of the new meas-
urements or computations. Thus, besides providing 
an efficient strategy to find desirable materials, it also 
provides an opportunity to generate new materials data 
that can be added to existing materials repositories. 
However, an important caveat to bear in mind is that 
the benefits of Bayesian optimization are strongly influ-
enced by the model parameters and the definition of the 
acquisition function, as underscored by the benchmark 
study in ref.30. Furthermore, active-learning strategies 
can only be used when new experiments for the identi-
fied candidates can be conducted in a reasonable time. 
Therefore, Bayesian optimization may be inefficient or 
expensive when the parameter search space is enormous 
(for example, in the game of Go or in the search for the 
lowest-energy configuration in a high-entropy alloy). 
This is due to the computational complexity of optimiz-
ing in a high-dimensional space where the optimization 
objective is non-convex. Nonetheless, Bayesian optimi-
zation is one of the most successful techniques in the 
materials intelligence ecosystem, especially for problems 
involving costly experiments or relatively small datasets 
(≲200 points).

NLP. Computational and physical experiments can be per-
formed in an organized manner to systematically create 
materials data, but an immense amount of untapped data 
are already in the publication and patent literature, and 
this content is increasing exponentially. A great oppor-
tunity exists to extract and capture structured data from 
such corpora, in a sustainable and automated manner, for 
regular ingestion by data repositories. Software pipelines 
are being developed to mine natural-language texts, scien-
tific figures and tables to find interesting materials trends, 
suggest future materials and extract materials property 
and synthesis information from millions of documents.

A collection of NLP tools, parsing algorithms and 
journal APIs are necessary to mine relevant materials 
data in an autonomous and machine-processable format 

(Fig. 2c). The first step is the retrieval of relevant journal 
articles in HTML, XML or PDF format through the use 
of DOIs, journal APIs and Crossrefs. Next, some basic 
text processing is performed to clean and convert the 
document in raw plain text. Following this, a series of 
NLP operations31 are conducted: tokenization, the pro-
cess of converting plain text into contextual tokens, 
which broadly correspond to individual words and punc-
tuation that make a meaningful building block (such 
as ‘thermoelectric’, ‘BaTiO3’, ‘Cu0.3Al0.7’ or ‘sintering’); 
part-of-speech (POS) tagging, which involves assigning a 
tag to each token to describe its syntactic function (such 
as noun, verb or adjective); named entity recognition 
(NER), which identifies the key entity (whether it is a 
material, property or process) for which description is 
available in the text; phrase parsing, which transforms 
a sequence of tagged tokens into a tree structure that 
represents the syntactic structure of each sentence (using 
predefined syntactic rules); and, finally, information 
extraction, which involves post-processing to resolve 
data interdependencies throughout the different sections 
of a document (abstract, methods, results) and combin-
ing them into a single structured record for each unique 
chemical entity identified within the document. In the 
end, the extracted records are compiled into a mono-
lithic database, which can be programmatically queried 
to reveal hidden trends across huge materials domains 
using data analytics and visualization techniques.

The POS tagging and NER are both crucial compo-
nents of the NLP pipeline, and are accomplished using 
both unsupervised and supervised ML models. The for-
mer usually entails numerical or vectorial representation 
of words (or tokens), referred to as ‘word embeddings’, 
using unsupervised algorithms, such as GloVe32 or 
Word2vec33. The underlying principle is to assign 
high-dimensional vectors (or embeddings) to all words 
in a text corpus in such a manner that preserves their 
syntactic and semantic relationships. This is achieved 
using information about the co-occurrences of the words 
in a text corpus such that words used within the same  
context are mapped closer (cosine distance) to each 
other within the numerical latent space. For example, 
the embedding of ‘aluminum’ would be closer to ‘metal’ 
than to ‘non-metal’. Moreover, it was demonstrated34 that 
a wealth of materials science knowledge is also captured 
by the latent space of word embeddings, including the 
underlying structure of the periodic table and different 
structure–property relationships (such as melting tem-
peratures, electronegativities and formation energies) 
in materials. For instance, the reduced 2D representa-
tion of the word embeddings of elements correctly seg-
regated alkali metals, alkaline earth metals, transition 
metals, actinides, halogens and noble gases in different 
clusters, similar to the periodic table. The information 
contained within word embeddings is also evident from 
the capability of the ML model to answer analogies: 
‘NiFe’ is to ‘ferromagnetic’ as ‘IrMn’ is to ‘?’, the model 
correctly answers ‘antiferromagnetic’. More impressively, 
these word embeddings have been shown to be capa-
ble of recommending materials for future discovery by 
exploiting the complex relationships learned from the 
massive body of scientific literature. Taking the example 
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of thermoelectrics, it was shown that, by simply ranking 
the materials based on their cosine similarity with the 
word ‘thermoelectric’, it is possible to not only recover 
known thermoelectrics but also recommend new mate-
rials systems (such as Li2CuSb and CuBiS2) for future 
studies. Interestingly, this study demonstrated that the 
latent space distances learned by the unsupervised 
model can also be used to make (qualitative) property 
predictions, which is usually formulated as a supervised 
learning problem.

As part of the NLP pipeline, the learned word embed-
dings are also utilized to train supervised POS tagging 
or NER models based on manually constructed training 
sets of annotated tags for words appearing in a small 
subset of journal articles. Once trained, the POS tagging 
or NER models can be applied to countless journal arti-
cles in an automated manner and extract key materials 
information. In fact, NLP has been successfully used to 
extract materials property and synthesis information 
from different materials domains, including Curie and 
Néel temperatures for magnetic materials35, synthesis 
conditions for metal oxides and zeolites36, and to gain 
insights for inorganic materials synthesis planning37,38.  
In the last example, the researchers scanned through over 
12,000 synthesis articles from a pool of half a million 
journal articles to compile synthesis outcomes of calcina-
tion, sol–gel, hydrothermal or solid-state routes for inor-
ganic materials. Once compiled, the dataset was analysed 
to find trends. For instance, increasing elemental com-
plexity from binaries to ternaries to pentanaries required 
higher calcination temperatures, exceeding 400 °C, for 
the synthesis of bulk and nanostructured materials; this 
is expected, because multicomponent systems require 
interdiffusion of multiple species, whereas binaries can 
be formed from the oxidation of carbonate or hydroxyl 
groups. By contrast, most hydrothermal reactions were 
found to be conducted at much lower temperatures of 
150–200 °C for 12 or 24 h, irrespective of the number 
of elements involved. The compiled synthesis database 
could also be trained in a supervised learning fashion 
to predict synthesis outcomes. For example, given input 
synthesis conditions, the classification models predicted  
the formation of tetragonal (ferroelectric) BiFeO3, 2D CdS  
and nanotube titania37. For the last problem, 27 synthesis  
variables (such as annealing temperature and drying 
time) obtained from 22,065 journal articles were used 
to develop a decision tree model, which revealed that 
NaOH concentration and hydrothermal temperature are 
the two key parameters driving the formation of nano-
tube titania. These ideas have been further extended to 
predict the synthesis conditions themselves, that is, pre-
cursors, annealing temperatures and time, necessary to 
produce the target materials using generative models38. 
Strategies to overcome the challenges encountered in 
clearly distinguishing the roles of different chemical enti-
ties as, for example, reagents, targets or media, have been 
proposed39. Another interesting work based on NLP is a 
machine-generated review on Li-ion batteries that was 
extracted from over 150 journal articles40.

Although the field of NLP for materials data retrieval 
is relatively new, its popularity is expected to grow 
exponentially, owing to the availability of powerful 

open-source codes capable of retrieving information of 
different types (properties, processing, synthesis) and 
from different formats (text, tables, figures). However, 
a few challenges remain. The POS tagging relies on the 
labels provided by domain experts, but, depending on 
the material class, the labelling process can be tedious, 
time-consuming and incomplete, resulting in poor NLP 
performance; this is the case for polymers, for example. 
This problem becomes even more severe when relatively 
complex information needs to be extracted, such as a 
sequence of multiple reactions at different time intervals. 
Furthermore, the NLP models can be improved only if 
they can interact with domain experts in an active man-
ner, continuously requesting new labels or feedback. 
Lastly, an important source of materials data is images 
and tables, for which the performance of NLP models 
can be improved significantly. Given the challenges 
in figure parsing, currently, most works have either 
resorted to manual methods or restricted their focus to 
limited domains with strong assumptions41–43. However, 
some progress has been made in extracting the plot-
ted data from a figure and correctly associating it with 
the legend entries using a novel graph-based reasoning 
approach coupled with a deep-learning-based similar-
ity metric44. NLP and computer-vision techniques have 
also been used to understand diagrams and text to solve 
Boolean-satisfiability-style geometry problems45. Other 
works46,47 have extended this approach to obtain axiomatic 
knowledge of geometry and to solve geometry problems.

Basic ML algorithms for materials scientists
In this section, we frame the problem of learning from 
data and elaborate on several algorithms that gained 
prominence within the materials science community 
in the last decade or so. We assume that a well-curated 
dataset is already available. An example dataset may be 
an enumeration of a variety of materials that fall within a  
well-defined chemical class of interest (the input) and  
a relevant measured or computed property (the output). 
The (supervised) learning problem is then defined as 
simply establishing a generalizable mapping between 
material and property (or input and output).

All data-driven strategies that attempt to address this 
problem are composed of two distinct steps. The first 
step is to represent numerically the various input cases 
(or materials) in the dataset. At the end of this step, each 
input has been reduced to a string of numbers (or ‘finger-
prints’, Figs 3, 4a). The second step establishes a mapping 
between the fingerprinted input and the target property, 
and is entirely numerical. Below, we review both the fin-
gerprinting and learning aspects. We note in passing that 
fingerprinting requires domain knowledge and creativ-
ity, with no single well-defined path, whereas for several 
ML algorithms, well-organized open-source libraries, 
such as sklearn48 and TensorFlow49, are available for the 
community to exploit.

Materials representation. The choice of the numerical 
representation can be effectively accomplished only with 
adequate knowledge of the problem and goals (that is, 
domain expertise), and typically proceeds in an iterative 
manner by duly considering aspects of the material that 
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the target property may be correlated with. Given that the  
numerical representation serves as the proxy for  
the real material, it is also referred to as the fingerprint 
of the material or its descriptor (in ML parlance, it is also 
referred to as the feature vector).

Depending on the problem and the accuracy require-
ments of the predictions, the fingerprint can be defined 
at varying levels of granularity, as shown in Fig. 3. For 
instance, if the goal is to obtain a high-level understand-
ing of the factors underlying a complex phenomenon — 
such as the mechanical or electrical strength of a material 
or its catalytic activity — and prediction accuracy is not 
critical, then the fingerprint may be defined at a gross 
level, in terms of the general attributes of the atoms the 
material is made up of, other potentially relevant pro
perties (such as the band gap) or higher-level structural 
features (such as the typical grain size). By contrast, if the 
goal is to predict specific properties at a reasonable level 
of accuracy across a wide chemical space — such as the 
dielectric constant of an insulator or the glass-transition 
temperature of a polymer — the fingerprint may have to 
include information pertaining to key atomic-level struc-
tural fragments that may control properties. If extreme 
(chemical) accuracy in predictions is demanded — such 
as electronic charge density, total energies, atomic forces, 
precise identification of structural features, space groups 
or phases — the fingerprint has to be fine enough to 
encode details of atomic-level structural information 
with sub-angstrom resolution. Several examples of learn-
ing based on this hierarchy of fingerprints or descriptors 
have been discussed in the past3,50,51.

The general rule of thumb is that the finer the finger-
print, the greater the expected accuracy, and the more 
laborious, data-intensive and less conceptual the learn-
ing framework. As we discuss below, this opens up the 
possibility of automatically learning and determining 
the fingerprints in such problems. Finally, regardless 
of the application, the fingerprints should be invariant 
(or covariant in some scenarios) to certain transforma-
tions of the system, such as rotation, translation and 
permutation of like members of the system.

Regression and multifidelity learning. Once a finger-
printing scheme is selected and all materials in a database 
have been fingerprinted, the regression problem is to  
find a function ˆ .f ( ) that takes a material’s fingerprint as 
input and returns its associated target property as output 
(Fig. 4a). The learned mapping ˆ .f ( ) is called the surro-
gate or the ML learning model, whereas the materials 
database used to fit the model ˆ .f ( ) is called the training 
data. The advantage of the learned ML model is that it 
can be used to make quick property predictions for new 
materials (denoted as X in Fig. 4a) by first fingerprinting 
them and then simply applying the learned ML model 
ˆ .f ( ) to obtain their property estimates. Obviously, using 
ML only makes sense if fingerprinting and evaluating 
the mapping function for the new case is significantly 
faster than directly making the property measurement.

Several strategies for arriving at the mapping func-
tion exploit different regression algorithms, including 
linear regression, kernel ridge regression (KRR), GPR, 
decision trees, random forest, support vector machine 
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regression and NNs. These algorithms mostly vary 
in the type and complexity of the function space that  
is searched to fit the training data. Another key aspect is  
the uncertainty in the model prediction, as illustrated 
in Fig. 4b for the case of GPR. These uncertainties are 
often used to quantify the confidence in the model pre-
diction, and, thus, are useful to drive the active-learning 
approach by evaluating the acquisition function (see the 
section on active learning).

The fingerprint definition and the regression algo-
rithm together define the quality and performance that 
the developed ML models can achieve. If the available 
target property (output) varies smoothly and is not 
highly nonlinear in the fingerprint space, a relatively 
simple mapping function can achieve good perfor-
mance. Thus, in many cases, rather than working in the 
original fingerprint space, the learning problem is posed 
in a modified kernel space, wherein the transformed 
fingerprint follows a much simpler trend with the tar-
get property, allowing the ML model to reach better 

accuracy. Another important aspect is the chosen com-
plexity of the mapping function (or the regression algo-
rithm), which dictates its ability to fit the given training 
data; highly nonlinear functions, owing to their flexible 
nature, can provide a better fit to the data. However, 
caution should be exercised, as they may not general-
ize well for new materials (test data) and could result 
in overfitting, which means that the learned ML model 
performs well only for the materials included in the 
training data and provides arbitrary or poor predictions 
for materials outside the training set. Such behaviour can 
be avoided using a regularization scheme during model 
training, a strategy almost always exploited in practice. 
Regularization can be considered as restricting the space 
of the mapping function to reduce its complexity, to 
allow ML models to generalize well for new cases.

Many materials databases have been exploited 
using the regression approach to develop user-friendly 
ML models for a plethora of materials properties. 
The list is truly unending; examples range from basic 
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thermodynamic (formation or free energies), electrical 
(dielectric strength52, electrical conductivity53, elec-
tric breakdown54,55), mechanical (tensile strengths56,57, 
elastic constants58, fracture toughness59), thermal 
(heat capacity60, vibrational spectra and entropy61, 
thermal conductivity62) properties to more exotic or 
application-oriented cases, such as superconductivity63, 
ferroelectric Curie temperatures64, properties of topo
logical insulators65, thermoelectric figure of merit66 
and hopping barriers in Li-ion batteries67. Similar to 
the strategies adopted in drug discovery in the past, 
all regression studies have a common goal: exploit the 
existing materials databases for ML model development, 
quickly estimate properties of hundreds to thousands of 
new candidate materials using the developed ML model 
and virtually screen promising candidates for experi-
mental validation. This has lead to accelerated materi-
als discovery, with notable success stories of superhard 
ceramics68, thermoelectrics66, interfaces with high ther-
mal resistance69, high-strength high-entropy alloys26 and 
metallic glasses70.

Another good example of using ML for virtual 
screening is the Polymer Genome suite, which uses a 
hierarchy of intermediate-level fingerprints (such as 
atomic fragments and morphological descriptors) and 
the GPR algorithm to learn models for over 20 impor-
tant polymer properties, including dielectric constant, 
band gap and glass-transition temperature71. The model 
accuracy varies depending on the quality, source and 
quantity of the property datasets. Model predictions 
based on systematically computed data tend to have low 
prediction errors. For instance, correlation coefficients 
R2 of 0.98, 0.97 and almost 1 are obtained for band gap, 
electron affinity and atomization energy prediction 
models, respectively, trained on data arising from com-
putations. By contrast, models based on experimental 
datasets can incorporate additional noise owing to var-
ying empirical conditions, causing relatively high pre-
diction errors, with R2 values of 0.97, 0.94 and 0.89 for 
glass-transition temperature, melting temperature and 
dielectric constant, respectively. All models, however, 
have reasonable accuracy that allows virtual screening 
of thousands to millions of polymer candidates in an 
efficient manner. For example, ML has been used to 
screen polymers for high-energy-density-capacitor 
applications, that is, polymers with large band gap and 
dielectric constant, with selected cases validated via 
direct experimental synthesis24,72.

In some studies, the different aspects of the ML-based 
materials-discovery process — the materials database 
generation, regression model development, candidate 
screening and experimental validation — are all per-
formed collectively in an iterative manner using active 
learning. Given that materials discovery is inherently 
‘extrapolative’, such active-learning approaches are 
extremely successful64,73. A few other ML techniques 
(such as leave-one-cluster-out cross-validation74) that 
focus on better generalizations of the surrogate models 
are also adept for such problems. Beyond materials dis-
covery, regression approaches have also helped acceler-
ate experiments and quantum-mechanical calculations, 
as discussed in later sections.

The materials fingerprints can also be used to quan-
tify the similarity between different materials. Common 
distance metrics include the Euclidean, Manhattan and 
Tanimoto coefficients75. The choice of the distance 
metric depends on the problem, but the Tanimoto and 
cosine coefficients have been found to perform best for 
similarity calculations. The Euclidean and Manhattan 
distances are not recommended, although their varia-
bility and diversity from other distance metrics might 
be advantageous for data fusion75.

Information regarding a materials property of inter-
est can exist at several levels of fidelities, with the meas-
urements varying in terms of their cost and accuracy. 
For example, structural parameters can be either esti-
mated theoretically (quick but low fidelity) or measured 
using diffraction experiments (time-consuming but 
high fidelity) after careful synthesis. For such problems, 
multifidelity information-fusion approaches may be 
adopted, wherein information available at different lev-
els of fidelity is combined to build a powerful model that 
makes predictions at the highest level of fidelity. In this 
approach, the traditional regression problem is modified 
to build two complementary models, with the first mod-
elling the low-fidelity data and the other learning the 
difference between the high-fidelity and the low-fidelity 
data. The prediction for a new case is given by the sum 
of the low-fidelity model scaled by a factor and the dif-
ference model. Not only can this approach be extended 
to more than two levels of fidelity but it is a powerful 
way to combine large materials databases of low-fidelity 
theoretical property estimates with small-sized but 
accurate empirical measurements. This approach was 
used for the problem of predicting the tendency of a 
polymer to crystallize76. ML models were obtained by 
combining large amounts of low-fidelity estimates from 
theoretical models with small amounts of high-fidelity 
crystallinity values obtained from expensive X-ray 
diffraction measurements. The multifidelity model 
achieved a root-mean-square error of 12.58% in crys-
tallinity prediction, lower than the value of 17.04% for 
the single-fidelity GPR model. Other studies on learning 
band-gap and dopant-formation energies using infor-
mation from multiple levels of exchange-correlation 
functional approximations within the density functional 
theory (DFT) formulation are also noted77–80.

LASSO, SISSO and symbolic regression. In materials sci-
ence, we are often concerned with establishing general 
and simple structure–property relations (such as the 
Hall–Petch relation for grain-boundary strengthening, 
the Hume–Rothery rules for solid solutions and the 
Goldschmidt tolerance factor for the stability of per-
ovskites), with the aim of finding easily interpretable and 
understandable models. However, the common regres-
sion techniques discussed earlier, owing to their high 
complexity and black-box nature, offer meagre model 
interpretability. Consequently, the relevance of the opti-
mized mapping function ˆ .f ( ) and material fingerprints 
towards accurate property predictions is difficult to deci-
pher, and mostly ignored in practice. Thus, for problems 
where one is interested in finding a simple, yet accu-
rate, ML model that can be understood (or justified) in 
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terms of known materials or physical principles, meth-
ods such as the least absolute shrinkage and selection 
operator (LASSO), sure independence screening and 
sparsifying operator (SISSO) and symbolic regression 
are more appropriate. Furthermore, the ensuing model 
interpretability can provide hints regarding the scenarios  
in which the model is expected to be accurate, and those in  
which it can fail.

Derived from the field of compressed sensing, 
LASSO81 can be used to determine an explicit functional 
form of a materials property in terms of easily accessible 
fingerprints (or descriptors) or help to find those finger-
prints that most strongly influence the target materials 
property. In this technique, an enormous list of material 
features (~105) is generated using a few relevant chemi-
cal descriptors (referred to as the primary features) and 
compounding them through various mathematical trans-
formations (such as x2, log (x) and expx) and operations 
(such as addition and multiplication), as shown in Fig. 4c. 
Given this set of extremely high-dimensional (~105) fin-
gerprint vector F and corresponding target property val-
ues P, LASSO aims to find a substantially small subset of 
features (say, 2 to 5) that best describe the data. It solves 
this non-deterministic polynomial-time NP-hard pro
blem by recasting it into a convex minimization problem: 
arg minc c λ cP F( − + )s2

2 , wherein c s indicates the 
Manhattan distance of all non-zero coefficients c and λ 
is the regularization parameter. The second term in 
the above expression differentiates LASSO from ridge 
regression and drives the coefficients of many features 
to be exactly zero, thereby, resulting in feature selec-
tion. Further, the larger the λ parameter, the lower the 
dimensionality of the optimal solution. In the end, an 
analytical model that is a weighted linear sum of the 
small subset of selected features is obtained, which can 
be easily interpreted, since it is based on simple math-
ematical transformations to the primary features. New 
chemical and physical insights can also be extracted. For 
instance, LASSO was used55 to learn the electrical break-
down field (Fb) in materials and found it to be neatly 
described by just two key descriptors, band gap (Eg) and 
phonon cut-off frequency (ωmax), using the expression 
Fb = 24.442exp(0.315Egωmax) MV m−1, with an R2 coef-
ficient of 0.69 on a dataset with the electrical break-
down field value spanning four orders of magnitude. 
Similarly, LASSO has been utilized to find simple phys-
ical descriptors that determine whether a given binary 
octet crystallizes in the rocksalt or zincblende structure82.

The LASSO approach, however, breaks down when the 
space of candidate features gets very large (>108) and/or  
when features are correlated. To overcome this issue, 
sure independence screening (SIS) was introduced83 
to iteratively select a reasonably sized subspace of fea-
tures (up to 105) using their correlation with the target 
property (or residual errors obtained from a model 
based on a currently selected set of feature candidates). 
Once the original feature space is reduced, the SIS oper-
ation is followed by a sparsifying operation (SO), just 
like LASSO, resulting, overall, in the SISSO approach. 
The main advantage of SISSO over LASSO is the gain 
in model accuracy, owing to the larger feature space 
explored. Thus, SISSO has been successfully used for the 

discovery of new relations that differentiate metals from 
insulators83 or identifying single or double perovskites 
with low formation energies84. Particularly, in the lat-
ter example, the researchers introduced a new defini-
tion of tolerance factor (τ n n= − ( − )r

r
r r
r rA A

/
ln( / )

X

B

A B

A B
 that 

predicts the stability of the perovskite structure with 
92% accuracy, as compared with 72% achieved with the 
well-known Goldschmidt tolerance factor85; here, nA is 
the oxidation state of A and ri the ionic radius of ion i 
in the compound ABX3. Interestingly, the new tolerance 
factor was found to be equally applicable to double per-
ovskites (A2BB′X6), although it was identified using data 
on single perovskites (ABX3), demonstrating the gen-
erality of this approach. More importantly, both LASSO 
and SISSO approaches have been used to rationally distil 
key materials features that are most correlated with tar-
get properties, providing simple and practical guidelines 
for experiments86,87.

Another direct method of extracting an explicit func-
tional form of materials properties from the available 
data is symbolic regression88,89. In contrast to LASSO and 
SISSO, which perform a rather controlled search on a 
predefined list of candidate features, symbolic regres-
sion completes an unconstrained search on the function 
space spanned by a collection of given function building 
blocks, such as mathematical operators, analytic func-
tions, material-property variables and constants, to find 
the most appropriate solution (with minimum training 
error). The search is performed based on evolutionary 
methods, such as genetic programming or its more 
advanced variants, including grammar-guided genetic 
programming, grammatical evolution and Cartesian 
genetic programming. An important aspect of symbolic 
regression is the representation of a (complex) func-
tion in the tree structure, with mathematical operators  
(+, −, ×, ÷) occupying the non-terminal nodes 
(branches), and variables and constants forming the 
terminal nodes (leaves). Starting from a generation of 
candidate solution functions, all represented in their 
respective tree structures, the usual evolutionary opera-
tions of crossover (pruning and mixing between a gen-
eration of candidates), mutation (random alterations 
within a candidate) and selection (retention of candi-
dates with low errors on the training set) are applied iter-
atively to reach an optimal solution. Here, the mutation 
and crossover operations are performed, respectively, 
by random substitutions in part of the candidate tree 
structure or by replacing subtrees from another solution 
candidate. The efficiency of symbolic regression can 
be drastically improved using two strategies: first, the 
crossover and mutation operations can be constrained to 
generate only physically meaningful candidate functions 
(for example, with correct dimensional units) using pre-
defined rules in the form of context-free grammar, and, 
second, prior domain knowledge can be incorporated 
by rationally choosing the initial set (first generation) 
of solution candidates (or specific analytical functional 
forms). Symbolic regression has been used to discover 
functional forms of interatomic potentials90, phenom-
enological models describing relationships between 
different materials properties (for example, flow stress 
and temperature-dependent strain rate91, or mechanical 
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strength and creep92). Overall, the ability of this method 
to efficiently search for simple and interpretable math-
ematical models resonates well with the scientific 
approach of formulating principles and theories using 
concise equations.

Deep learning. Although many materials databases are 
relatively small (<10,000) and ML algorithms provide 
good predictive performance, certain materials pro
blems are best solved using deep learning methods1. 
These include problems that are highly data-intensive 
(involving millions of data points, for example, resolv-
ing diffraction data, image segmentation and learning 
quantum-mechanical properties, such as electronic 
charge density, band structure or atomic forces), com-
prise a large number of fingerprint dimensions or are 
simply outside the scope of what common ML algo-
rithms can achieve. The superiority of deep learning 
models is evident through their success in the field of 
computer vision, AI-played games and speech recogni-
tion, and, more appositely, for this Review, in drug or 
polymer discovery, development of interatomic poten-
tials, mining materials literature using NLP and solving 
the inverse problem of materials design using gener-
ative models. Further, some of the best-performing 
property-prediction models are based on deep learning. 
This can be attributed to their highly flexible nature, 
which is also reflected in a variety of available model 
architectures, each modified to tackle a specific type 
of input-data structure. We emphasize that, as more 
materials knowledge becomes available in a structured 
manner, such as online repositories and databases, deep 
learning models are poised to make a great impact 
in materials science, especially in areas that inher-
ently involve large amounts of data. Below, we briefly 
describe some common types of deep learning meth-
ods that have been particularly useful from a materials 
viewpoint.

Deep learning uses multiple layers of simple but non-
linear modules to transform raw data (such as element 
type or atomic positions) into a more abstract representa-
tion that can be used to learn complex functions (such  
as the potential-energy surface). Fully connected NNs 
are the most basic type of deep learning models, wherein 
multiple layers of neurons are combined to transform the 
data, with each neuron being a weighted combination of 
its respective inputs, followed by a nonlinear activation 
unit (Fig. 4d). In modern applications of NNs, the number 
of layers of a model can be very large to achieve a better 
representation power, hence, the name deep learning. 
Unfortunately, the higher representation power is also 
accompanied by a need for larger training datasets to 
attain good accuracy. The NN weights are learned by 
optimizing a loss function measuring the difference 
between the NN outputs and the desired targets. NNs 
can also be viewed as a model with nonlinear basis func-
tions in which the basis functions are themselves learned 
from the data. By contrast, for other nonlinear models, 
such as kernel methods, the nonlinear basis functions 
are typically fixed beforehand and only weighted com-
binations of these basis functions are learned from the 
data. In materials science, NNs have been particularly 

successful for simulation acceleration, irrespective of 
the type of modelling technique (quantum-mechanical 
DFT4, classical molecular dynamics93, coarse-grained 
or finite-element modelling94). This is mainly due to 
the data-intensive nature of these problems, with the 
added capability of generating new data on demand 
by running actual simulations based on physical mod-
els. Thus, great progress has been achieved in building 
interatomic potentials, force fields and even learning 
density functionals or electronic structure using NNs. 
For example, using only the Pauling electronegativities 
and Shannon ionic radii of the constituting elemental 
species as inputs to simple architectures (one or two 
hidden layers) of NNs, it was possible to learn the DFT 
formation energies of C3A2D3O12 garnets and ABO3 per-
ovskites with a mean absolute error (MAE) of 7–10 meV 
per atom and 20–34 meV per atom, respectively95. The 
achieved accuracy is far superior to that of other ML 
models (~100 meV per atom) and is close to the errors 
(~24 meV per atom) in the DFT-computed forma-
tion energies of ternary oxides relative to the experi-
ments. On similar lines, a NN (termed ElemNet) was 
trained to learn DFT-computed formation energies of 
275,759 compounds from the Open Quantum Materials 
Database (OQMD) using only their elemental compo-
sitions as input96. The NN model not only achieved  
better prediction accuracy but also predicted phase 
diagrams of new chemical systems more precisely than 
conventional ML models based on manually constructed 
features leveraging physics and domain knowledge. 
Beyond property prediction, deep NNs have made pos-
sible the autonomous design and synthesis of molecular 
systems, accelerated high-throughput experiments and 
allowed real-time phase retrieval from diffraction data, 
as discussed in later sections.

Inherent structure in materials science problems 
can be exploited to reduce the amount of data needed 
to fit deep learning models. Examples are, for images, 
translation-variant features in the form of spatial local 
filters; for sequences, such as SMILES (simplified 
molecular-input line-entry system) strings, features 
respecting the sequential nature of the data; or, for 
molecular materials graphs, features aggregating local 
graph patterns. Deep learning models, such as convolu-
tion neural networks (CNNs), recurrent neural networks 
(RNNs) and graph neural networks (GNNs, Fig. 4d), can 
be designed to specifically take these input data struc-
tures into account. Furthermore, tasks such as uncer-
tainty estimation and generation of samples other than 
classifications and regressions may be needed in a mate-
rials science problem; in such cases, deep learning mod-
els can be combined with probabilistic graphical model 
methods, using variational autoencoders (VAEs) and  
generative adversarial networks (GANs).

More specifically, CNNs are NNs designed to learn 
features from data with grid-like topology (such as 
images, diffraction patterns, microstructures or even 
molecular or polymer SMILES). This goal is achieved 
by applying layers of a mathematical operation called 
convolution, which involves sliding through a paramet-
ric kernel throughout the input data, evaluating their dot 
product and applying a nonlinear activation function. 
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As with basic NNs, the weights of the convolution kernel 
are learned during the model training, allowing extrac-
tion of important features from the input data. Notably, 
CNNs are proficient at extracting translationally invari-
ant features; for instance, they can detect phase bounda-
ries irrespective of their location and orientation within 
the input microstructure image. CNNs were among the 
first deep networks that surpassed traditional ML meth-
ods, achieving state-of-the-art performance in many 
computer vision problems, including object detection 
and recognition, and have been deployed for commercial 
applications. The reverberation of the impact of CNNs is 
also felt in materials science, especially in the context of 
image segmentation97, fault and failure detection98, learn-
ing microstructure–property relations99 and developing 
property-prediction models100, among other examples101. 
CNNs were also applied to full-Heusler compounds, 
using only the position of the constituting elements in 
the periodic table, and could simultaneously learn lattice 
parameters and the enthalpy of formation with a MAE 
of 7 meV per atom, which is within the precision of the 
DFT-computed training data102.

RNNs are a class of NNs designed for process-
ing sequential data, such as natural languages, time 
series or even molecular and protein structures. An 
RNN repeatedly applies a NN module to each token 
of the input sequence, extracting important signals 
from the sequential data token by token. RNNs and 
their variants, such as long short-term memory, have 
recently led to state-of-the-art performance in many 
sequence-modelling problems in the areas of speech 
recognition, NLP and time series. In materials science, 
they have been most useful for extracting materials data-
bases as part of the NLP pipeline. Further, they are being 
increasingly used in tandem with generative models (dis-
cussed below) for molecular and polymer discovery by 
directly predicting sequences of molecular connections  
or SMILES with target properties of interest.

GNNs are NNs designed for processing graph data, 
involving nodes and edges, each with their own set of 
attributes. Molecules and materials can also be intui-
tively represented as graphs, with atoms forming the 
nodes and bonds the edges of the graph. GNNs take 
such a graph as input and iteratively perform nonlin-
ear message-passing operations parameterized as NNs, 
wherein attribute information of nodes and edges are 
mixed with those of their neighbours, to learn essential 
features of the graphs. GNNs have been primarily used 
to learn computational data, such as formation energies 
and band gaps of materials or molecules103, predict syn-
thesis pathways using possible chemical reactions104,105 
and ‘generate’ hypothetical molecules with superior 
properties106, and are among the top performers for 
many benchmark materials datasets. For instance, CNNs 
and pooling layers were used on graph representations of 
crystals to automatically extract optimum material rep-
resentations, which were mapped to different properties 
(including formation energy, band gap, Fermi energy, 
bulk and shear moduli) using fully connected NN 
layers107. A remarkably low MAE of 39 meV per atom 
for the formation energy using a dataset of 28,046 entries 
from the Materials Project was achieved. Building on 

this idea, a generalized graph-based approach was pre-
sented for both molecules and crystals, capable of even 
incorporating global variables, such as pressure and 
temperature, beyond the local information on atoms 
and bonds108. The approach was based on a series of 
NN-based update functions (termed ‘MEGNet’ blocks) 
that allow information on different nodes (atoms), edges 
(bonds) and global variables to mix, with the final read-
out operation reducing the output graph to a scalar or 
vector target property. Some of the best reported pre-
dictions on the QM9 molecular dataset and Materials 
Project crystal dataset have been achieved using this 
model with, for example, a MAE of 10 meV per atom 
and 28 meV per atom for the Gibbs free energy and 
formation energy, respectively. Besides small molecular 
and crystal graphs, GNNs can also be used to analyse 
much larger networks, such as online social networks 
and knowledge graphs, and tailored to perform graph 
node classification and edge prediction. In another 
interesting work109, a materials stability graph was con-
structed by considering different materials as nodes and 
their convex-hull thermodynamic free energy tie lines as 
edges using data from the OQMD. By analysing the time 
evolution of such a stability graph, that is, by successively 
adding information on newly synthesized materials, 
the synthesizability likelihood of computer-generated 
hypothetical materials could be predicted.

Another important application of GNNs is to directly 
learn the material fingerprint, especially in the context of 
the atomistic problems that take the material structure as 
an input. As discussed earlier, materials datasets should be  
first fingerprinted into fixed-dimensional vectors to  
be ready for the application of ML methods. Mostly, such 
transformations are done by human experts without tak-
ing into account the downstream optimization problem, 
and involve high-dimensional representations to achieve 
sufficient accuracy. By contrast, material graphs can be 
passed as an input to GNNs, where network-based, 
nonlinear message-passing operations are performed 
to learn their material fingerprints. The details of the 
message-passing operator define the type of GNN, 
encoding the nature of the prior knowledge into the 
network, and allowing it to better learn certain types of 
data. For instance, gated graph NNs use a learned weight 
(or gate) to aggregate messages from neighbours, and 
graph convolution NNs use a graph Laplacian in the 
message aggregation110. Although GNNs have already 
demonstrated their mettle for several materials science 
problems, their use is expected grow considerably, owing 
to their versatility to learn different types of materials 
fingerprints and properties collectively.

VAEs111 are a type of generative model that learns to 
encode or decode a collection of inputs to and from a 
latent space. This is achieved by using deep NNs (feed-
forward, convolution or recurrent type) to represent the 
encoding and the decoding units, with the constraint 
that the encoder lowers the dimensionality of (or com-
presses) the input data, while the decoder performs 
the decompression operation to reconstruct the input 
sequence. As an outcome of this data compression 
and expansion exercise, the VAE learns the underlying 
properties of the data itself.
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Akin to VAEs, GANs112 are generative models con-
sisting of a generator and a discriminator unit. A GAN 
learns to generate new samples from the underlying 
data distribution (as supplied using the training data) 
through a game between the generator and the discrim-
inator units; the generator tries to fool the discriminator 
by constructing new (fake) examples that are close to  
the training data, while the discriminator attempts  
to catch the deceit of the generator by correctly sepa-
rating the generated samples from the real examples. 
Typically, both the generator and the discriminator 
units are parameterized by NNs and learn in a min-max 
fashion by competing against each other. The way the 
decoder and the encoder units of the VAE and the gener-
ator unit of the GAN solve important materials problems 
is discussed in the section on emerging developments.

Infrastructure transformation
The laboratory experiences of researchers in the future 
are expected to be distinctly different from the present, 
owing to the introduction of several types of ML agents 
in modern materials science labs. This applies to both 
computational and experimental efforts. Below, we 
review a few emerging developments.

ML-assisted acceleration of simulations. Most simu-
lation software — be it electromagnetic simulators, 
finite-element solvers or simulators based on quantum 
mechanics (such as DFT) — may be viewed as modular 
tools that produce materials property outputs based on 
the input simulation conditions (Fig. 5). For instance, a 
typical DFT code takes as input the atomic coordinates 
of a molecular or material system and produces a vari-
ety of outputs, such as the electronic wavefunctions, 
charge density and energy levels (the primary output), 
total energies, atomic forces and unit cell stresses (the 
secondary output), and other derived properties, such 
as formation energies, elastic constants and dielectric 
constants (the tertiary output).

Thus, treating the functioning of DFT as an input–
output problem, an enormous body of effort has 
emerged to build surrogate models. For instance, the 
ability to efficiently predict the tertiary outputs of DFT 
has enabled several examples of accelerated materials 
discoveries. Likewise, surrogate models of the second-
ary outputs of DFT have lead to ML force fields that have 
the potential to overcome several major hurdles encoun-
tered by both classical and quantum molecular dynamics 
simulations. Most recently, initial steps have been taken 
to learn and predict the primary outputs of DFT using 
deep NNs. These efforts may soon lead to DFT emu-
lators that can mimic DFT in all respects, while being 
several orders of magnitude faster. Below, we review 
important works based on the level (primary, secondary 
or tertiary) of materials property being targeted.

We have discussed how regression algorithms have 
been exploited to learn several tertiary properties (such 
as mechanical, thermal and formation energies) and 
allow virtual screening of materials with desired pro
perties. Similarly, the application of LASSO, SISSO 
and symbolic regression methods to tertiary properties 
have provided new insights into the materials structure– 
property relations. A common feature across many 
tertiary property ML models is that they are based on 
relatively simple kernel or decision tree methods, owing 
to the small amounts of available property data. By con-
trast, the secondary and the primary properties models 
utilize more complex NN methods to learn from the 
large amounts of available data. Several tertiary property 
models can also be formulated as classification problems, 
such as stable versus unstable perovskite structures84,113 
or determining the most likely lattice symmetry of a 
defect-containing structure114.

Learning secondary materials properties (atomic 
forces or energies) have led to a revolution in the devel-
opment of interatomic potentials and force fields. Since 
the early 1960s, classical interatomic potentials have 
been used to study materials processes and behaviours 

• Synthesis pathway, conditions
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• Heat treatment, molecular weight
• Imaging area, instrument parameters

• Microstructure, XRD
• Mechanical, electrical, thermal behaviour 
• Image segmentation, defect analysis 
• Structure–property relations
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• Quantum
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• Coase-grained 
• Finite element
• Thermodynamic (CALPHAD)

• Synthesis
• Characterization
• Measurement 

• Atomic positions, lattice parameters
• Motifs/beads
• Materials properties (e.g. heat capacity, 
 expansion coefficient, conductivity)
• Guiding physical equation

• Wavefunction, charge density 
• Atomic energies, forces
• Phase diagrams, mechanical failure 
• Dislocation dynamics, dendrite growth

OutputsInput conditions Simulator

Simulation acceleration

Fig. 5 | impact of machine learning on the materials research infrastructure. Machine learning (ML) is accelerating and 
building efficiencies within several operational and infrastructural aspects of computational and experimental (synthesis 
and characterization) materials research efforts. XRD, X-ray diffraction.
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using molecular dynamics and Monte Carlo simula-
tions. Their efficiency and simplicity easily overshadows 
other computationally demanding quantum-mechanical 
schemes (such as DFT), allowing them to study mate-
rials properties at time and length scales that can be 
paralleled in experiments. Historically, these classical 
potentials have been constructed by fitting an approx-
imate analytical energy expression to reproduce tabu-
lated empirical (lattice parameters, elastic constants) or 
quantum-mechanical (phase energetics, atomic forces) 
data. The complexity or functional form of the poten-
tial is chosen based on the interactions (ionic, covalent, 
dispersive etc.) believed to be dominant, with the num-
ber of fitting parameters varying from two (Lennard–
Jones115) to nearly 100 (ReaxFF116). Unfortunately, little 
guidance is available on how to tune these parameters, 
with developers mostly relying on chemical intuition or 
traditional heuristics.

However, two general directions have emerged in 
which ML is pushing the boundaries of this field: the 
efficient and autonomous parameterization of potentials 
with predefined functional forms using active learning 
or evolutionary algorithms, and the direct learning of 
the functional form of these potentials from the available 
high-fidelity quantum-mechanical or empirical datasets. 
For the first point, Bayesian optimization and genetic 
algorithms have been successfully used to parameterize 
potentials for difficult systems, such as glassy silica117, 
water118 and WSe2 (ref.119). They have also led to the 
creation of autonomous workflows that can be used 
by novice users to develop their own potentials by fol-
lowing through necessary stages of development, such 
as generating appropriate training datasets, parameter 
optimization and, finally, cross-validating their poten-
tial predictions120. This democratizes the development 
process and reduces their dependency on a handful 
of developers.

Despite their popularity, potentials with predefined 
functional form are inherently inflexible, limiting their 
accuracy and transferability. This brings us to the second  
point, the direct learning of the potential functional 
form, that is, the establishment of a direct mapping from 
the atomic neighbourhood, or fingerprint, to atomic 
energies — and their sum to total potential energy — 
using reference quantum-mechanical data. As no prior 
restriction is imposed, this methodology is quite general 
and can be used to learn energy functionals of diverse 
materials (metals, ceramics, alloys, polymers) involv-
ing different atomic interactions with minimal human 
interference. This also overcomes the limitations of tra-
ditional potentials designed to capture specific intera-
tomic interactions. As compared with other examples of 
ML in materials science, this field is quite mature, with 
tremendous efforts devoted to fingerprint development, 
effective sampling of training data and physics-informed 
ML architectures3,50,121–124. This approach has been suc-
cessfully used for numerous systems, including elemen-
tal bulk materials (such as Al (refs125,126), C (refs127,128),  
Li (ref.129), Si (refs130,131), Fe (ref.132) and Zr (ref.133)), alloys134,  
metallic clusters135,136, semiconductors137, oxides138,139, 
water140,141 and organic molecules142,143, and complex 
phenomena, such as diffusion144 and phase equilibrium. 

Different software packages (such as RuNNer130, GAP 
suite145, AMP146, AGNI125, DeepMD147, AENet139, MTP148, 
SchNetPack149, N2P2 (ref.150) and SNAP151) that allow 
users to train and validate their own potentials for a 
particular system have also been released. Interestingly, 
many of the ML-based potentials report low errors, on 
the order of 10 meV per atom and 0.3 eV Å−1 for ener-
gies and forces, respectively, at least for structures that 
are ‘close’ to the training set126,152. The generality of 
these potentials has been demonstrated for complex, 
multi-elemental transition-metal oxides and biomole-
cules containing up to 11 chemical species153, which is far 
more than what can be easily targeted using traditional 
classical potentials.

Despite such a large body of work, there are some 
basic challenges in this field. First, only limited com-
parative studies that clearly highlight the accuracy 
versus speed trade-off of the various fingerprinting 
and/or ML model architectures have been put forth152. 
Second, it is unclear how one can assess the physical 
and chemical domain of applicability of ML-based 
potentials; classical potentials suffer from the same 
limitation. Bayesian-based uncertainty estimates154 or 
estimates based on deviations of energy and force pre-
dictions from ensemble methods155 have shown promise. 
Active-learning156 and transfer-learning157 approaches 
have also been used to continuously expand the domain 
of applicability of these potentials. Lastly, there exists no 
systematic and efficient pathway for the generation of 
high-fidelity training data, especially for potentials cap-
turing complex interactions involving grain boundaries, 
surfaces, defects or multiple elements. Standardized 
datasets allowing fair comparisons across different 
ML-based potentials should also be developed.

Lastly, in terms of primary properties, ML has been 
used to learn the electronic charge density, electronic 
density of states or density functionals themselves, thus, 
going to the very heart of DFT. A major bottleneck of 
DFT is the computationally demanding nature of the 
self-consistent solution to the Kohn–Sham (KS) equa-
tions (specifically, having to orthogonalize single-particle 
eigenvectors), requiring high-performance computers. 
However, the primary outputs of the KS-DFT, that is, the 
electronic charge density or one-electron wavefunctions, 
can be learned using ML methods, bypassing the need to 
compute expensive self-consistent solutions. Importantly, 
these efforts are supported by the famous Hohenberg–
Kohn theorem that guarantees a unique functional 
mapping between the structure of a material (in terms 
of nuclear potential) and its ground-state charge-density 
distribution, which, in principle, can be learned using 
ML. The plane-wave basis representation of the charge 
density was used to map the corresponding basis func-
tion coefficients to the nuclear potentials using KRR158. 
Thus, for a new structure, it is sufficient to input the 
corresponding nuclear potential to obtain the associated 
charge-density output in terms of the basis coefficients, 
from which the total energy of the system can also be 
obtained. Representation of the charge density as a sum of 
atom-centred basis functions, rather than the plane-wave 
basis, has been suggested for better transferability of 
the method to large and flexible systems159. In another 
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approach, the charge density and local density of states 
(DOS) predictions at a grid point were obtained by map-
ping them directly to the atomic neighbourhood using 
deep NNs and RNNs, respectively160. Summing up the 
local DOS overall grid points resulted in the total DOS, 
which, when combined with charge-density predictions, 
can be utilized to directly obtain the total energy of the 
system, eliminating the need to solve KS-DFT equations. 
Advantages due to the strictly linear scaling of the ML 
approach, as compared with the quadratic scaling (at 
best) of DFT, were also demonstrated for the case of Al 
and polyethylene slabs160. Moreover, the generalizabil-
ity of this approach was recently demonstrated for over 
70 different hydrocarbons, including alkanes, alkynes, 
cyclo-groups and even polymers161.

ML is also assisting in solving the most fundamen-
tal question of DFT, that is, the functional form of the 
exchange-correlation (xc) functional. Using the auto-
differentiation functionality, NNs have been trained 
to reproduce not only the correct xc energy but also 
the corresponding xc potential, obtained as functional 
derivatives with respect to the density162. Similarly, 
CNNs have been used as surrogate xc functionals that 
take electron density as input, extract the necessary elec-
tronic features and map them to the desired xc energy 
density163. Other attempts to learn the kinetic energy 
functionals and provide an alternative orbital-free DFT 
solution have also been made164.

In principle, the primary property predictions from 
a highly accurate ML model can be plugged into rele-
vant physical equations to derive secondary and ter-
tiary properties. But, in most studies, the ML models 
did not translate well to other properties. Perhaps a 
unified model approach using multitask NNs or multi-
fidelity co-kriging and learning all the different levels of 
properties together could be more successful.

ML-assisted enhancements to laboratories. Materials 
scientists have absorbed different AI techniques in 
their labs to support activities ranging from experi-
ments guided by combinatorial searches and automated 
high-throughput experimentation, to efficient acqui-
sition and (real-time) analysis of instrument data. As 
discussed, the foremost change has been of a psycho-
logical nature: materials science has moved on from a 
trial-and-error approach to materials discovery to more 
informed combinatorial searches, wherein either com-
putational (DFT) or ML-based screening is done first 
to identify the most promising material candidates for 
synthesis and design in the labs.

ML methods have also been integrated into sev-
eral instrumentation facilities to either accelerate the 
experiment itself or allow for on-the-fly data analy-
sis. For instance, a key practice in materials science is 
to find relations between the microstructural features 
of a material (such as particle sizes and shapes and 
grain-boundary pinning points) and its macroscopic 
properties (such as yield strength and corrosion resist-
ance). As advances in materials-characterization tech-
nologies, including microscopy, spectroscopy and 
macroscopic testing, have led to a proliferation of mate-
rials imaging data, algorithmic tools that quickly process 

these images and extract relevant materials features are 
necessary. Common microstructure-segmentation 
methods rely on either specialized image-processing 
pipelines requiring expert parameter tuning or are eval-
uated manually and subjectively. Accordingly, several 
ML strategies based on Bayesian inference (with max-
imum a posteriori, maximizer of the posterior margin-
als or minimum mean-squared-error criteria) have been 
adopted for automated image segmentation165,166. Deep 
learning has also shown promise in this area, with the 
ability to identify constituent phases of complex micro-
structures. A novel CNN-based method, PixelNet97, 
could successfully segment steel micrographs into 
regions of grain-boundary carbide, spheroidized particle 
matrix, particle-free grain-boundary denuded zone and 
Widmanstätten cementite, and then segment cementite 
particles within the spheroidized particle matrix. Because 
segmentation is a pixel-level task, PixelNet was trained 
to produce a latent representation of each pixel, instead 
of the entire image. This pixel latent representation was 
mapped to the corresponding pixel-level target using 
a simple deep neural network. Although the authors 
noted some difference in the model predictions and the 
human-annotated micrographs, especially for particles 
with radii smaller than five pixels, this study demon-
strates that AI-driven microstructure-segmentation sys-
tems can be combined with other emerging automated 
microscopy capabilities for high-throughput investi-
gations of microstructure-based materials design and 
optimization. In more industrial settings, automated 
image analysis has also led to easy identification of 
defects, cracks or corrosion in structural materials, such 
as railway tracks and asphalt pavements167.

Statistical measures (n-point correlation functions, 
entropic descriptors) serving as descriptors for micro-
structural images (obtained from either experiments 
or phase-field models) have been combined with 
dimensionality-reduction techniques such as principal 
component analysis to establish processing–structure–
property–performance (PSPP) relations168,169. Deep 
learning methods have been used to learn both the 
homogenization — information transfer from smaller 
length scales (structural information) to bigger length 
scales (macroscopic properties) — and the localization —  
information transfer from bigger length scales (macro-
scopic stress) to smaller length scales (load distribution 
across structure) — aspects of PSPP170,171. For example, 
a CNN was used to map microstructural images of two- 
phase composites to their macroscopic stiffness with 
the training data obtained from micromechanical 
finite-element simulations. Interestingly, the accuracy 
of the deep learning model surpassed that of commonly 
employed physics-based approaches or rule of mix-
tures method, and other physics-inspired data science 
approaches with handcrafted microstructural finger-
prints, clearly demonstrating that deep learning could 
be a powerful tool for representation learning in materi-
als science. The problem of materials design can also be 
translated as that of microstructural design, where the 
aim is to find an optimal microstructure that leads to 
the desired macroscopic properties. To this end, GANs172 
have been trained to represent microstructures in a 
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low-dimensional latent space, which was searched using 
Bayesian optimization to find the latent vector (and the 
corresponding GAN-generated microstructure) that 
resulted in the desired optical absorption performance.

ML-based methods are also being used to accelerate 
materials imaging. For example, CNNs have been shown 
to surpass traditional methods for indexing electron 
backscatter diffraction patterns to determine crystal ori-
entations. Not only were CNNs found to be more accu-
rate but they were also more robust and cheaper than 
traditional indexing methods that are either susceptible 
to noise (Hough transformation method) or extremely 
computationally demanding (dictionary-based index-
ing)173. In another study, a substantial acceleration in 
the measurement time of a scanning probe microscope 
(SPM) was achieved by using Bayesian uncertainty to 
determine the next measurement point, rather than rely-
ing on traditional measurements made over an exhaus-
tive spatial grid174. Using only ~30% of the original data, 
high-quality reconstruction was achieved. This study set 
the stage for the use of Gaussian processes for the devel-
opment of automated experiments, where an appropri-
ate definition of the acquisition function can be used to 
drive the measurements. The concept of AI-driven SPM 
was recently realized for a scanning tunnelling micro-
scope that used a CNN classifier to assess the quality 
of the acquired images as ‘good’ or ‘bad’, a deep rein-
forcement learning agent to reliably condition the state 
of the probe such that the acquired images were deemed 
as good by the classifier and an algorithmic approach to 
sample different regions of the material. Only images 
that were classified as good were processed and saved to 
the hard disk. This approach paves the way for advanced 
imaging methods hardly feasible by human operation, 
such as large dataset acquisition spanning multiple days 
and SPM-based nanolithography.

Other notable examples in this area include ML 
methods for automated image analysis for the detection 
and tracking of defects175 or mesoscopic phase evolution 
in 2D materials176, recovery of 3D atomic distortions in 
a variety of oxide perovskite materials177 from 2D scan-
ning transmission electron microscope micrographs, 
solution of the inverse phase problem (that is, recover-
ing the phase information from the measured diffraction 
intensity in the reciprocal space) in electron microscopy 
and scattering experiments178,179, sparse dynamic sam-
pling to reduce image acquisition time180, prediction 
of battery cycle life from early-cycle discharge voltage 
curves181,182 and on-the-fly analysis of X-ray diffraction 
patterns for rapid phase identification and distribution 
analysis183–185. Particularly for the last problem of rapid 
phase identification, efforts have been undertaken to 
overcome the challenges of peak shifting (due to alloy-
ing, or interstitial or substitutional solutions), establish-
ing compositional connectivity, matching with realistic 
spectra and enforcing physical constraints, such as the 
Gibbs phase rule186–188.

Robotics and active learning. The confluence of robotics,  
computer vision, materials synthesis and character-
ization, and ML is causing a revolution in materials 
science. The concept of autonomous or self-functioning 

materials labs, similar to the idea of driverless cars, chat-
bots, unmanned aerial vehicles or drones, is now a reality. 
These autonomous research laboratories (or meta-labs) 
use AI-driven robotic platforms to synthesize, charac-
terize and measure materials properties, which are then 
analysed using ML-based surrogate models to optimize 
parameters for the next experiment189. Remarkably, all 
of these steps are performed in an autonomous manner, 
with the only input required from the human being the 
target material of interest. Such autonomous labs offer 
numerous advantages over traditional materials facilities 
that rely on manual operation of experimental appara-
tus: time and cost benefits, experimentation consistency, 
long hours of operation, and efficient and robust search 
of the experimental parameter space to achieve opti-
mal materials. It is important that automated labs are 
not confused with autonomous labs, as, in the former, 
only predetermined repetitive tasks with well-defined 
responses are performed, without any ability to hypoth-
esize and conduct new experiments, whereas in the 
latter, new experiments are autonomously planned and 
executed, and the resulting information is digested to 
optimize the next set of experiments.

Although autonomous labs are still in their infancy, 
there are already notable examples from the fields of 
biology, pharmacology, chemistry and materials sci-
ence. The first robotic researcher, Adam, was designed 
for functional genomic research, measuring growth 
curves of microbial strains in different environments190. 
In the field of drug discovery, robot scientist Eve was 
used to intelligently screen drugs for tropical diseases 
in a high-throughput and economical manner191. 
However, more relevant to materials science is the 
Autonomous Research System (ARES)192 that learned 
to grow single-walled carbon nanotubes at targeted 
growth rates. The active-learning approach (based on 
random forest and evolutionary algorithms) is coupled 
with an automated growth reactor and in situ charac-
terization (Raman spectroscopy) to perform robotically 
controlled scans of the experimental parameter space 
(temperature, pressure and gas composition). At each 
iteration, the ARES surrogate model predicts the exper-
imental growth conditions that can achieve the target 
growth rate supplied by the user. The system then con-
ducts the experiment at the proposed conditions and 
measures if the output growth rate matches the target. 
If any discrepancy is observed, the existing database 
is updated with the measured rates and the ML mod-
els are refined for the next iteration. Experiments are 
automatically stopped once the measured growth rate 
matches the target (within predefined standard devia-
tions). In a similar approach, GPR-based models were 
used to autonomously produce high-quality Bose–
Einstein condensates by optimizing the evaporation 
ramp and using the images of cold atoms as feedback193. 
In another study, a human and robot researcher tasked 
with the synthesis, crystallization and characterization 
of a new polyoxometalate compound were compared. 
The active-learning-based robot researcher outper-
formed the human researcher in both the explored 
crystallization space (the experimental conditions that 
resulted in successful crystallization of the cluster) and 

Nature Reviews | Materials

R e v i e w s



crystallization prediction accuracy, demonstrating 
the efficiency and superiority of autonomous labs194. 
Other successful applications include autonomous 
small-angle and grazing-incidence small-angle X-ray 
scattering experiments195, autonomous assembly of 
2D crystals such as a 29-layer superlattice alternating 
graphene and boron nitride196, synthesis and character-
ization of perovskites with wide band gap197 and a very 
general robotically controlled experimental platform 
capable of synthesizing complex organic molecules5,198. 
Software packages that allow the easy integration of 
different pieces of autonomous laboratories, such as 
instrumentations, databases and ML algorithms, have 
been put forth199.

Likewise, on the computational side, as the above- 
mentioned ML schemes mature for different levels of 
theoretical outputs, autonomous computational labs 
will emerge200. In the future, simulations will be per-
formed in the inverse mode using active learning; that 
is, researchers will specify the desired property and the 
chemical space to be explored, and active learning will 
iteratively perform simulations to produce the requested 
materials, leading to an autonomous computational lab. 
Further, for several computationally expensive simula-
tors (such as DFT), ML-based emulators will become 
available that will output all the important primary, sec-
ondary or tertiary outputs in a reliable and quick fash-
ion, without solving the underlying expensive physical 
equations.

Emerging developments and opportunities
So far, materials scientists have mostly adapted existing 
ML tools to analyse and solve problems in their field. 
However, with the community realizing the benefits of 
the data-oriented approach, and having trained a gen-
eration of researchers with experience in ML methods, 
many innovative ML methods targeted to solve pro
blems unique to materials science are emerging. Here, 
we review some of these efforts.

Solving inverse problems. The inverse design problem 
in materials science consists of determining the mate-
rial compositions, structures or processing conditions 
that result in a desired property6 (Fig. 6a). This is gener-
ally solved by building a ‘forward’ model that predicts 
the property of a given input material, and using this 
model with an efficient search strategy in the materi-
als space to screen those candidates that are predicted 
to meet the property targets. For example, KRR-based 
property-prediction models were used to identify 
polymer candidates that met the desired band gap or 
dielectric constant objectives from a predefined list of 
polymers201. However, the materials space is huge, mak-
ing a robust search using the forward model restricted 
and impractical. For polymers, a more effective approach 
consists in combining the forward property-prediction 
models with combinatorial optimization algorithms, 
such as evolutionary or genetic algorithms, to directly 
search the materials space. This is achieved by adding, 
removing or shuffling the chemical building blocks 
(such as CH2, C6H6 and COOH) in the polymer mono-
mer to formulate completely new candidates, for which 
forward model predictions are performed to check if 
they display promising properties. Several iterations of 
this strategy help uncover previously unknown poly-
mers, as demonstrated by exemplary work on the design 
of polymers for high-energy-capacitor applications72,202 
and biodegradable polymers with high glass-transition 
temperature (Tg)203.

Another powerful approach is to use VAEs. We men-
tioned that the encoder and decoder units of VAEs can 
be respectively used to learn a mapping from discrete 
material graphs to a continuous vector representation 
(latent space), and the corresponding back-mapping 
going from vector representations to the material 
graphs. Thus, the decoder provides a pathway to solve 
inverse problem of materials design, directly ‘generating’ 
materials that have the desired properties, unlike tra-
ditional ML approaches that screen materials that have 
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Fig. 6 | Opportunities for materials design using advanced machine learning algorithms. a | The forward and inverse 
problems are two distinct screening pathways for material selection using machine learning (ML) models; solving the 
forward problem relies on screening a predefined list of candidates based on their ML property predictions, whereas  
the inverse problem is tackled by directly generating material candidates starting from the desired property objectives. 
Synthesis planning and retrosynthesis design can also be viewed as inverse problems with the aim to find the necessary 
reactants and processing conditions. b | The single-task versus the multitask learning approach; whereas the former learns 
the different materials properties independently, the latter exploits various property correlations to learn a joint and  
more powerful ML model. PE, polyethylene; PET, polyethylene terephthalate; Tc, Curie temperature; Tg, glass-transition 
temperature; Tm, melting temperature.
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target properties. Materials generation using the decoder 
surpasses the constraints of human imagination, pre-
cluding the need to predefine a materials search space. 
Furthermore, the encoder unit of the VAE can be viewed 
as a fingerprinting function (representation learning), 
which can be used to drive downstream AI models and 
optimization methods. A good example is the use of 
VAEs and GPR to discover polymers with high Tg and 
band gap for high-energy-capacitor applications204. The 
encoder unit of the VAE was used to fingerprint poly-
mers, which were mapped to their associated Tg or band 
gap values using GPR during training. For the discovery 
part, the researchers first searched in the latent space 
within the vicinity of known polymers with desirable 
properties, to find latent points predicted by the GPR 
model to have the required band gap and Tg. Next, they 
used the decoder part of the VAE to simply obtain the 
polymer SMILES associated with the selected top latent 
points to be validated with experimental synthesis and 
measurements. Similarly, the VAE encoder outputs have 
been used to guide Bayesian optimization models to 
search for drug-like molecules205.

GANs have also been used for solving inverse pro
blems by generating high-dimensional samples, such as 
natural images112, molecular graphs106 or even porous 
crystalline materials206. In the last example, the authors 
generated over a hundred (new) zeolite structures based 
on pure silica that were not only structurally reasona-
ble and diverse but also showed high heat of adsorption 
for methane, which is important, as methane capture is 
among the most critical applications of porous materi-
als. In the future, VAEs and GANs may be combined 
with other supervised NNs to enable more advanced 
and practical semi-supervised learning. Both VAEs and  
GANs are expected to drastically alter how virtual 
screening of new materials is performed, as they provide 
pathways to go beyond a predefined set of candidates 
and efficiently explore a diverse materials space that can 
surpass human imagination.

A key challenge in decoding and generating mate-
rials from their vector representation is that a valid 
material has many physical and chemical constraints 
(for example valency of 2 for O and 4 for C). Thus, 
the generative model needs to take into account such 
constraints, which can be incorporated by translating 
them into semantic and syntactic checks and building 
syntax-directed VAEs204,205. These models use masking 
operations to force the decoder unit to generate only 
valid materials. Moving forward, more constraints that 
incorporate, for example, polymer synthesizability or 
ML algorithms that go beyond evolutionary methods  
or VAEs to directly solve the inverse design problem are 
expected to become widespread.

Synthesis planning and retrosynthesis. Retrosynthesis 
planning is the procedure of identifying a series of reac-
tions that will lead to the synthesis of a target product. 
It can be considered as yet another inverse problem: 
given a material, how do you synthesize it? Formalized 
by Elias James Corey207, it is one of the most funda-
mental problems in organic chemistry and materials 
science (Fig. 6a). The problem of ‘working backwards 

from the target’ is challenging, owing to the size of the 
search space — the vast numbers of theoretically pos-
sible transformations — and, thus, requires skill and 
creativity. Recently, ML-based retrosynthesis planning 
algorithms208 have been designed to tackle this problem 
with very promising results209,210.

The simplest formulation of the retrosynthesis pro
blem is to take the target product as input and predict 
all possible reactants. Essentially, it is the ‘reverse’ of the 
reaction prediction problem, wherein, given the reac-
tants (and the associated reagents) as input, the output is 
the list of possible products. The solution to the reaction 
prediction problem is obtained through a deductive rea-
soning process, because the atoms of the product form 
a subset of reactant atoms. By contrast, retrosynthesis 
aims to identify the superset of atoms in the target pro-
duct(s) and, thus, is an abductive-reasoning process, 
which requires creativity to be solved, making it a harder 
problem. Thus, recent advances in GNNs for solving the 
reaction prediction problem105,211,212 do not transfer to 
retrosynthesis.

Many computer-aided retrosynthesis design algo-
rithms are completely rule-based systems that suffer 
from high computational cost and limited coverage of 
the possible chemical space, or are expert-defined and 
cannot be translated algorithmically. Despite these lim-
itations, they are very easy to interpret and provide a 
useful method to encode chemical transformations. To 
this end, a tool called retrosim213 has been developed that 
uses similarities in the fingerprints of molecules and a 
library of reactions to select the rules to apply. Other 
approaches rely on classification models (NNs) for this 
selection task214. There have also been recent attempts 
to directly predict the SMILES representation of the 
reactants215,216 (or the products, for the forward reaction 
prediction problem217,218). Albeit simple and expressive, 
these approaches completely ignore the rich chemistry 
knowledge developed over the years and rely solely on 
the huge amount of reaction training data. Further, such 
models lack interpretable reasoning behind their predic-
tions. Combining the interpretability of the rule-based 
methods and the scalability and expressiveness of the 
NNs is the recent approach of conditional graph logic 
network, in which chemistry knowledge about reac-
tion templates is treated as logic rules and a conditional 
graphical model is introduced to tolerate some noise in 
these rules104.

Although a large amount of reaction data exist for 
molecules, there is no such well-organized database 
for materials synthesis, making this problem far more 
challenging for systems such as metal oxides, porous 
metal–organic frameworks and polymers. Initial efforts 
to use NLP pipelines to extract relevant synthesis con-
ditions from literature data, use them to build predic-
tive ML models and then suggest synthesis conditions 
have shown promise for the design of zeolites with 
desired density36, new fabrication routes of previously 
known219 and unknown38 perovskite materials, and for-
mation of titania nanotubes37. However, several chal-
lenges remain in each stage of the process, including 
the accurate extraction of synthesis parameters using 
NLP and the highly sparse and high-dimensional 
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parameter space arising from the large materials chemi-
cal and structural diversity. These challenges are further 
compounded for the case of polymers by inconsistent 
naming conventions and our lack of knowledge of the 
polymerization processes.

Physics-informed ML models. ML-based models purely 
built on data are agnostic of physical and chemical rela-
tions. For example, physics requires that the dielectric 
constant of a material varies inversely with frequency 
(ignoring resonance effects), the Gibbs free energy of a 
phase decreases with increasing temperature (keeping 
other factors, pressure and composition, constant) and 
the energy of a system is invariant to system transla-
tion or rotation. When a ML-based materials model is 
trained, the hope is that the model will automatically 
learn such physical and chemical rules implicit in the 
training data. However, this is generally not true, espe-
cially in the ‘extrapolative’ regime, where the surrogate 
models have been found to violate these rules terribly. 
An alternative approach is to constrain (similar to the 
idea of constraint programming220) the space of func-
tions considered by a ML model (during the training), 
such that only cases that respect the known physical 
and chemical relations are allowed. In other words, this 
approach transforms a ML model from a mathematical 
data-dependent construction to a physics-informed sur-
rogate model. An added advantage of physics-informed 
ML models is that they require fewer training data, 
which is important, given that materials data tend to be 
small but rich in information.

Although it is non-trivial to design ML models 
that are physically aware, with the procedure strongly 
dependent on the underlying materials problem, a 
few notable examples have been put forth. Within the 
context of developing generalizable interatomic poten-
tials, the NN architecture has been modified to obtain 
physically meaningful energy trends. This is achieved 
by forcing the last layer of the NN to have a general 
physics-inspired form (such as an analytical bond-order 
potential). Thus, in analogy with how the last sigmoid 
layer of a NN classifier constrains its output to class 
probabilities, the last physics-based layer ensures that the 
output energy and force predictions follow a physically 
meaningful trend, as dictated by its functional form221. 
Thus, when equation-of-state predictions were made 
in extrapolative compressive or tensile environments, 
the physics-based model predictions followed correct 
energy trends, whereas the purely data-driven model 
failed miserably. Likewise, other innovative material 
fingerprints and model architectures have also been 
proposed that account for invariance and symmetries 
present in the target property of interest (system energy, 
atomic forces)222–225. For instance, rotationally invariant 
fingerprints were designed to learn system energies, 
and a gradient-based ML approach was developed to 
construct energy-conserving force fields226.

Symbolic regression has also been used to develop 
interatomic potentials to search within a physically 
meaningful hypothesis space, consisting of mathemat-
ical operations and functions obtained from potentials 
developed over the past several decades. This ensures 

that the learned potential is not only reasonable and 
interpretable but can also be compared with other man-
ually constructed and well-studied potentials, such as 
the Lennard-Jones potential for the case of Al (ref.90). 
Another powerful approach to constrain the model 
space consists in using context-free grammar, which, 
essentially, describes a set of production rules that the 
data of a formal language must follow. For example, in 
the arithmetic expression a * b, a should be a number 
and not a mathematical operator, or for the molecular 
SMILES c1ccccc?, the symbol ? must be equal to 1 to 
complete the ring and represent a valid benzene mole-
cule. Transforming the original data into their equivalent 
context-free-grammar representation and then using it 
to build the ML models ensures their syntactic validity. 
Although this approach has been quite successful for 
generating syntactically valid molecules and polymers, 
and for restricting the functional space explored in sym-
bolic regression, more efforts are needed to extend it to 
a large class of materials problems.

Multitask learning and transfer learning. Materials sci-
ence focuses on multiple properties of the same mate-
rial: for a new material to be successfully used in an 
application, it has to meet several property objectives. 
However, most examples of ML in materials science use 
separate models for each task (or property), leading to 
many model parameters, with little information shared 
across the different models. Instead, ML methods such 
as multitask learning can be used to learn a shared vec-
tor representation for all tasks, and then use the shared 
representation to predict different output properties 
collectively (Fig. 6b). In the case of a NN, this can be 
achieved by having multiple output layers, one for each 
property, and a common loss function defined as the 
weighted sum of errors for each property prediction.  
The multitask approach is expected to perform better 
than individual ML models because of two reasons: first, 
it fuses information about multiple properties to exploit 
their correlations and learn a more informed model, and, 
second, it has access to a larger dataset than ML models 
based on individual properties, as, in practice, only a 
partial set of properties of a material are known.

Polymer solvent and gas-permeability models have 
been built with a similar philosophy227–229. In these 
works, the authors used a series of chemical and mor-
phological descriptors to fingerprint the polymer, and 
a one-hot encoding representation for the solvent or 
gas; for instance, the vector 001000 represents the case 
of CO2 permeability from the total pool of six gases, 
He, H2, CO2, O2, N2 and CH4. Because the ML models 
were aware of the polymer behaviour for several scenar-
ios (solvents or gases) at once, the prediction accuracy 
was much higher than that of other theoretical models 
based on the Hildebrand criteria (for polymer/solvent 
compatibility) or the Robeson upper bound (for gas per-
meability). We note that multifidelity learning, as we dis-
cussed, also uses correlations inherent in the low-fidelity 
and high-fidelity data, although, there, the focus is on 
accurately fitting the high-fidelity data.

Multitask learning is useful when all the training 
data are available; but when the data for different tasks 

www.nature.com/natrevmats

R e v i e w s



become available over time, transfer learning is used 
instead. Transfer learning adapts a model learned from 
a library of initial training tasks to a situation in which 
new tasks become available. The key component of 
transfer learning is to identify the task similarity and the 
knowledge to be transferred. For instance, multiple tasks 
can share the same initial parameters, but once more 
data become available for a new task, parameter weights 
can be optimized according to a loss function accounting 
for the errors in the new task230.

Outlook
We have discussed how AI and ML methods have 
transformed the computational and experimental lan
dscape within materials research. However, for the 
sustenance and growth of such ML-powered materi-
als intelligence ecosystems, several challenges should 
be overcome. ML methods rely on a constant flux of 
high-fidelity data generated in a consistent and system-
atic manner. However, in the absence of standard pro-
tocols for systematic and sustainable materials (meta)
data capture, curation and organization, most materials 
databases exist in a stand-alone fashion, with the com-
munity unable to collectively exploit materials informa-
tion from different channels. On the side of ML model 
development and testing, benchmark datasets are 

necessary for consistent testing of new algorithms, in 
keeping with common practices in computer and statis-
tical sciences. These benchmark datasets will be a good 
addition to the existing culture of openly sharing ML 
codes and data. Understanding a ML model domain 
of applicability, its interpretability and its use for out-
lier detection still remain major challenges, which are 
bound to intensify as complex NN-based approaches 
become more popular.

Nevertheless, it is fair to claim that the notion of AI 
is reverberating within materials research. Early suc-
cesses in building predictive models are paving the way 
to building experimental and computational autonomy 
and guided high-throughput workflows. Integration of 
various parts of the burgeoning materials intelligence 
ecosystems may lead to materials-savvy digital assistants 
that may intelligently and autonomously interact with 
both theoretical and experimental materials researchers; 
this human–machine partnership can lead to dramatic 
efficiencies, accelerated discoveries and increased pro-
ductivity. From a human resources perspective, adequate 
training of the current and next generation of materials 
scientists on AI and ML methods is needed to ensure 
the effective and appropriate utilization of these tools.
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