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ABSTRACT: Computations based on density functional theory (DFT) are i
transforming various aspects of materials research and discovery. However, the Time ~hours Ny
e ort required to solve the central equation of DFT, namely the Bludum ||
equation, which remains a major obstacle for studying large systems I@
hundreds of atoms in a practical amount of time with routine computational- )
resources. Here, we propose a deep learning architecture that systematicallglearns
the input output behavior of the Koh8ham equation and predicts th { J
electronic density of states, a primary output of DFT calculations, Wi
unprecedented speed and chemical accuracy. The algorithm also ada
progressively improves in predictive power and versatility as it is exposed
diverse atomic cogurations. We demonstrate this capability for a diverse s
carbon allotropes spanning a largegeoational and phase space. The electronic
density of states, along with the electronic charge density, may be used downstream to predict a variety of materials propert
bypassing the KohSham equation, leading to an ultrafast and dédjty DFT emulator.
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INTRODUCTION community is beginning to focus attention on the creation of

Density functional theory (DFF)has become an invaluable “surrogatemodels that can be much faster than a fresh and

computational workhorse for materials development an%,reCt DFT calculation, but mimics it in the accuracy. Such

: : . : te models are trained, using machine learning
design. It has impacted a varietyetids ranging from energy surroga ’ .
storagé, ® catalysi&’ fuel production and chemical trans- 290rthms, on a set of reference data produced by prior

formation&? design of advanced electronic and functionaP’ | calculations. The past decade has seen several successful
materiaIéQh and the understanding of materials behavio';axamples of such predictive machine learning models applied

under a variety of extreme conditionsfo just name a few, [0 & Variety of materials properties and application $pates.

In. these eorts, a mapping is established between atomic
DFT addresses the many-electron many-nuclear problem c%f gurations and appropriate quantities of interest, such as

Icg;argu;? irrgzcri]r?gtligsn tg:]%u?: :msjinesa r?é ?ﬁt‘i)r:]();[g?atilr?\?;va mic forces, potential energies, and a variety of materials or
P 9 9 Y, y FRolecular properties of interest.

solving the eective one-electron KohBham equatichFor The primary bottleneck in DFT-based s is the

a given corguration of atoms, the solutions of the Kohn omputation of the electronic density of states (DOS) and
Sham equation include the one-electron wave functions (or t ﬁarge density. Once computed, the DOS and charge density
electronic charge density), one-electron energy spectrum ing to their fundamental natur1e, may be used to determine

the electronic density of states), atomic forces, potent e above listed other quantities of interest at negligible cost.
energy, and a variety of application-relevant equmbrluqqhus, creation of a capability that can signtly speed up

materials properties. L : A
P . . . the prediction of DOS and charge density will impart
Despite its versatility and reach, DFT remains a laborio precedented eiency to the overall DFT wodk, and

computational enterprise. It requi_reg high-performance COMan lead to an ultrafast DFT emulator that can produce DFT-
puting hardware, robust and specialized software, and fairly in-

depth knowledge and expertise to execute the calculations iira—
credible manner. Even with the availability of such resourc&§ceived: August 14, 2020
modern DFT ecosystems only allow the practical or routin@evised: October 13, 2020
treatment of systems involving not more than a few hundreds
of atoms per repeating unit cell.

In order to accelerate the speed with which one may reliably
predict application-relevant properties of new materials, the
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Figure 1.(a) Data sets used to train the models in this work. The number of atoms refers to those in the repeating unit cell of each structure. (b)
Main two principal components (PC) of the mean atargierprints of each cayuration. (c) Snapshots of carbon allotropes included in data set
1 and in data set 2, with red-colored atoms to identify the location of the defects.

like output with a high degree of verisimilitude. This manner @feneral protocol followed to describe the atomic structure
solving the electronic structure problem will be a radicareatly limits model accuracy and cannot capturecatimhs
departure from attempting to directly solve the K8ham to the DOS due to disorder or defects. Another study used
equation. NNs to map the atomiagerprints to sped energy values of

Previous work to bypass the KoBham equation the DOS, one for each NRIDue to the computational cost of
predicted the ground state electron density associated withe procedure, the sampling of the DOS was too sparse to
an external potential as an intermediate step toward the totapture ne details and only the general trend could be
energy predictioif. Subsequent work suggested variouscorrectly predicted.
representations to improve the accuracy of the ground stateAs a demonstration of the present development, we train our
electron density ** and DOS predictiori§7>3 NN to predict the total electronic DOS of a variety of

In this contribution, we mainly focus on the creation of argraphene-derived allotropes, including carbon nanotubes of
e cient deep learning capability for the instantaneousarious types, fullerene molecules, and graphene as well as
prediction of the electronic DOS for a given guamation of graphite. Spedially, as listed in the tablesFafure &, we
atoms. A neural network (NN) architecture is trained on areated two derent data sets, for which accurate reference
database of prior reference DFT computations and learns tB&T calculations were done. Wet trained the model using
relationship between the atomic guration and the data set 1, comprised of graphene, graphite, C20, C40, and
electronic DOS. Specally, the NN is designed to take as C60 fullerene molecules, and C(6,4), C(9,9), and C(8,0)
input the environment around an atom, i.e., the distribution afingle-walled carbon nanotubes (SWCNT) witkereint
its neighboring atoms, producing as output the correspondiagirality. To provide the NN with soient examples of
atomic DOS spectrum. The NN is trained such that the sum afon gurational diversity within the space of the above list of
the thus-predicted atomic DOS of all atoms in the system sructures, 200 random snapshots of each of these structures
required to be equal to the correct total electronic DOSrom DFT-based molecular dynamics (MD) runs at 300 and
calculated by DFT. As we will show here, this deep learnig0 K were procured. From this set, 80% of thgua@iions
capability proves to be several orders of magnitude faster thvaere used for training and 20% for validation. An additional
the parent DFT calculation. Moreover, the present develogeparate test set of 20 agurations of each structure was
ment is also a sigonant advance, both in terms of conceptualcreated to select the best performing model after cross-
aspects and in terms ofaéency, compared to a recipe we validation.Figure t (left) shows some representative
proposed recentl{. While this past work also utilized deep structures contained in data set 1.
neural networks to predict the DOS (and the electronic chargeln order to test the generality of the model built out of data
density), the training data consisted of the projected DOS gkt 1, and also to unambiguosly demonstrate the ability to
each spatial grid point. As the typical ratio of the number afystematically improve the model through exposure to newer
grid points to the number of atoms in any systaiboist a ~ environments, data set 2 was considered. Data set 2 is
million the method of re30 leads to an enormous memory comprised of defects in graphene and highly disordered
requirement (for the storage of the training data), and astructures. The considered graphene defects areViabese
enormous amount of training and prediction time, hinderingSW), single-vacancies (SV), and double-vacancies (DV). A
its use with large data sets. representative set of such defected structures are shown in

Other attempts delved into predicting the pattern of theFigure t (right). The highly disordered structures were
DOS in metals by providing as input global properties of therocured from DFT-MD runs at 2000 K. The train and test
structure such as composition or crystal strictiiee sets of data set 2 were composed of a total of 830 and 83
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Figure 2.Overall scheme and warlv designed to compute the DOS of a given atomic structure using deep NN with atomnogmeiets.

After the data set is created, each atom in an atomic structure is replacgérpyiret vector representing the surrounding environment. These
ngerprints are provided as input layers to the NN, resulting in a DOS per atom as the output layer. All atomic DOS from the same atomic

con guration are added to obtain the total DOS. Once normalized, the DOS is concatenated to its cumulative sum and validated against the DF

reference.

con gurations, respectively. Overall, the structural andr semiconducting, and with or without a variety of defects and

topological diversity of the cases included in the trainingigni cant disorder) with unprecedented accuracy and speed

data considered here is enormous relative to past studies. {i#dative to conventional DFT computations). Owing to the

choose the vacuum energy as the global energy reference, axibility of training @rded by the NN architecture, model

the DOS of every atomic cguration was aligned with prediction performance can be systematically and continuously

respect to it. The DFT DOS curve is partitioned into 310improved via persistent exposure to newer varieties of

windows of 0.1 eV, fron80 to 1 eV. con gurational diversity. Further, the predicted DOS allows
To describe the atomic environment surrounding each atofair a precise evaluation of the contribution of the occupied

in a machine-readable form, we used the same set @fergy levels to the total energy of the system, a necessary step

permutation, translation, and rotation invariagerprints  to achieving a machine learned DFT emulator.

introduced in our previous NN DOS proto€diut centered

at each atom instead of at grid points. Rgerprints consist METHODS

of a hierarchy of scalar, vector, and tensor expressions WhiCBFT Details. All the reference data calculations were

capture the radial (scalar) and angular (vector and tenso{)’erformed using DFT-MD simulations using the Vienna Ab
features of the surrounding atomic environment. figes- Initio Simulation Package (VASPI® The exchange-
prints are based on a preuad set of Gaussian functions with cqrrejation functional was modeled using the Perdew
varying widths centered at every atagure b shows the g rke Ernzerhof approximatidh,and the ion-electron
variation of the two principal components (PC) of thejnteraction was modeled using projector-augmented wave
ngerprint features for each type of the aforemenUone@;AW) potentiald’ We employed a Monkhortack gritf
structures, spanning a large region ofgoeational space.  jith a density of 0.03 Ato sample the Brillouin zone. A plane

The atomic ngerprint vectors are provided as the inputyaye basis set with a kinetic energy @it800 eV was used.
layer for the NN, resulting in a DOS per atom as the NNThe chosen kinetic energy cutand k-point sampling
output. Addition of all the atomic DOS for a given converged the total energy to less than 1 meV per atom.
con guration results in the predicted total DOS. To ensurgsrimmes D2 vdW correction was includedd Gaussian
an accurate prediction of the Fermi level, the cumulative sunsigiearing of 0.2 eV was used. The MD simulations were
concatenated to the predicted total DOS. Owing to thgerformed in the NVT ensemble, with a time step of 1 fs. All
variability in size of the structures in the data sets, thétructures were thermalized for 500 time steps at the desired
prediction is normalized by the number of atoms in tha@emperature (300, 600, and 2000 K), and the snapshots were
con guration. This normalization ensures an equal contribuaken from the subsequent thermalized simulations spanning 2
tion to the error metric from each structbrgure Zrovides ps.
a schematic view of the entire protocol. Fingerprint Details. The scalar ngerprint for a given

As we will demonstrate below, the NN DOS model predictatom,i, is expressed as the sum over the number of Gaussian
the electronic structure ofgppe carbon allotropes (metallic functions K) of width
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Figure 3.DFT DOS (blue) and predicted NN DOS (red) for test gomations of (a) graphene, (b) graphite, (c) C60, and the SWCNTSs of (d)

C(9,9) and (e) C(8,0). The DFT and NN Fermi levels calculated as the cumulative integral of the DOS curves are included as vertical dashed bl
and red lines, respectively. The vertical dashed green line indicates the vacuum energy used as the global energy reference. The uncertainty |
Fermi level prediction is marked by the dashed pink vertical lines. (f) Histogram of the Ferereleselditveen DFT and the NN prediction.

N g R? Therefore, for each width there ane features. We
S=G exp 21 ifc(Rii) employed 18 derent widths, providing a feature vector for
=1 k (1) each atom with 90 components.

Neural Network Architecture and Performance. The
number of hidden dense layers and nodes per layer were
optimized to ve with the rst four with 300 neurons each and
is the distance between atpmnd the center atom and  the last one with 312. After the last dense layer, there is a 1D

. . R convolution layer with thredéters of size 3, resulting in 1D
i{Ry) is a cuto function dened a£).5 OéT) + lorR vectors of size 310, equal to the number of energy windows

d, and equal to O fd&®; > d.. In this work, we employed 18 used to discretize the reference DOS curve. Finally, the average
di erent Gaussian widths, on a logarithmic scale (base 1@alue of the three 1D vectors for each bin is selected as the
from 0.25 to 6.0 A, with a cutdistance ofl, = 7 A. The output for the value of each energy window in the DOS. The
vector and tensor components areelé as nal 1D convolution layer is included to introduce the
N . correlation between adjacent points and ensure a smooth

f Eﬁ 1f (R) shape in the predicted atomic DOS. Details on the perform-

2 1c\
k

whereg, is the normalization constant ioied a{%)“, Ri
k

- i
Vic = Ck_ R &P ance of the NN with derent number of dense layers can be
=10 @ found in theSupporting Informatiofsl).
. The activation function used for each dense layer as well as
_ N Fij Tij Rij2 for the nal 1D convolution layer is the resdi linear unit
T =& RZ exppE— {1.(Ry (ReLU). To prevent ovetting, anL2 regularizer with 0.1 was
=10 k ®) used in each hidden layer. A dropout rate of 0.1 was also

where and represent the y, orz components of the radial included for_ the hidden layers, meaning tha_t., for every pass,
vector between atornandj. WhileS, is rotational invariant, ©ach node in the layer has a 10% probability of not being
V, and T, are variant, but can be combined into fouractive. The bentof including the dropout is 2-fold. First,

rotational invariant expressions, during training, it acts as a regularization technique to reduce
over tting and second, during prediction, it allows for an
\ = \/(V;)2+ (M 2+ ( i 2 4) evaluation of the uncertainty in such prediction. The latter
technique of activating the dropout during prediction is known
4041
To= T+ TV+ T2 ) as Monte Carlo dropotft:

We used Ker#swith a Tensoow backend to implement
o - e 225 o 2 ) the NN DOS model. A mini-batch training of 30 with random
T = T+ TTE+ TETES (TS (T sampling was employed along with an Adam optimizer with a
S (Tkx2)2 ©) learning rate of 0.0001 and momentum vegters.9 and ,
= 0.999. The RMSE was employed as the objective function.
We compared the computational performance of DFT and
Ty = det(Ty ) (7) our NN DOS model, for a given grapheneguanration of 128
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Figure 4.(a and b) Transferability and systematic improvement of the NN DOS on data set 2 (DS 2): defects on graphene and highly disorderec
structures at 2000 K. Mean RMSE (a) and mean absolute error in the Fermi level calculation (b) for Model 1 trained on data set 1 (DS 1) (gray)
and for Model 2 trained on both data sets (dark red). Parity plots for the contribution to the total energy from the NN DOS using Model 1 (c) and
Model 2 (d). The error bars represent the standard deviation obtained from the uncertainty in the predicted NN DOS.

atoms. DFT employs 3615 s to solve the K8ham the calculated Fermi level between the DFT DOS and the NN
equation and calculate the DOS on a Broadwell node withOS, for data set 1. The results follow a Gaussian distribution
28 cores and 128 GB of RAM. On the other hand, the NNwvith a standard deviation of 0.15 eV. The number of instances
requires only 5 s on a Tesla P100-PCle GPU with 16 GB afith a higher error drastically decays af@e2 eV, with
RAM. Out of that time, thengerprinting process requires 3 s, maximum values up t®.47 eV. Despite such good results, it
while the DOS prediction only takes 2 s. Albeit the comparisds worth mentioning that the Fermi level is a very sensitive
limitations due to the dgrent architectures used, the achievedquantity, especially in cases with band gaps, where very small
speed up is several orders of magnitude. Furthermore, itdéviations from the total number of electrons can shift the
worth noting the quadratic scaling (at best) of modern DFTFermi level to the other side of the band gap.
codes with system size as opposed to the linear scaling of NNSystematic Improvement with New Cases. Trans-

As a nal note, we performed a baseline comparison with thrability to new environments along with a capability for
model in reBOby training and testing our model on the samesystematic improvement is essential for an NN modedlih a
aluminum corgurations from the study. The accuracy of thegf ever growing data sets and need to explore newer

prediction is similar for both models: Reeported inre80  ¢on gurational environments. As suabt we decided to
is 0.9992, whereas in our model it is 0.9996. The majqgst the NN trained on data set 1 (Model 1) on the test
improvement is in the training time: 3&freported 56 h con gurations of data set 2 and afterward evaluate the

(also on a GPU), whereas our NN DOS model only requiregprovement in the predictions once the model is trained on
1Q min. Additionally, the prediction time |s_further reducethoth data set§igure 4 and b (gray) show the results for the
with our protocol due to the atomiagerprint (3 s) @ pean RMSE of predicted DOS and mean absolute error in the
opposed to the grid-pointgerprint in re80, requiring 20 s.  Fermi level calculation. The results on data set 1 are included
as a comparison baseline. As expected when using machine
RESULTS AND DISCUSSION learning models on unseen cases, the performance of Model 1
Figure 3summarizes the results of the model trained an@n data set 2is worse than on data set 1, for both the graphene
tested on data set 1. From a 5-fold cross-validation, tiefects, DS 2 (Defects), and for the highly disordered
predicted DOS curves have a mean root-mean-square-egpctures, DS 2 (2000 K). However, given the considerable
(RMSE) per atom of 0.0192 states/eV with a standardli €rence between the atomic environments and types of
deviation of 0.0004 states/eV, and a rR2an0.9756 with a  carbon hybridization between data set 1 and data set 2 (see
standard deviation of 0.0012. Using the separate test set fréth the results are still surprisingly good. Nevertheless, the
data set 1, we selected the best performing NN mod&® with model can be extended and improved by training on both data
= 0.977, RMSE = 0.0188 states*atom, and 1% highest sets 1 and 2 resulting in ModeFjure & and b (dark red).
error (HE) of 0.0716 states éXatom. These accurate metrics The drastic error decrease on data set 2 along with the slight
are reected inFigure 3where the NN DOS (red curve) error reduction on data set 1 illustrates the capability of the
follows very closely the reference DFT DOS (blue curvejnodel for systematic improvement as the data set size is
Likewise, the calculated Fermi level from the cumulatiexpanded with entirely new information. In addition, the
integral of NN DOS (dashed red line) coincides with the DFTspecic atom-based NN allows studying the atomic DOS of
Fermi level (dashed blue line). The dashed pink vertical lingpecic atoms and learning the chemical changes introduced to
represent the uncertainty in the predicted Fermi level. Morde electronic structure of the system by these defeci$ (see
information on the evaluation of the uncertainty can be fountbr an example).
in the SI. Total Energy Contribution. The culminating goal of
Besides an accurate DOS prediction, quantities such as bantidizing machine learning to emulated dramatically
gap requires a precise calculation of the Fermi level from thecelerate DFT is to bypass the computationally expensive
predicted DOSigure 8displays the histogram of the error in Kohn Sham equation by directly predicting the electronic
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structure. To realize this vision, the electronic structuréor large systems, we will develop a NN DOS predictor to
prediction requires highly accurate results of both thprovide immediate access to the electronic structure of
eigenvalues and the charge density in order to compute themplex polymeric structures composed of Spargp sp
total energy &3° hybridizationsgndmultiple elements. To achieve such a goal,
N2 we will extend the model to include multielemental systems
E= o S E M+ H (0] starting with hydrocarbons and progressively expand to
' c polymers with increasing chemical complexity. Second, to
continue work toward DFT emulation we will couple our NN
g BELOI, . E. DOS predictor along with a charge density predictor to
(n o (8) calculate the total energy of the system follewjiry The
) former pathway will subsequently feedob the latter,
where, , N By, B E,  are the charge density, number of gjlowing for molecular dynamics simulations of polymers
electrons, Hartree energy, exchange-correlation energy, @jMich preserve DFT accuracy and provide information on the

nuclear nuclear interaction energy, respectivelys the  electronic structure at each step, all within short computational
eigenvalue of theth Kohn Sham orbital. Irq § the rst times.

term 2 ;°° ; can be written in terms of the DOS as Despite the outstanding results of the present model, a
NJ2 E promising avenue for improvement .is the development of
2 = DOS( ) d alternate ngerprint representations in t_he form o_f NNs
i $ ) instead of hand-crafted features. While tigerprints

employed in the present work provide very good results,
while the remaining terms are known functions of the charggich hand-crafted features may impose a bias, limiting the
density (for a given level of theory). mapping between the structure and the DOS. By eliminating

As a nal assessment of the DOS prediction model, wgome of those constraints and allowing the NNc¢he best
evaluate the accuracy of the contribution to the total energyapping, a further increase in accuracy, versatility, and
from the predicted DOS and Fermi level usingFigure ¢ transferability is expected. Promising representations to be
and d display the parity plots of the predicted energyonsidered will employ spherical and icosahedral convolutional
contribution compared to the reference energy contributioNNs within an approach that still preserves the permutation,
calculated from the DFT DOS and Fermi level. Thetranslation, and rotation invariance of the atomic structure.
performance of Model 1 on both data sets is displayed in
Figure ¢. Model 1 successfully predicts the total energy AssOCIATED CONTENT
contribution with a mean absolute error (MAE) of 0.033 eV/_ . .
atom, below the chemical accuracy threshold of 0.043 eV; Supporting Information
atom (1 kcal/mol). Nonetheless, the results on graphene withhe Supporting Information is available free of charge at
defects and highly disordered structures at 2000 K displayh#ips://pubs.acs.org/doi/10.1021/acs.jpca.0c07458
decay in accuracy with an MAE of 0.112 eV/atom and 0.082
eV/atom, respectively. However, this lower accuracy can be
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