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Computational methodologies have been critical to our understanding of de-
fects at nanometer scales. These methodologies have been dominated by two
classes: quantum mechanics (QM)-based methods and semiempirical/classical
methods. The former, while accurate and versatile, are time consuming, while
the latter are efficient but limited in versatility and transferability. Recently,
machine learning (ML) methods have shown initial promise in bridging these
two limitations due to their accuracy and flexibility. In this work, the true
capability of ML methods is explored by simulating defects in platinum over
several length/time scales. We compare our results with density functional
theory (DFT) for atomic-level defect behavior and with experiments for na-
nolevel behavior. We also compare our predictions with several classical
potentials. This work aims to showcase the length/time scales attainable using
ML, as well as the complexity they are capable of capturing, demonstrating
that these methodologies may be effectively used, in the future, to bridge
experiments and QM methods.

INTRODUCTION

Atomistic computational techniques have been
instrumental in the exploration of material defects
at both atomic and nanometer length scales.1–7

These methods have historically fallen into two
broad categories: QM-based methods, e.g., density
functional theory (DFT),8,9 and semiempirical meth-
ods, e.g., the embedded atom method.10–16 While
both groups have been used to study a multitude of
materials phenomena,17–19 they both suffer from
serious shortcomings. QM methods, while able to
capture properties at a high level of fidelity, are
computationally expensive, which severely restricts
both the time and length scales that can be reliably
accessed through such simulations. Semiempiri-
cal/classical methods significantly reduce this cost
burden and allow for the exploration of length and
time scales that are not attainable with QM.
However, as such methods are parameterized to
tackle specific problems, they do not attain the same

level of versatility as QM methods, showing a steep
decline in accuracy away from their respective
reference data.

To this end, data-driven machine learning (ML)
methods have shown promise as a reliable alterna-
tive, bridging the gap in cost, accuracy, and trans-
ferability.20–28 Unlike their counterparts, ML
methods rely on functional forms, and parameteri-
zations of these functional forms, that are derived
from statistics, rather than physics. The accuracy of
these models will still decline during extrapolative
predictions, and in this regard, they are no better or
worse than semiempirical/classical methodologies.
However, ML approaches offer a number of advan-
tages over these methods; for instance, their pre-
dictive capabilities may be iteratively improved in a
systematic manner.1,29–37

Recently, ML methods have been deployed to
study a variety of defect properties in elemental
metals,38–40 including our previous work on plat-
inum.37,41 While the ML methods presented in those
works have shown great promise in their ability to
accurately predict atomic-level properties (at the
same time and length scales as their respective
reference data), with respect to DFT, phenomena
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requiring much larger time (> ns) and length scales
(> nm) have not been widely explored, or validated
(e.g., against experiments).

In this manuscript, we build upon our previous
ML force field for Pt37,41 by iteratively improving its
training data to predict a multitude of defect
properties in platinum over several length and time
scales. Atomic-level properties, such as grain bound-
ary and surface energies, as well as adatom and
dimer binding and adsorption energies on several
surfaces are calculated to show the capabilities of
the models for accurately capturing the complexity
and diversity of atomic-level defect properties.
Grain-coarsening simulations are also performed,
and compared with experimental observations.42

The remainder of this manuscript is organized as
follows: We first begin by providing a brief overview
of the adaptive generalizable neighborhood
informed (AGNI) methodology. Second, we discuss
our strategy to iteratively improve of these models
over previous protocols. We then discuss several
atomic-level properties of platinum for surfaces, line
defects, planar defects, and combinations of defects.
Finally, we discuss the temperature dependence of
the grain size evolution via molecular dynamics
simulations. The compilation of work presented in
this manuscript aims to reveal the potential of ML
methodologies for the study of materials phenomena
over large time and length scales, bridging the gap
between QM, semiempirical/classical, and experi-
mental methodologies.

COMPUTATIONAL DETAILS

AGNI Workflow

The AGNI platform consists of several key steps,
regardless of the property (atomic forces, potential
energy, stresses, and electronic structure) being
predicted: (1) generation of a diverse set of reference
data, (2) numerical encoding of local/structural
geometric information (fingerprinting), (3) training
a ML model given some subset of the reference data,
and (4) employing the final ML models in an MD
engine, capable of simulating the dynamic time
evolution of atomistic processes. In the following
sections we provide a brief explanation of steps 1, 2,
and 3, and we refer the reader to our previous works
for a more thorough understanding.29–31,36,37,43,44

Reference Data Generation

A comprehensive set of reference data, summa-
rized in Table I, was prepared for Pt in an accurate
and uniform manner in order to minimize the
numerical noise intrinsic to atomistic calculations.
All reference data were obtained using the Vienna
ab initio simulation package (VASP).45–49 The Per-
dew–Burke–Ernzerhof (PBE) functional50 was used
to calculate the electronic exchange–correlation
interaction. Projector augmented wave (PAW)
potentials51 and plane-wave basis functions up to

a kinetic energy cutoff of 500 eV were used. All
projection operators (involved in the calculation of
the nonlocal part of the PAW pseudopotentials)
were evaluated in reciprocal space to ensure further
precision. Monkhorst–Pack52 k-point meshes were
carefully calibrated for each atomic configuration to
ensure numerical convergence in both energy and
atomic forces.

Fingerprinting Atomic Configurations

A hierarchical representation of an atom’s local
coordination was created to capture geometric
information that is mapped directly to properties
such as the total potential energy, atomic forces,
and stresses. This hierarchy aims to capture unique
components of an atom’s local neighborhood with
features resembling scalar, vector, and tensor quan-
tities. The functional forms of all atomic-level
fingerprint components are defined as follows:43,44
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with ri and rj being the Cartesian coordinates of
atoms i and j, and rij ¼ jr j � r ij. a and b represent
any of the three directions x, y, or z. The rk values
control the width of the Gaussian functions, and are
determined via a grid-based optimization process.31
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which smoothly decays towards zero, has a cutoff
radius Rcut chosen to be 8 Å. ck is a normalization
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(for the force model, this

normalization constant was set to 1).
To learn rotationally invariant properties, such as

the total potential energy, a separate step is
required to map the atomic fingerprints described
above to rotationally invariant versions, defined
as37,43,44
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For global properties, such as potential energy
and stress tensor, the atomic fingerprints described
above are not sufficient, as they cannot map directly
to a global property, only per-atom quantities.
Therefore, a second process mapping the atomic
fingerprints to a single, structural fingerprint is
required.43 In this work, the ML models that learn
the potential energy, as well as the stress tensor,
employ such a procedure. This mapping involves
summing the atomic fingerprints, over all atoms in
the system, and taking the first moment of this sum,
M1ðXÞ, with X representing the sum of the atomic
fingerprints. The first moment can be interpreted as
the average atomic environment of the system. The
final forms of all the fingerprints for energy and
stresses are presented in Supplementary Table S1.

Machine Learning

After the final fingerprint forms have been
crafted, and a subset of our total reference data
has been sampled, we employ Kernel ridge regres-
sion (KRR) to establish a mapping between our
fingerprints and the atomic forces, potential energy,
and total stress tensor. This learning scheme em-
ploys a similarity-based nonlinear kernel to create a
mapping between the reference fingerprints and the
desired property using a functional form described
as1,29–32,37
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Here the summation runs over the number of
reference environments Y in a given model’s train-
ing set. As each model is trained separately, there is
no restriction that each model must have the same
number of training points. P symbolizes the desired

property (total potential energy, stress tensor com-
ponents, or atomic forces), with X being the finger-
print of a new configuration. dXY represents the
Euclidean distance between fingerprints X and Y,
calculated within the feature hyperspace, and r is a
length-scale parameter. During the model’s training
phase, the regression weights aY and the length
scale r are determined via a regularized objective
function, which is optimized through a fivefold
cross-validation process. At the end of the model
construction/optimization process, three indepen-
dent ML models for energy, forces, and stresses
exist (see Supplementary Table S3 for all ML
hyperparameters).

Simulation Details

Three embedded atom method (EAM) potentials,
henceforth referred to as EAM-B4 EAM-Z,5 and
EAM-F6 (due to their respective authors), were
chosen for this work and used for comparison with
the ML platform presented in this work. All EAM
potentials were chosen for their ability to accurately
capture a variety of bulk properties for Pt with
respect to experimental evidence. Details regarding
the level of theory for all DFT calculations used in
this work can be found in the reference data section,
and all details regarding the ML scheme used can
be found in the previous three sections. This ML
scheme has been benchmarked against both EAM
and DFT, for the calculation of energy, forces, and
stresses, and is approximately five orders of magni-
tude faster than DFT, but roughly two orders of
magnitude slower than EAM. Throughout this
work, three distinctive classes of calculations are
used to study materials properties over several
length scales: (1) geometry optimizations, (2)
nudged elastic band calculations, and (3) molecular
dynamics simulations.

Table I. Summary of reference dataset prepared for platinum ML model generation

Defect Type Systems Temperature (K)
ML Trained

on

Defect-free Bulk (w/o strain) 300, 1000, 2000 Yes
Strained bulk Bulk (w/o strain ± 7%) 300, 1000, 2000 Yes
Monovacancy Bulk with one vacancy 0 (NEB), 1000, 1500, 2000 Yes
Divacancy Bulk with divacancy 0 (NEB), 1000, 1500, 2000 Yes
Clustered vacancies Bulk with four vacancies 1000, 1500, 2000 Yes
Grain boundary Assorted GBs between

P
3 and

P
25 0 (relaxed), 300, 1000, 1500 Yes

Grain boundary + va-
cancy

Assorted GBs between
P

3 and
P

25 0 (relaxed), 0 (NEB) No

Surface Slabs corresponding to GB planes 0, 300, 600, 1000, 1500 Yes
Surface + adatom/dimer Adatoms and dimers on (111), (110), and (100) 0 (relaxed), 0 (NEB) No

The data are divided into subsets based on the type of defect present. T = 0 K designates either nudged elastic band (NEB) calculations or
geometry relaxations, while T> 0 K indicates MD calculations. The final column (‘‘ML Trained on’’) indicates whether or not the final ML
models included that row of data in their respective training sets
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Geometry optimizations were performed using
both VASP (for DFT) and the large-scale
atomic/molecular massively parallel simulator
(LAMMPS) package53 (for EAM and ML). These
calculations were used to gather information such
as the grain boundary energy, surface energy, work
of separation energy, vacancy formation energy for
in-plane vacancies of grain boundaries, and the
relaxed structure of both edge and screw disloca-
tions. All grain boundary configurations used in this
work were constructed using Aimsgb software.54 In
this work, grain boundary energy was calculated as

cGB ¼ EGB � nGBE0

2AGB
; ð8Þ

with nGB being the number of atoms in the grain
boundary structure, AGB being the area of the grain
boundary plane, and E0 being the cohesive energy.
The surface energy was calculated using the same
formula, substituting nGB for nSurf , and AGB for
ASurf . A factor of 2 is used in both cases to account
for the two identical surfaces, or grain boundaries,
that are contained in each unit cell. The work of
separation energy was calculated as

Wsep ¼ 2cSurf � cGB: ð9Þ

The grain boundary vacancy formation energy,
with respect to both a bulk configuration as well as a
pristine grain boundary environment, was also
calculated. In both cases, the vacancy was placed
at the center of the boundary plane. For boundaries
that span multiple layers, the vacancy was placed as
close to the midpoint (normal to the boundary) as
possible. The vacancy formation energy with respect
to bulk was calculated as

Evac ¼ EGBþvac � nGBþvacE0; ð10Þ

with nGBþvac being the number of atoms in the grain
boundary structure containing a single vacancy,
and EGBþvac being the corresponding energy of the
structure. When using the pristine grain boundary
as the reference, Eq. 10 is used, but E0 is substi-
tuted for EGB, where EGB is the per-atom energy of
the grain boundary system without a vacancy.

Adsorption energies for both a single adatom as
well as a dimer were calculated on the Pt (111),
(110), and (100) surfaces, using an 80-, 144-, and
180-atom slab, respectively. The binding energy for
a dimer on each of these surfaces was also calcu-
lated. The adsorption energy was calculated as

Eads ¼ � 1

N
ðEslabþadsorbate � ðEslab þNEatomÞÞ: ð11Þ

N is defined as the number of adsorbates in the
system. Eslabþadsorbate is defined as the energy of the
slab with the adsorbate bonded to the surface, Eslab

is the energy of just the slab (no adsorbate), and
Eatom is the energy of a single adsorbate atom in a
box. The binding energy of a dimer is also defined as

Ebind ¼ Eseparate � Etogether; ð12Þ

where Eseparate is defined as the energy of a system
containing a slab with the two atoms in the dimer
placed as far away from each other as possible.
Etogether is defined as the energy of the slab with the
dimer bonded to the surface, and is equivalent to
Eslabþadsorbate for the case of the dimer.

In all scenarios, both the ionic positions and the
cell volume were allowed to change. Electronic
convergence terminated at an energy difference of
10�4 eV, and ionic relaxations were considered
converged at an energy difference of 10�2 eV, for
all calculations.

Nudged elastic band (NEB) calculations, along
with the climbing image formalism,49 were
employed to determine the minimum-energy path-
way of a single vacancy diffusing both along, and
away from, the boundary plane, of theP

3½111�ð111Þ grain boundary, as well as the acti-
vation energies of several adatom diffusion mecha-
nisms on the (111), (110), and (100) surfaces.
Similarly to the geometry optimizations, both VASP
(DFT) and LAMMPS (EAM and ML) were used. In
all scenarios, both the ionic positions and the cell
volume were allowed to change. Electronic conver-
gence terminated at an energy difference of 10�4 eV,
and ionic relaxations were considered converged at
an energy difference of 10�2 eV, for all calculations.

Molecular dynamics simulations, using
LAMMPS, were performed to study how grain sizes
are affected by temperature. A 51 � 51 � 51 super-
cell containing 508,971 atoms was used. The initial
distribution of grains was created using the Voronoi
tessellation.55 NPT simulations, run for 1 ns at
P ¼ 0, were used to equilibrate the supercell volume
at a given temperature. Simulations were per-
formed between T = 300 K and T = 700 K, to align
with experimental results.42 Previous computa-
tional work indicates that 1 ns is sufficient to allow
for equilibration among grain sizes at the temper-
atures and system size considered in this work.56,57

RESULTS AND DISCUSSION

Iterative Improvement of ML Models

In our previous work, three independent ML
models (for energy, atomic forces, and the total
stress tensor) were created to study elastic, diffu-
sive, and thermal properties of platinum. However,
these systems contained either strained bulk, or
point defect configurations. More complex defects,
such as planar and line defects, and combinations of
defect classes were not present in the ML model’s
respective training sets. Before performing simula-
tions of these new systems, model predictions of
potential energy, atomic forces, and the total stress
tensor were compared with the reference DFT data.
Parity plots, shown in Fig. 1 (top), indicate that,
while the previous ML models perform well for
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grain boundary configurations, they cannot make
reliable predictions on surface environments.
Therefore, these systems must be added to the
three model’s training sets before performing any
simulations.

Using an iterative improvement scheme developed
for our ML force models,36 failed configurations
were continuously added to all three ML models’
training sets until statistical metrics reached con-
vergence. From Fig. 1 (bottom), a clear improve-
ment in all ML models can been seen, and statistics
for the final retrained ML models are presented in
Supplementary Table S2. With converged statistical
metrics showing significant improvement in the
model performance, when encountering previously
disparate domains in the configuration space, the
ML models can now be reliably deployed to these
regions during real simulations.

Edge and Screw Dislocations

Edge and screw dislocations play a crucial role in
the plasticity and fracture of metals.58–61 Therefore,
accurately predicting the geometry of dislocation

lines is of paramount importance. To this end, we
studied 1

2 ½110� edge and screw dislocations. As Pt is
a face-centered cubic (fcc) metal, the most favorable
slip system is 1

2 < 110>111,62 We employ the dislo-
cation extraction algorithm (DXA) to determine the
geometric information around the dislocation core.
Using a 1 � 1 � 3 supercell (due to the require-
ments of the DXA algorithm,63 and the reduction in
the z-direction required for the system sizes needed
to perform a DFT relaxation) of the relaxed dislo-
cation system, the dislocation type, dislocation line
length, and the dislocation’s Burgers vector were
determined.

When considering the edge dislocation, upon
relaxation, the dislocation type determined by the
DXA analysis was 1

2 < 110> for all levels of theory
used in this work. The dislocation line length was
calculated as 14.61 Å for DFT, and 14.61 Å, 14.22 Å,
13.89 Å, and 13.91 Å for ML, EAM-B, EAM-F, and
EAM-Z, respectively. The Burgers vector for all
models was calculated as 1

2 ½0�1�1�. Upon relaxation,
the initial dislocation core split into two cores that

Fig. 1. Parity plots of the energy, forces, and stresses predicted on the total set of grain boundary (red) and surface (blue) reference data before
(top) and after (bottom) the ML models iterative improvement procedure.
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migrated away from each other along the disloca-
tion’s Burgers vector. The final core centers were
located 9.31 Å apart for DFT and 9.11 Å, 15.03 Å,
18.05 Å, and 18.05 Å for ML, EAM-B, EAM-F, and
EAM-Z, respectively. The agreement between ML
and DFT can be seen in both the dislocation line
length as well as the separation distance between
dislocation cores. While the calculated dislocation
line lengths for all EAM potentials will not neces-
sarily agree with DFT due to differences in the
equilibrium lattice parameters, there does exist
substantial disagreement in the core separation
distance between the EAM models used in this work
and DFT.

When considering the screw dislocation, upon
relaxation, the dislocation type determined by the
DXA analysis was 1

2 <110> for all models used. The
dislocation line length was calculated as 8.439 Å for
DFT, and 8.58 Å, 8.37 Å, 8.27 Å, and 8.28 Å for ML,
EAM-B, EAM-F, and EAM-Z respectively. The
Burgers vector for all models was calculated as
1
2 ½0�1�1�. Unlike the edge dislocation, the initial screw
dislocation core remained intact after relaxation for
all levels of theory. While there is no discernible
difference between ML/EAM and DFT for the
relaxed screw dislocation structure, there exists a
substantial discrepancy between the relaxed EAM
and DFT edge dislocation structure. This disparity
is alleviated when using the ML models, which
show near-perfect agreement with DFT.

Clean Surfaces

In this work, we calculate properties of clean
surfaces, such as the surface energy and the inter-
layer relaxation difference for a variety of low-index
surfaces. Figure 3b shows all the surface energy
calculations for ML and the three EAM potentials
with respect to the corresponding DFT prediction.
Statistically, our ML models have a root-mean-
square error (RMSE) of 0.08 J/m2 with respect to
the DFT grain boundary energies. EAM-B, EAM-Z,
and EAM-F yield RMSE values of 0.10 J/m2, 0.62 J/
m2, and 0.05 J/m2, respectively. Here, EAM-F per-
forms slightly better than our ML models, though
both models perform equally well as the surface
complexity increases (see Supplementary Table S4).

The interlayer relaxation difference, dd12 and
dd23, was calculated for the (111), (110), and (100)
surfaces. Table II provides the calculated values,
along with experimental predictions where avail-
able.64,65 For the (111) surface, dd12 is calculated as
+0.92% for DFT, in good agreement with experi-
ments, which indicate a positive relaxation differ-
ence. While our ML models indicate a smaller
percent change than both DFT and experiments,
they do predict a positive interlayer relaxation
difference. This is in contrast with all EAM poten-
tials, which predict a negative interlayer relaxation
difference. Experimental predictions indicate that

there is no substantial difference between the
second and third layers, though both DFT and ML
yield a small negative value for dd23. However all
EAM potentials predict a positive difference.

For the (110) surface, dd12 is calculated as
�15.92% by DFT, in good agreement with experi-
ments. Our ML models again predict a value
roughly half that of the DFT value, but correctly
capture its negative nature. Among the EAM poten-
tials, there exists a substantial spread, with EAM-F
performing extremely well, EAM-Z performing com-
parably to our ML models, and EAM-B showing
significant deviation from both DFT and experi-
ments. For dd23, DFT deviates significantly from
experiments, with DFT predicting a positive inter-
layer relaxation difference and experiments indi-
cating a negative difference. As our ML models are
trained on DFT data, they are expected to follow its
trend. Our ML models are in near-perfect agree-
ment with DFT, and all levels-of-theory indicate
that a positive dd23 occurs.

For the (100) surface, there is a significant spread
among experiments regarding dd12, with some
predicting a positive difference and others a nega-
tive difference. DFT, ML, and EAM-B fall within the
possible values indicated by experiments, while
both EAM-F and EAM-Z fall outside of the exper-
imental spread. As no experimental values exist for
dd23, we can only compare our ML models with
DFT, indicating good agreement. Both EAM-B and
EAM-F deviate significantly from DFT, though
EAM-Z is in good agreement, though we would like
to emphasize that the true value is unknown.

Surfaces with Adsorbates

In this section, we discuss the introduction of
adatoms onto the (111), (110), and (100) surfaces.
First we consider a single adatom on each surface.
Upon relaxing each system, the adatom adsorption
energy, and distance between adatom and surface
atoms is calculated, and can be found in Table II.
Our ML models, as well as all EAM potentials,
agree well with DFT with regards to the bond
distance, when considering the differences in equi-
librium lattice parameter. However, our ML models,
while predicting the exact trend in adsorption
energy with respect to DFT, yields values approx-
imately 1 eV lower than DFT. For all surfaces, there
exists a spread among EAM values, but the trend in
adsorption energy with respect to DFT is captured
exactly.

The activation energy for adatom diffusion is also
considered, calculated via the NEB method, and can
be found in Table II (for plot see Supplementary
Fig. S1). For all surfaces, two mechanisms are
considered: (1) hop and (2) two-atom exchange. For
the (111) surface hop and exchange, our ML models
are in excellent agreement with both DFT and
experiments.66,67 All EAM potentials significantly
underestimate the transition state energy of the hop
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mechanisms, but perform well for the exchange
profile. For the (110) surface hop and exchange, our
ML models are again in excellent agreement with
both DFT and experiments.68 All EAM potentials
significantly underestimate the activation energy of
both mechanisms, with only EAM-B predicting a
reasonable energy barrier for the exchange mecha-
nism. For the (100) surface hop and exchange, our
ML models are once again in excellent agreement
with both DFT and experiments.67 The various
EAM potentials fare slightly better here, though
significant discrepancies exist for EAM-B’s
exchange and EAM-Z’s hop predictions.

We finally consider the adsorption and binding
energies of a dimer on the (111), (110), and (100)
surfaces, which can be found in Table II. The DFT-
calculated energies are in good agreement with
reported literature values,69 where available. Sim-
ilarly to the adatom adsorption energy, our ML
models, while predicting the exact trend in the
dimer adsorption energy with respect to DFT, yields
values approximately 1 eV lower than DFT. For all
surfaces, there exists a spread among EAM pre-
dicted values, but again, the trend in dimer

adsorption energy with respect to DFT is captured
correctly. Our ML models predict the dimer binding
energy, on all surfaces, to be in excellent agreement
with the calculated DFT values. EAM-B performs
well for all surfaces, while EAM-F deviates from
DFT on both the (110) and (100) surfaces, and EAM-
Z deviates significantly from DFT for all surfaces
considered.

Grain Boundaries

Accurately predicting properties, such as the
grain boundary energy, surface energy, and work
of separation energy, is an important step in
simulating the complex behavior of material defect
classes.70–75 Recent work has provided a simple
prescription of the creation of grain boundary
structures, as well as a list of low-sum grain
boundary, surface, and work of separation energies
to benchmark our DFT values against.76 Figure 2
provides the reader with a visual representation of
all grain boundaries considered in this work, while
Fig. 3a encapsulates the data as a parity plot (see
Supplementary Table S5 for more details).

Table II. Properties of low-index platinum surfaces

Property Exp. DFT ML EAM-B EAM-F EAM-Z

(111)
dd12 +1.1 ± 0.5 +0.92 +0.24 �1.29 �4.11 �2.32
dd23 0.0 �0.71 �0.54 +1.41 +1.27 +0.47
dadatom 2.57 2.54 2.56 2.35 2.35
E1;hop 0.26 ± 0.02 0.32 0.28 0.09 0.03 0.05
E1;exc 1.70 1.75 1.70 0.82 1.90
E1;ads 4.45 3.75 4.39 4.44 3.97
E2;ads 4.61 3.89 4.62 4.90 4.37
E2;bind 0.54 0.60 0.42 0.94 0.82
(110)
dd12 �18.0 ± 5.0 �15.92 �8.29 �3.37 �14.92 �8.76
dd23 �10.0 ± 5.0 +8.53 +9.00 +3.09 +3.99 +3.36
dadatom 2.64 2.74 2.68 2.54 2.59
E1;hop 0.84 ± 0.1 1.10 0.74 0.21 0.23 0.23
E1;exc 0.78 ± 0.1 0.91 0.81 0.50 0.41 0.24
E1;ads 5.42 4.54 5.08 5.44 5.15
E2;ads 5.53 4.66 5.25 5.63 5.41
E2;bind 0.22 0.26 0.33 0.38 0.53
(100)
dd12 +0.2 ± 2.6 �2.46 �1.41 +0.03 �4.27 �4.25
dd23 �0.80 �0.94 +2.32 +3.54 �0.54
dadatom 2.63 2.70 2.61 2.40 2.47
E1;hop 1.06 0.65 0.65 0.68 0.95
E1;exc 0.47 ± 0.1 0.43 0.41 0.83 0.29 0.36
E1;ads 5.22 4.08 4.75 5.06 4.45
E2;ads 5.31 4.30 4.91 5.22 4.74
E2;bind 0.20 0.13 0.34 0.47 0.56

All energy values are given in units of eV, while dadatom is shown in Å, and ddxy is provided in %. All properties shown here are calculated
using T = 0 K methods (optimizations or NEB)
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Statistically, our ML models have a root-mean-
square error (RMSE) of 0.13 J/m2 with respect to
the DFT grain boundary energies. EAM-B, EAM-Z,

and EAM-F yield RMSE values of 0.19 J/m2, 0.17 J/
m2, and 0.23 J/m2, respectively. From these values,
the agreement between DFT and our ML models

Fig. 2. All grain boundary structures predicted in this work, prior to relaxation. Colors correspond to an atom’s coordination environment.

Fig. 3. Grain boundary energy (a), surface energy (b), and work of separation energy (c) calculated for all grain boundaries and surfaces studied
in this work. The parity line corresponds to the DFT prediction.
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can clearly be seen. It is also worth noting that the
agreement between DFT and ML, compared with
the agreement between DFT and EAM, improves as
the complexity of the boundary plane increases.
This indicates that our ML models could be used to
accurately explore the grain boundary energy for
boundaries more complex than

P
25; a region in

which the EAM potentials considered here are likely
to deviate from DFT (see Supplementary Table S7
for more details).

The combination of surface and grain boundary
energies can be used to predict the work of separa-
tion energy, or the energy required to cleave the
grain boundary into two free surfaces. Figure 3c
shows these data as a parity plot. Statistically, our
ML models have an RMSE of 0.17 J/m2 with respect
to the DFT grain boundary energies. EAM-B, EAM-
Z, and EAM-F yield RMSE values of 0.26 J/m2,
1.17 J/m2, and 0.29 J/m2, respectively. As our ML
models are in good agreement with DFT for both
grain boundary and surface energies, the work of
separation energies are also predicted extremely
well. As all EAM potentials considered in this work
perform inadequately for either surface energies or
grain boundary energies, the combination of them
compounds their errors (see Supplementary
Table S5 for more details).

Grain Boundaries with Vacancies

In a dynamic environment, point defects diffuse
in and around grain boundaries, making their way
from one grain to another.77–79 Therefore, under-
standing these environments at the atomic level
allows us to fundamentally understand whether
grain boundaries aid or prohibit the diffusion of
point defects such as vacancies. To this end we
calculated the vacancy formation energy of the
grain boundaries discussed in the last few para-
graphs. However, the vacancy formation energy was
calculated with respect to two distinct reference
environments, providing unique insight into how
vacancies affect the stability of both grain bound-
aries, as well as the vacancy diffusion process.

The first reference environment considered was a
perfect bulk configuration. By using a bulk config-
uration as the reference, a direct comparison with
the bulk vacancy formation energy can be made,
providing insight into the thermodynamic stability
of a vacancy within the grain boundary, compared
with the bulk-like region of a grain. Using Eq. 10
and following the prescription described earlier in
this work, the vacancy formation energy was calcu-
lated for all grain boundaries studied. Figure 4a
provides the results of these calculations as a parity
plot (see Supplementary Table S6 for more details).
Statistically, our ML models have an RMSE of
0.26 eV with respect to the DFT grain boundary
energies. EAM-B, EAM-Z, and EAM-F yield RMSE
values of 1.43 eV, 1.77 eV, and 1.58 eV, respec-
tively. Our ML models clearly show a significant

improvement over the existing EAM potentials, for
every considered grain boundary configuration.

It should also be noted that such environments
were not included in the ML model’s respective
training sets. Therefore, we conclude that the ML
models can reliably extrapolate to such configura-
tion domains, using precursor information such as
pristine grain boundaries, and vacancies in a bulk
configuration. Such an ability is crucial when
simulating the phenomena occurring in a material
containing hundreds of thousands (or more) of
atoms, as it is impossible to train the ML models
on every possible permutation of atomic configura-
tions during a dynamic process.

The second reference environment considered
was a grain boundary configuration without a
vacancy. By using the grain boundary as the
reference, one can compare the relative thermody-
namic stability of the pristine grain boundary
versus the boundary in the presence of a vacancy.
Here, a positive value indicates that the pristine
grain boundary would be more energetically favor-
able, compared with a negative value, which indi-
cates that the vacancy within the boundary plane is
more favorable. Figure 4b provides the results of
these calculations as a parity plot (see Supplemen-
tary Table S6 for more details). Statistically, our ML
models have a root-mean-square error (RMSE) of
0.66 eV with respect to the DFT grain boundary
energies. EAM-B, EAM-Z, and EAM-F yield RMSE
values of 1.30 eV, 4.45 eV, and 5.64 eV,
respectively.

It can be seen from Fig. 4b that many prediction
made by the EAM potentials actually indicate that
the vacancy within the plane is more energetically
stable, a result in stark contrast to DFT. Therefore,
while the EAM potentials provide a good under-
standing of properties for the grain boundaries and
surfaces, the introduction of a second defect within
these configurations pushes their predictions into
pure extrapolation, where their accuracy breaks
down. However, our ML models clearly have the
ability to make reliable predictions in this regime,
and are a clear improvement over the existing
models for Pt.

However, the question of how likely it is that
diffusion of vacancies along or away from the grain
boundary plane will occur is not completely
answered by the calculations above. To truly probe
the kinetics of the diffusion process itself, NEB
calculations were used to study these mechanisms.
Here we consider a vacancy diffusing in and around
the

P
3ð111Þ½111� grain boundary plane. A 3 � 3 � 1

supercell containing 215 atoms was used (compared
with the 27-atom cell used to calculate the grain
boundary energy) to avoid the vacancy interacting
with its periodic image. Due to the supercell sizes
required to achieve this, only

P
3ð111Þ½111� was

considered in this work, and we leave a more
thorough analysis for future work.
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Figure 5 shows the minimum energy profile for
the two diffusion pathways: (1) a vacancy moving to
an adjacent site within the grain boundary plane,
defined as moving from reaction coordinate 0 to 4 in
Fig. 5, and (2) a vacancy moving along the grain
boundary normal into the bulk portion of the grain,

defined as moving, in order, from reaction coordi-
nate 0 to 1, then 1 to 2, and finally 2 to 3 in Fig. 5.
From these calculations, one can see an increase in
the DFT transition state energies as the vacancy
diffuses away from the grain boundary plane, but
also a negative energy difference between the initial

Fig. 4. Vacancy formation energy of single vacancy located inside a grain boundary plane, using (a) bulk and (b) corresponding perfect grain
boundary, as the reference system.

Fig. 5. NEB-calculated diffusion pathways for a monovacancy diffusing in and away from the
P

3ð111Þ½111� grain boundary plane. Reaction
coordinates correspond to the pathway taken by the vacancy. The pathway taken along each reaction coordinate is described visually above the
energy profiles.
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configuration (vacancy in plane) and the final

configuration (vacancy 10 Å away from boundary
plane), which is consistent with the thermodynamic
properties discussed previously. Our ML models
follow this trend, lining up with both DFT, but also
the ML predictions of the grain boundary vacancy
formation energy.

However, the EAM potential predictions disagree
with not only DFT but also with each other. All
three EAM potentials predict a unique relationship
between the initial and final configurations, for the
pathway moving the vacancy away from the bound-
ary plane. Only EAM-Z predicts the correct quali-
tative relationship, in that the final configuration is
lower in energy than the initial configuration.
However, this comes at the cost of transition state
energies being nearly four times lower than that of
DFT, indicating that the diffusion mechanism
occurs more frequently at lower temperatures.
EAM-B and EAM-F, while predicting more accurate
transition state energies, indicate that the vacancy
is either equally likely, or more likely, to end up
staying within the boundary plane compared with
migrating into the bulk-like region. This is incon-
sistent with both the DFT-NEB prediction and also
the respective EAM calculations of the grain bound-
ary vacancy formation energy, indicating that these
EAM potentials are not versatile enough to study
these configuration spaces.

Grain Coarsening

While the previous section aimed to capture an
atomic-level understanding of different defect
classes, and their interactions with each other,
larger length and time scales must be explored to
truly connect with experimental observations. To
this end, we consider the phenomena of grain
coarsening, as a function of temperature, through
MD (NPT) simulations, in which the ML stress
model is used to drive changes in the cell volume.
Here, we aim to connect to experimental observa-
tions of annealing nanocrystalline platinum during
an irreversible recovery process42 by calculating the
average grain size as a function of temperature.

Experimentally, below 175�C, there is no change
in the average grain size observed, outside of
statistical fluctuations. It has been proposed that
this behavior is due to the relaxation of unsta-
ble grain boundaries to their respective
metastable configurations.42 Between 175�C and
200�C, the mean grain size begins to increase, and
continues to increase through 325�C.

Figure 6 (top) shows the distribution of grain
sizes, along with a fit, normalized Gaussian func-
tion, for several temperatures around the transition
point between metastable grain-boundary transi-
tion, and grain growth. Figure 6 (bottom) shows the
mean grain sizes plotted as a function of each
temperature studied in this work (see Supplemen-
tary Fig. S2 for more details). The NPT simulations

performed using our ML models predict a transition
point at exactly the same temperature as experi-
ments, showing excellent agreement between ML
and experiments. We also extend the temperature
range beyond that of experiments, to 425�C. While
our MD simulations indicate that grain growth
plateaus between 325�C and 350�C, such a feature
could be an artifact of the system size, and larger
system sizes may not yield such behavior.

There are two critical pieces of information to note
from these MD simulations. First, we emphasize
here that, with the system sizes considered in this
work, we cannot attain mean grain sizes for direct
comparison with experiments. Indeed, previous MD
work on grain growth has indicated that system
sizes containing more than 16 million atoms would
be needed to quantitatively compare the grain
structure with experiments. The aim of this work
is not to predict the exact grain structure, but
rather to determine the threshold temperature for
grain growth.

CONCLUSION

A variety of defect classes are studied, over length
scales ranging from a few angstroms to tens of
nanometers, using machine learning models of
atomic forces, potential energy, and stress, trained
on DFT data. Thermodynamic properties of grain
boundaries, such as the grain boundary energy,
work of separation energy, and vacancy formation
energy of a vacancy within the grain boundary,
were calculated for 12 grain boundaries. The min-
imum-energy pathway for vacancy diffusion along,
and away from, the

P
3ð111Þ½111� grain boundary

was also studied. Surface energy was calculated for
the surfaces corresponding to each grain boundary.
A more detailed analysis of surface phenomena on
Pt (111), (110), and (100), involving adatom and
dimer adsorption energy, dimer binding energy, and
activation energy of a single adatom either hopping
on the surface, or exchanging places with a surface
atom, was also performed. Finally, the growth of
grains was predicted via MD simulations, employ-
ing systems containing over half a million atoms.
When possible, these results were compared with
DFT and EAM calculations, or directly with
experiments.

The ML models presented in this work show a
clear improvement over current EAM potentials,
when considering the predictions made over all of
the various tests performed in this work. The ML
models used here also represent a paradigm shift, in
that they were not constructed from scratch to
calculate the properties studied in this work.
Rather, these ML models were iteratively improved,
using a previous ML model as a starting point. They
also do not contain reference data for all of the
environments studied here, indicating their extrap-
olative power. Using ML models, with the accuracy
of DFT and the speed of classical/semiempirical

Multiscale Modeling of Defect Phenomena in Platinum Using Machine Learning of Force
Fields



models, allows us to accurately and reliably study
properties that are impractical to compute using
DFT. This work adds another layer of validation
that ML models can make reliable predictions over
multiple length and time scales, and solidifies ML
as a vital tool in the study of atomic and nanoscale
research.
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