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ABSTRACT:Computations based on density functional theory (DFT) are
transforming various aspects of materials research and discovery. However, the
e� ort required to solve the central equation of DFT, namely the Kohn� Sham
equation, which remains a major obstacle for studying large systems with
hundreds of atoms in a practical amount of time with routine computational
resources. Here, we propose a deep learning architecture that systematically learns
the input� output behavior of the Kohn� Sham equation and predicts the
electronic density of states, a primary output of DFT calculations, with
unprecedented speed and chemical accuracy. The algorithm also adapts and
progressively improves in predictive power and versatility as it is exposed to new
diverse atomic con� gurations. We demonstrate this capability for a diverse set of
carbon allotropes spanning a large con� gurational and phase space. The electronic
density of states, along with the electronic charge density, may be used downstream to predict a variety of materials properties,
bypassing the Kohn� Sham equation, leading to an ultrafast and high-� delity DFT emulator.

� INTRODUCTION

Density functional theory (DFT)1,2 has become an invaluable
computational workhorse for materials development and
design. It has impacted a variety of� elds ranging from energy
storage,3� 5 catalysis,6,7 fuel production and chemical trans-
formations,8,9 design of advanced electronic and functional
materials,10,11 and the understanding of materials behavior
under a variety of extreme conditions,12,13 to just name a few.
DFT addresses the many-electron many-nuclear problem of
quantum mechanics through a series of approximations and
leaps of imagination and ingenuity, and ultimately involves
solving the e� ective one-electron Kohn� Sham equation.2 For
a given con� guration of atoms, the solutions of the Kohn�
Sham equation include the one-electron wave functions (or the
electronic charge density), one-electron energy spectrum (or
the electronic density of states), atomic forces, potential
energy, and a variety of application-relevant equilibrium
materials properties.

Despite its versatility and reach, DFT remains a laborious
computational enterprise. It requires high-performance com-
puting hardware, robust and specialized software, and fairly in-
depth knowledge and expertise to execute the calculations in a
credible manner. Even with the availability of such resources,
modern DFT ecosystems only allow the practical or routine
treatment of systems involving not more than a few hundreds
of atoms per repeating unit cell.

In order to accelerate the speed with which one may reliably
predict application-relevant properties of new materials, the

community is beginning to focus attention on the creation of
“surrogate” models that can be much faster than a fresh and
direct DFT calculation, but mimics it in the accuracy. Such
surrogate models are trained, using machine learning
algorithms, on a set of reference data produced by prior
DFT calculations. The past decade has seen several successful
examples of such predictive machine learning models applied
to a variety of materials properties and application spaces.14� 25

In these e� orts, a mapping is established between atomic
con� gurations and appropriate quantities of interest, such as
atomic forces, potential energies, and a variety of materials or
molecular properties of interest.

The primary bottleneck in DFT-based work� ows is the
computation of the electronic density of states (DOS) and
charge density. Once computed, the DOS and charge density,
owing to their fundamental nature, may be used to determine
the above listed other quantities of interest at negligible cost.
Thus, creation of a capability that can signi� cantly speed up
the prediction of DOS and charge density will impart
unprecedented e� ciency to the overall DFT work� ow, and
can lead to an ultrafast DFT emulator that can produce DFT-

Received: August 14, 2020
Revised: October 13, 2020

Articlepubs.acs.org/JPCA

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.jpca.0c07458
J. Phys. Chem. AXXXX, XXX, XXX� XXX

D
ow

nl
oa

de
d 

vi
a 

R
am

pi
 R

am
pr

as
ad

 o
n 

N
ov

em
be

r 
3,

 2
02

0 
at

 1
9:

02
:1

1 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Beatriz+G.+del+Rio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christopher+Kuenneth"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Huan+Doan+Tran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rampi+Ramprasad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.0c07458&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c07458?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c07458?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c07458?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c07458?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c07458?fig=agr1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c07458?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf


like output with a high degree of verisimilitude. This manner of
solving the electronic structure problem will be a radical
departure from attempting to directly solve the Kohn� Sham
equation.

Previous work to bypass the Kohn� Sham equation
predicted the ground state electron density associated with
an external potential as an intermediate step toward the total
energy prediction.26 Subsequent work suggested various
representations to improve the accuracy of the ground state
electron density27� 31 and DOS predictions.30,32,33

In this contribution, we mainly focus on the creation of an
e� cient deep learning capability for the instantaneous
prediction of the electronic DOS for a given con� guration of
atoms. A neural network (NN) architecture is trained on a
database of prior reference DFT computations and learns the
relationship between the atomic con� guration and the
electronic DOS. Speci� cally, the NN is designed to take as
input the environment around an atom, i.e., the distribution of
its neighboring atoms, producing as output the corresponding
atomic DOS spectrum. The NN is trained such that the sum of
the thus-predicted atomic DOS of all atoms in the system is
required to be equal to the correct total electronic DOS
calculated by DFT. As we will show here, this deep learning
capability proves to be several orders of magnitude faster than
the parent DFT calculation. Moreover, the present develop-
ment is also a signi� cant advance, both in terms of conceptual
aspects and in terms of e� ciency, compared to a recipe we
proposed recently.30 While this past work also utilized deep
neural networks to predict the DOS (and the electronic charge
density), the training data consisted of the projected DOS at
each spatial grid point. As the typical ratio of the number of
grid points to the number of atoms in any system isabout a
million, the method of ref30 leads to an enormous memory
requirement (for the storage of the training data), and an
enormous amount of training and prediction time, hindering
its use with large data sets.

Other attempts delved into predicting the pattern of the
DOS in metals by providing as input global properties of the
structure such as composition or crystal structure.32 The

general protocol followed to describe the atomic structure
greatly limits model accuracy and cannot capture modi� cations
to the DOS due to disorder or defects. Another study used
NNs to map the atomic� ngerprints to speci� c energy values of
the DOS, one for each NN.33 Due to the computational cost of
the procedure, the sampling of the DOS was too sparse to
capture� ne details and only the general trend could be
correctly predicted.

As a demonstration of the present development, we train our
NN to predict the total electronic DOS of a variety of
graphene-derived allotropes, including carbon nanotubes of
various types, fullerene molecules, and graphene as well as
graphite. Speci� cally, as listed in the tables ofFigure 1a, we
created two di� erent data sets, for which accurate reference
DFT calculations were done. We� rst trained the model using
data set 1, comprised of graphene, graphite, C20, C40, and
C60 fullerene molecules, and C(6,4), C(9,9), and C(8,0)
single-walled carbon nanotubes (SWCNT) with di� erent
chirality. To provide the NN with su� cient examples of
con� gurational diversity within the space of the above list of
structures, 200 random snapshots of each of these structures
from DFT-based molecular dynamics (MD) runs at 300 and
600 K were procured. From this set, 80% of the con� gurations
were used for training and 20% for validation. An additional
separate test set of 20 con� gurations of each structure was
created to select the best performing model after cross-
validation.Figure 1c (left) shows some representative
structures contained in data set 1.

In order to test the generality of the model built out of data
set 1, and also to unambiguosly demonstrate the ability to
systematically improve the model through exposure to newer
environments, data set 2 was considered. Data set 2 is
comprised of defects in graphene and highly disordered
structures. The considered graphene defects are Stone� Wales
(SW), single-vacancies (SV), and double-vacancies (DV). A
representative set of such defected structures are shown in
Figure 1c (right). The highly disordered structures were
procured from DFT-MD runs at 2000 K. The train and test
sets of data set 2 were composed of a total of 830 and 83

Figure 1.(a) Data sets used to train the models in this work. The number of atoms refers to those in the repeating unit cell of each structure. (b)
Main two principal components (PC) of the mean atomic� ngerprints of each con� guration. (c) Snapshots of carbon allotropes included in data set
1 and in data set 2, with red-colored atoms to identify the location of the defects.
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con� gurations, respectively. Overall, the structural and
topological diversity of the cases included in the training
data considered here is enormous relative to past studies. We
choose the vacuum energy as the global energy reference, and
the DOS of every atomic con� guration was aligned with
respect to it. The DFT DOS curve is partitioned into 310
windows of 0.1 eV, from� 30 to 1 eV.

To describe the atomic environment surrounding each atom
in a machine-readable form, we used the same set of
permutation, translation, and rotation invariant� ngerprints
introduced in our previous NN DOS protocol,30 but centered
at each atom instead of at grid points. The� ngerprints consist
of a hierarchy of scalar, vector, and tensor expressions which
capture the radial (scalar) and angular (vector and tensor)
features of the surrounding atomic environment. The� nger-
prints are based on a prede� ned set of Gaussian functions with
varying widths centered at every atom.Figure 1b shows the
variation of the two principal components (PC) of the
� ngerprint features for each type of the aforementioned
structures, spanning a large region of con� gurational space.

The atomic� ngerprint vectors are provided as the input
layer for the NN, resulting in a DOS per atom as the NN
output. Addition of all the atomic DOS for a given
con� guration results in the predicted total DOS. To ensure
an accurate prediction of the Fermi level, the cumulative sum is
concatenated to the predicted total DOS. Owing to the
variability in size of the structures in the data sets, the
prediction is normalized by the number of atoms in the
con� guration. This normalization ensures an equal contribu-
tion to the error metric from each structure.Figure 2provides
a schematic view of the entire protocol.

As we will demonstrate below, the NN DOS model predicts
the electronic structure of sp2-type carbon allotropes (metallic

or semiconducting, and with or without a variety of defects and
signi� cant disorder) with unprecedented accuracy and speed
(relative to conventional DFT computations). Owing to the
� exibility of training a� orded by the NN architecture, model
prediction performance can be systematically and continuously
improved via persistent exposure to newer varieties of
con� gurational diversity. Further, the predicted DOS allows
for a precise evaluation of the contribution of the occupied
energy levels to the total energy of the system, a necessary step
to achieving a machine learned DFT emulator.

� METHODS

DFT Details. All the reference data calculations were
performed using DFT-MD simulations using the Vienna Ab
Initio Simulation Package (VASP).34,35 The exchange-
correlation functional was modeled using the Perdew�
Burke� Ernzerhof approximation,36 and the ion-electron
interaction was modeled using projector-augmented wave
(PAW) potentials.37 We employed a Monkhorst� Pack grid38

with a density of 0.03 Å� 1 to sample the Brillouin zone. A plane
wave basis set with a kinetic energy cuto� of 800 eV was used.
The chosen kinetic energy cuto� and k-point sampling
converged the total energy to less than 1 meV per atom.
Grimme’s D2 vdW correction was included.39 A Gaussian
smearing of 0.2 eV was used. The MD simulations were
performed in the NVT ensemble, with a time step of 1 fs. All
structures were thermalized for 500 time steps at the desired
temperature (300, 600, and 2000 K), and the snapshots were
taken from the subsequent thermalized simulations spanning 2
ps.

Fingerprint Details. The scalar� ngerprint for a given
atom,i, is expressed as the sum over the number of Gaussian
functions (k) of width � k,

Figure 2.Overall scheme and work� ow designed to compute the DOS of a given atomic structure using deep NN with atom centered� ngerprints.
After the data set is created, each atom in an atomic structure is replaced by a� ngerprint vector representing the surrounding environment. These
� ngerprints are provided as input layers to the NN, resulting in a DOS per atom as the output layer. All atomic DOS from the same atomic
con� guration are added to obtain the total DOS. Once normalized, the DOS is concatenated to its cumulative sum and validated against the DFT
reference.
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Therefore, for each width there are� ve features. We
employed 18 di� erent widths, providing a feature vector for
each atom with 90 components.

Neural Network Architecture and Performance. The
number of hidden dense layers and nodes per layer were
optimized to� ve with the� rst four with 300 neurons each and
the last one with 312. After the last dense layer, there is a 1D
convolution layer with three� lters of size 3, resulting in 1D
vectors of size 310, equal to the number of energy windows
used to discretize the reference DOS curve. Finally, the average
value of the three 1D vectors for each bin is selected as the
output for the value of each energy window in the DOS. The
� nal 1D convolution layer is included to introduce the
correlation between adjacent points and ensure a smooth
shape in the predicted atomic DOS. Details on the perform-
ance of the NN with di� erent number of dense layers can be
found in theSupporting Information(SI).

The activation function used for each dense layer as well as
for the � nal 1D convolution layer is the recti� ed linear unit
(ReLU). To prevent over� tting, anL2 regularizer with 0.1 was
used in each hidden layer. A dropout rate of 0.1 was also
included for the hidden layers, meaning that, for every pass,
each node in the layer has a 10% probability of not being
active. The bene� t of including the dropout is 2-fold. First,
during training, it acts as a regularization technique to reduce
over � tting and second, during prediction, it allows for an
evaluation of the uncertainty in such prediction. The latter
technique of activating the dropout during prediction is known
as Monte Carlo dropout.40,41

We used Keras42 with a Tensor� ow backend to implement
the NN DOS model. A mini-batch training of 30 with random
sampling was employed along with an Adam optimizer with a
learning rate of 0.0001 and momentum vectors� 1 = 0.9 and� 2
= 0.999. The RMSE was employed as the objective function.

We compared the computational performance of DFT and
our NN DOS model, for a given graphene con� guration of 128

Figure 3.DFT DOS (blue) and predicted NN DOS (red) for test con� gurations of (a) graphene, (b) graphite, (c) C60, and the SWCNTs of (d)
C(9,9) and (e) C(8,0). The DFT and NN Fermi levels calculated as the cumulative integral of the DOS curves are included as vertical dashed blue
and red lines, respectively. The vertical dashed green line indicates the vacuum energy used as the global energy reference. The uncertainty in the
Fermi level prediction is marked by the dashed pink vertical lines. (f) Histogram of the Fermi level di� erence between DFT and the NN prediction.
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atoms. DFT employs 3615 s to solve the Kohn� Sham
equation and calculate the DOS on a Broadwell node with
28 cores and 128 GB of RAM. On the other hand, the NN
requires only 5 s on a Tesla P100-PCIe GPU with 16 GB of
RAM. Out of that time, the� ngerprinting process requires 3 s,
while the DOS prediction only takes 2 s. Albeit the comparison
limitations due to the di� erent architectures used, the achieved
speed up is several orders of magnitude. Furthermore, it is
worth noting the quadratic scaling (at best) of modern DFT
codes with system size as opposed to the linear scaling of NN.

As a� nal note, we performed a baseline comparison with the
model in ref30by training and testing our model on the same
aluminum con� gurations from the study. The accuracy of the
prediction is similar for both models: theR2 reported in ref30
is 0.9992, whereas in our model it is 0.9996. The major
improvement is in the training time: ref30 reported 5� 6 h
(also on a GPU), whereas our NN DOS model only required
10 min. Additionally, the prediction time is further reduced
with our protocol due to the atomic� ngerprint (3 s) as
opposed to the grid-point� ngerprint in ref30, requiring 20 s.

� RESULTS AND DISCUSSION

Figure 3summarizes the results of the model trained and
tested on data set 1. From a 5-fold cross-validation, the
predicted DOS curves have a mean root-mean-square-error
(RMSE) per atom of 0.0192 states/eV with a standard
deviation of 0.0004 states/eV, and a meanR2 = 0.9756 with a
standard deviation of 0.0012. Using the separate test set from
data set 1, we selected the best performing NN model, withR2

= 0.977, RMSE = 0.0188 states eV� 1/atom, and 1% highest
error (HE) of 0.0716 states eV� 1/atom. These accurate metrics
are re� ected inFigure 3where the NN DOS (red curve)
follows very closely the reference DFT DOS (blue curve).
Likewise, the calculated Fermi level from the cumulative
integral of NN DOS (dashed red line) coincides with the DFT
Fermi level (dashed blue line). The dashed pink vertical lines
represent the uncertainty in the predicted Fermi level. More
information on the evaluation of the uncertainty can be found
in theSI.

Besides an accurate DOS prediction, quantities such as band
gap requires a precise calculation of the Fermi level from the
predicted DOS.Figure 3f displays the histogram of the error in

the calculated Fermi level between the DFT DOS and the NN
DOS, for data set 1. The results follow a Gaussian distribution
with a standard deviation of 0.15 eV. The number of instances
with a higher error drastically decays after±0.2 eV, with
maximum values up to� 0.47 eV. Despite such good results, it
is worth mentioning that the Fermi level is a very sensitive
quantity, especially in cases with band gaps, where very small
deviations from the total number of electrons can shift the
Fermi level to the other side of the band gap.

Systematic Improvement with New Cases. Trans-
ferability to new environments along with a capability for
systematic improvement is essential for an NN model in a� eld
of ever growing data sets and need to explore newer
con� gurational environments. As such,� rst we decided to
test the NN trained on data set 1 (Model 1) on the test
con� gurations of data set 2 and afterward evaluate the
improvement in the predictions once the model is trained on
both data sets.Figure 4a and b (gray) show the results for the
mean RMSE of predicted DOS and mean absolute error in the
Fermi level calculation. The results on data set 1 are included
as a comparison baseline. As expected when using machine
learning models on unseen cases, the performance of Model 1
on data set 2 is worse than on data set 1, for both the graphene
defects, DS 2 (Defects), and for the highly disordered
structures, DS 2 (2000 K). However, given the considerable
di� erence between the atomic environments and types of
carbon hybridization between data set 1 and data set 2 (see
SI), the results are still surprisingly good. Nevertheless, the
model can be extended and improved by training on both data
sets 1 and 2 resulting in Model 2,Figure 4a and b (dark red).
The drastic error decrease on data set 2 along with the slight
error reduction on data set 1 illustrates the capability of the
model for systematic improvement as the data set size is
expanded with entirely new information. In addition, the
speci� c atom-based NN allows studying the atomic DOS of
speci� c atoms and learning the chemical changes introduced to
the electronic structure of the system by these defects (seeSI
for an example).

Total Energy Contribution. The culminating goal of
utilizing machine learning to emulateand dramatically
accelerate DFT is to bypass the computationally expensive
Kohn� Sham equation by directly predicting the electronic

Figure 4.(a and b) Transferability and systematic improvement of the NN DOS on data set 2 (DS 2): defects on graphene and highly disordered
structures at 2000 K. Mean RMSE (a) and mean absolute error in the Fermi level calculation (b) for Model 1 trained on data set 1 (DS 1) (gray)
and for Model 2 trained on both data sets (dark red). Parity plots for the contribution to the total energy from the NN DOS using Model 1 (c) and
Model 2 (d). The error bars represent the standard deviation obtained from the uncertainty in the predicted NN DOS.
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structure. To realize this vision, the electronic structure
prediction requires highly accurate results of both the
eigenvalues and the charge density in order to compute the
total energy as2,30
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where,� , Ne, EH, Exc, En� n are the charge density, number of
electrons, Hartree energy, exchange-correlation energy, and
nuclear� nuclear interaction energy, respectively.� i is the
eigenvalue of thei-th Kohn� Sham orbital. Ineq 8, the � rst
term 2� i

Ne/2� i can be written in terms of the DOS as

�� � = � � �
Š�

d2 DOS( )
i

N

i

E/2e F

(9)

while the remaining terms are known functions of the charge
density (for a given level of theory).

As a � nal assessment of the DOS prediction model, we
evaluate the accuracy of the contribution to the total energy
from the predicted DOS and Fermi level usingeq 9. Figure 4c
and d display the parity plots of the predicted energy
contribution compared to the reference energy contribution
calculated from the DFT DOS and Fermi level. The
performance of Model 1 on both data sets is displayed in
Figure 4c. Model 1 successfully predicts the total energy
contribution with a mean absolute error (MAE) of 0.033 eV/
atom, below the chemical accuracy threshold of 0.043 eV/
atom (1 kcal/mol). Nonetheless, the results on graphene with
defects and highly disordered structures at 2000 K display a
decay in accuracy with an MAE of 0.112 eV/atom and 0.082
eV/atom, respectively. However, this lower accuracy can be
mainly ascribed to some speci� c structure types which present
a more signi� cant challenge to Model 1 due to di� erent carbon
hybridizations or to more signi� cant disorder in the geometry
of the system (seeSI). Nevertheless, once the NN is trained on
both data sets, the resulting Model 2 outperforms Model 1 for
all the data sets, all of them considerably below the chemical
accuracy threshold (seeFigure 4d). More detailed results can
be found in theSI. These successful results outline the
promising capability of our NN DOS model within the
envisaged DFT emulator.

� CONCLUSIONS
In summary, we have developed an NN DOS predictor which
outperforms DFT in computational time by several orders of
magnitude while preserving chemical accuracy. Despite the
myriad of diverse structures and topologies of carbon
considered (albeit within generic sp2-type environments), the
model is� exible enough to perfectly adapt to every atomic
environment and to systematically improve the predictions as
the data set is expanded to new chemical spaces. A very
promising outcome, owing to the linear scaling of NN with the
system size, is the deployment of the DOS prediction model
on extremely large systems, impractical with conventional DFT
or any available electronic structure code.

Going forward, we plan on exploiting the capabilities of the
NN DOS model in two parallel but interconnected pathways.
First, to pro� t from the performance and scaling of the model

for large systems, we will develop a NN DOS predictor to
provide ‘immediate’ access to the electronic structure of
complex polymeric structures composed of sp, sp2, and sp3

hybridizations,andmultiple elements. To achieve such a goal,
we will extend the model to include multielemental systems
starting with hydrocarbons and progressively expand to
polymers with increasing chemical complexity. Second, to
continue work toward DFT emulation we will couple our NN
DOS predictor along with a charge density predictor to
calculate the total energy of the system followingeq 8. The
former pathway will subsequently feed o� of the latter,
allowing for molecular dynamics simulations of polymers
which preserve DFT accuracy and provide information on the
electronic structure at each step, all within short computational
times.

Despite the outstanding results of the present model, a
promising avenue for improvement is the development of
alternate� ngerprint representations in the form of NNs
instead of hand-crafted features. While the� ngerprints
employed in the present work provide very good results,
such hand-crafted features may impose a bias, limiting the
mapping between the structure and the DOS. By eliminating
some of those constraints and allowing the NN to� nd the best
mapping, a further increase in accuracy, versatility, and
transferability is expected. Promising representations to be
considered will employ spherical and icosahedral convolutional
NNs within an approach that still preserves the permutation,
translation, and rotation invariance of the atomic structure.
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