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Abstract

The Materials Genome Initiative has brought about a paradigm shift in the design
and discovery of novel materials. In a growing number of applications, the
materials innovation cycle has been greatly accelerated as a result of insights
provided by data-driven materials informatics platforms. High-throughput com-
putational methodologies, data descriptors, and machine learning are playing
an increasingly invaluable role in research development portfolios across both
academia and industry. Polymers, especially, have long suffered from a lack of
data on electronic, mechanical, and dielectric properties across large chemical
spaces, causing a stagnation in the set of suitable candidates for various
applications. The nascent ficld of polymer informatics seeks to provide tools and
pathways for accelerated polymer property prediction (and materials design) via
surrogate machine learning models built on reliable past data. With this goal
in mind, we have carefully accumulated a dataset of organic polymers whose
properties were obtained either computationally (bandgap, dielectric constant,
refractive index, and atomization energy) or experimentally (glass transition
temperature, solubility parameter, and density). A fingerprinting scheme that
captures atomistic to morphological structural features was developed to numer-
ically represent the polymers. Machine learning models were then trained by
mapping the polymer fingerprints (or features) to their respective propertics.
Once developed, these models can rapidly predict properties of new polymers
(within the same chemical class as the parent dataset) and can also provide
uncertainties underlying the predictions. Since different properties depend on
different length-scale features, the prediction models were built on an optimized
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set of features for each individual property. Furthermore, these models are
incorporated in a user friendly online platform named Polymer Genome (www.
polymergenome.org). Systematic and progressive expansion of both chemical
and property spaces are planned to extend the applicability of Polymer Genome
to a wide range of technological domains.

18.1 Introduction: Applications of Machine Learning
in Materials Science

The past few years have been witness to a surge in the application of data-driven
techniques to a broad spectrum of research and development fields. The discipline
of machine learning [1], responsible for bringing such techniques to light, has seen
multiple breakthroughs over the past two decades. One of the factors responsible
for such rapid advancements in the field is the development of novel algorithms and
quantitative approaches capable of learning any arbitrary mapping between a given
input and the corresponding output. The increased availability of vast amounts of
data and the reduction in the cost of fast computational resources are other reasons
that have abetted in the preeminence of the field of machine learning.

The materials science and chemistry communities have greatly benefited from
machine learning approaches over the past few years. In these communities, there
have been many large-scale efforts to curate accurate and reliable databases of
materials properties (both computational [2-4] and experimental). Large-scale
programs such as the Materials Genome Initiative [5] (in the USA), NOMAD [6] (in
Europe), and MARVEL [7] (in Switzerland) have contributed to the development of
novel database infrastructures tailored to materials science challenges and have also
resulted in high-throughput frameworks capable of leveraging the power of modern
high-performance computing facilities [8,9].

In materials science, the increasing availability of large amounts of data (both
computational and experimental) has led to the prominent field of materials
informatics [10-24]. The overarching goal of the field materials informatics is
to accelerate the development of novel materials for specific applications. To this
end, the materials science community has used machine learning to accelerate
various stages of the materials discovery pipeline. For example, a variety of machine
learning force-fields [25-28] have been developed to provide rapid predictions of
energies and forces with quantum-mechanical accuracy. Other approaches involve
the utilization of machine learning approaches to bypass the Kohn—Sham equations
to directly obtain important electronic properties such as the charge density [29].

This chapter, however, focuses on the ability of surrogate models to directly
predict higher length-scale properties of materials. As shown in Fig. 18.1, the
measurement of materials properties has traditionally involved computationally
expensive quantum-mechanical simulations or perhaps the utilization of a time-
consuming or laborious experimental technique. A novel paradigm has emerged in
recent years wherein the properties of materials can be directly and rapidly obtained
using predictive frameworks employing machine learning methodologies.
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Fig. 18.1 The top two workflows indicate how the physical properties of materials can be obtained
using traditional computational or experimental pipelines. Recent efforts, such as the Polymer
Genome paradigm, seeks to accelerate the prediction of materials properties using machine
learning approaches

A specific example where such a paradigm has been of great utility is the
nascent field of polymer informatics. Polymers form an important (and challenging)
materials class and they are pervasive with applications ranging from daily products,
e.g., plastic packaging and containers, to state-of-the-art technological components,
e.g., high-energy density capacitors, electrolytes for Li-ion batteries, polymer light-
emitting diodes, and photovoltaic materials. Their chemical and morphological
spaces are immensely vast and complex [30], leading to fundamental obstacles
in polymer discovery. Some recent successes in rationally designing polymer
dielectrics via experiment-computation synergies [10, 11, 19,23, 31-38] indicate
that there may be opportunities for machine learning and informatics approaches in
this challenging research and development area.

We have created an informatics platform capable of predicting a variety of
important polymer properties on-demand. This platform utilizes surrogate (or
machine learning) models, which link key features of polymers to properties, trained
on high-throughput DFT calculations and experimental data from literature and
existing databases. The main elements of the polymer property prediction pipeline
are summarized in the lowermost pipeline of Fig. 18.1.

In the following sections, we explain in detail the various stages of abovemen-
tioned pipeline [39], starting from the curation of the dataset all the way up to the
machine learning algorithms that we have employed.
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Fig. 18.2 Overview of our polymer dataset used for development of property prediction mod-
els [39]. The dataset consists of 854 polymers spanning a chemical space of nine elements and
comprises properties obtained using computations as well as experiments

18.2 Dataset

Two strategic tracks were followed for the creation of our dataset (see Fig. 18.2):
(1) via high-throughput computation using density functional theory (DFT) as
presented carlier [31,40,41] and (2) by utilizing experimentally measured properties
from literature and data collections [42, 43]. The overall dataset includes 854
polymers made up of a subset of the following species: H, C, N, O, S, F, Cl, Br,
and I. Seven different properties were included in the present study. The bandgap,
dielectric constant, refractive index, and atomization energy were determined using
DFT computations whereas the Ty, solubility parameter, and density were obtained
from experimental measurements.

All the computational data were generated through a series of studies related
to advanced polymer dielectrics [31,40,41]. The computational dataset includes
polymers containing the following building blocks, CHy, CO, CS, NH, CcHy,
C4H;S, CF,, CHE, and O [19,22,40,41,44]. Repeat units contained 4-8 building
blocks, and 3D structure prediction algorithms were used to determine their struc-
ture [31,40,41]. The building blocks considered in the dataset are found in common
polymeric materials including polyethylene (PE), polyesters, and polyureas, and
could theoretically produce an enormous variety of different polymers. The bandgap
was computed using the hybrid Heyd—Scuseria—Ernzerhof (HSEO06) clectronic
exchange-correlation functional [45]. Dielectric constant and refractive index (the
square root of the electronic part of the diclectric constant) were computed using
density functional perturbation thecory (DFPT) [46]. The atomization encrgy was
computed for all the polymers following previous work [33-36, 41, 44, 47-52].
The DFT computed properties and associated 3D structures are available from
Khazana [53](khazana.gatech.cdu).

The T, solubility parameter, and density data were obtained from the existing
databases of experimental measurements [42,43]. T, which is an indication of the
transition point between the glassy and supercooled liquid phases in an amorphous
polymer, is important in many polymer applications because the structural charac-
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teristics (and, consequently, other properties) of the polymer changes dramatically
at this point. The solubility parameter of a polymer is typically used to determine a
suitable solvent to use during polymer synthesis. In this particular study we consider
the Hildebrand solubility parameter.

We have determined the chemical formula and the associated topological
structure from the name of polymers listed in the literature. The dataset contains
a total of 854 organic polymers composed of 9 frequently found atomic species,
ie., C, H, O, N, S, F, Cl, Br, and I with properties listed in the right side panel
of Fig. 18.2. Figure 18.3 shows a summary of the property space for the polymer
dataset, including the range of property values, distribution, standard deviation, and
the number of polymers associated with each property.
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Fig. 18.3 Property space of Polymer Genome dataset [39]. The seven properties considered
in this study were the (a) bandgap, (b) dielectric constant, (c) refractive index, (d) atomization
energy, (e) Ty, (f) solubility parameter, and (g) density. The histograms represent the distribution
of each individual property. The solid line depicts the mean of the distribution whereas the distance
between the solid line and dashed line represents the standard deviation. (h) Table detailing the
number of data-points, range, and mean of each individual property considered
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18.3 Hierarchical Fingerprinting

Fingerprinting is a crucial step of our data-driven property prediction pipeline. In
this step, the geometric and chemical information of the polymers is converted to
a numerical representation. This numerical representation, more often than not,
is a vector of fixed number of dimensions that can be provided as an input to
any given machine learning algorithm. The different dimensions of this vector
would represent different characteristics of the polymer repeat unit. Such numerical
descriptors of organic molecules have been utilized extensively in the past in the
form quantitative structure-property relationship (QSPR) or quantitative structure-
activity relationship (QSAR) models. In the current work, we go beyond existing
QSPR/QSAR descriptors in order to systematically capture different length-scale
features that are specific to polymeric materials built up of very long polymer
chains. In essence, given a particular repeat unit, we assume that the polymer chain
constructed from that repeat unit is infinitely long and therefore the descriptors that
we construct must take into account this “one-dimensional” periodicity.

To comprehensively capture the key features that may control the diversity of
properties of interest, we consider three hierarchical levels of descriptors spanning
different length scales. At the atomic-scale, the number of times that a fixed set
of atomic fragments (or motifs) occur are counted [54]. An example of such a
fragment is O1-C3-C4, made up of three contiguous atoms, namely, a one-fold
coordinated oxygen, a three-fold coordinated carbon, and a four-fold coordinated
carbon, in this order. For a given polymer repeat unit, we count the number of times
the 01-C3-C4 fragment occurs and then proceed to normalize this value by the
number of atoms in polymer repeat unit (to account for the abovementioned one-
dimensional periodicity). Such a series of predefined “triplets” has been shown to
be a good fingerprint for a diverse range of organic materials [23,54]. A vector
of such triplets form the fingerprint components at the lowest hierarchy. For the
polymer class under study, there are 108 such components.

Next in the hierarchy of fingerprint components are larger length-scale descrip-
tors of the quantitative structure-property relationship (QSPR) type mentioned
earlier. A detailed description of such descriptors can be found in the RDKit Python
library [55-57] that was used for the current work. Examples of such descriptors are
van der Waals surface area [58], the topological polar surface area (TPSA) [59,60],
the fraction of atoms that are part of rings (i.e., the number of atoms associated with
rings divided by the total number of atoms in the formula unit), and the fraction of
rotatable bonds. TPSA is the sum of surfaces of polar atoms in the molecule and
we observed this descriptor to be strongly correlated to the solubility. Descriptors
such as the fraction of ring atoms and fraction of rotatable bonds strongly influenced
properties such as T, and density. Such descriptors, 99 in total, form the next set of
components of our overall fingerprint vector.

The highest length-scale fingerprint components we considered may be classi-
fied as “morphological descriptors.” These include features such as the shortest
topological distance between rings, fraction of atoms that are part of side chains,
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and the length of the largest side-chain. Properties such as T, strongly depend on
such features which influence the way the chains are packed in the polymer. For
instance, if two rings are very close, the stiftness of the polymer backbone is much
higher than if the rings were separated by a larger topological distance. Both the
number and the length of the side chains strongly influence the amount of free
volume in the polymeric material and therefore directly influence T,. The larger
the free volume, the lower the T,. We include 22 such morphological descriptors in
our overall fingerprint.

Figure 18.4a shows the hierarchy of polymer fingerprints, including atomic
level, QSPR and morphological descriptors. The overall fingerprint of a polymer
is constructed by concatenating the three classes of fingerprint components. In total,
this leads to a fingerprint with 229 components. Since certain descriptors are more
relevant for certain properties, in the next section, we outline a methodology to dis-
card irrelevant descriptors for every target property. Moreover, during performance
assessment, we use different combinations of the three fingerprint hierarchies. For
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Fig. 18.4 Hierarchy of descriptors used to fingerprint the polymers, and an example demonstra-
tion for the systematic improvement of model performance depending on the type of fingerprint
considered. (a) Classification of descriptors according to the physical scale and chemical charac-
teristics are shown with representative examples. Dimension of the fingerprint in each level can be
reduced by a recursive feature elimination (RFE) process. In the “+RFE” panel, N, 2, and Ep;in
are total number of features in fingerprint, optimal number of features determined by RFE, and
minimum error of prediction model, respectively. Plots at the bottom panel show the performance
of machine learning prediction models for glass transition temperature (T,) with (b) only atomic
level descriptors, (c¢) atomic level and QSPR descriptors, and (d) entire fingerprint components
including morphological descriptors. (e) Shows how the optimal subset selected by RFE improves
the prediction model for T, [39]
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clarity of the ensuing discussion, we introduce some nomenclature. The atom triples
fingerprint, QSPR descriptors, and morphological descriptors are denoted by “A,”
“Q,” and “M,” respectively. Therefore, “AQ” implies a combination of just the atom
triples and QSPR descriptors.

In order to visualize the chemical diversity of polymers considered here, we
have performed principal component analysis (PCA) of the complete fingerprint
vector. PCA identifies orthogonal linear combinations of the original fingerprint
components that provide the highest variance; the first few principal components
account for much of the variability in the data [13]. Figure 18.5 displays the dataset
with the horizontal and vertical axes chosen as the first two principal components,
PC; and PC,. Molecular models of some common polymers are shown explicitly,
and symbol color, symbol size, and symbol type are used to represent the fraction of
sp3 bonded C atoms, fraction of rings, and TPSA of polymers, respectively. As an
example from the figure, PE is composed of only sp3 bonded C without any rings in
the chain, while poly(1,4-phenylene sulfide) contains no sp> bonded C atoms, and
more than 90% of its atoms are part of rings. As a result, these two polymers are
situated far from each other in 2D principal component space.
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Fig. 18.5 Graphical summary of chemical space of polymers considered. 854 chemically unique
organic polymers generated by structure prediction method (minima-hopping [61]) and experimen-
tal sources [42,43] distributed in 2D principal component space. Two leading components, PCj
and PCy, are produced by principal component analysis, and assigned to axes of the plot. Fraction
of sp3 bonded C atoms, fraction of rings, and normalized TPSA per atoms in a formula unit are
used for color code, size, and symbol of each polymer. A few representative structures with various
number of aromatic and/or aliphatic rings and their position on the map are shown [39]
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18.4 Surrogate (Machine Learning) Model Development
18.4.1 Recursive Feature Elimination

As alluded to earlier, our general fingerprint is rather high in dimensionality, and
not all of the components may be relevant for describing a particular property. In
fact, irrelevant features often lead to a poor prediction capability. On the practical
side, large fingerprint dimensionality also implies longer training times. There is
thus a need to determine the optimal subset of the complete fingerprint necessary
for the prediction of a particular property (i.e., different properties may require
different subsets of the fingerprint vector). Rather than manually deciding which
fingerprint components to use, one may utilize a wide variety of dimensionality
reduction techniques to automatically select a set of features that best represent a
particular property. In the current work, we utilize the recursive feature elimination
(RFE) algorithm to sequentially eliminate the least important features for a given
property [62]. First, linear regression is performed using the complete fingerprint
vector via support vector regression. Through this process, each of the features are
weighted by certain coefficients and are then ranked based on the square of these
coefficients [62]. The feature with the lowest rank is subsequently eliminated and
the iteration is repeated to remove the next least-important-feature. As shown in
right-most panel of Fig. 18.4, the optimal number of features for a given property
can be obtained by plotting the cross-validated root mean square error (RMSE) as
a function of the number of descriptors. The final set of features is passed forward
to the non-linear machine learning algorithm described next in Sect. 18.4.2. These
features can also be used to obtain an intuitive understanding of how certain key
fingerprint components influence particular materials properties.

18.4.2 Gaussian Process Regression

In our past work [12,19,31], we have successfully utilized kernel ridge regression
(KRR) [63] to learn the non-linear relationship between a polymer’s fingerprint and
its properties. However, in this work we utilize Gaussian process regression (GPR)
because of two key benefits. Firstly, GPR learns a generative, probabilistic model of
the target property and thus provides meaningful uncertainties/confidence intervals
for the prediction. Secondly, the optimization of the model hyperparameters is
relatively faster in GPR because one may perform gradient-ascent on the marginal
likelihood function as opposed to the cross-validated grid-search which is required
for KRR. We use a radial basis function (RBF) kernel defined as

2
k(xi,X}) =ozexp“:w:|} +025(xi, X)), (18.1)
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where o, [, and o, are hyperparameters to be determined during the training process
(in the machine learning parlance, these hyperparameters are referred to as signal
variance, length-scale parameter, and noise level parameter, respectively). x; and x;;
are the fingerprint vectors for two polymers i and j. (x; is an m dimensional vector
with components xl.l, xl.z, xl.3, e, xlf" , determined and optimized by the RFE step
described above). Performance of the model was evaluated based on the root mean
square error (RMSE) and the coefficient of determination (R?). 80% of the data was

used for training and the remaining 20% was set aside as a test set.

18.5 Model Performance Validation

The final machine learning models for each of the properties under consideration
here were constructed using the entire polymer dataset for each property. To avoid
overfitting the data, and to ensure that the models are generalizable, we employed
five-fold cross-validation, wherein the dataset is divided into 5 different subsets and
one subset was used for testing while remaining sets were employed for training.
Table 18.1 summarizes the best fingerprint, dimension of fingerprint vector, and
performance based on RMSE for the entire dataset. As shown in the table, the best
machine learning model for the atomization energy can be constructed using just the
atom triples and QSPR descriptors (i.e., “AQ”) whereas most of the other properties
necessitate the inclusion of morphological descriptors (i.e., ‘AQM”). In Fig. 18.6, we
demonstrate the sensitivity of the bandgap and dielectric constant models to the size
of the training set. We see a convergence in the train and test errors as the training
set size increases. Therefore, the accuracy of the ML models may be systematically
improved as more polymer property values are added to the dataset.

Parity plots in Fig. 18.7 are shown to compare experimental or DFT computed
properties with respect to machine learning predicted values with percentage relative
error distribution. Several error metrics, such as RMSE, mean absolute error (MAE),

Table 18.1 Summary of fingerprint used for development of machine learning prediction model,
and the performance of prediction for each property [39]

Property Best fingerprint Dimension of fingerprint RMSE
Bandgap AQM + RFE 88 0.30eV
Dielectric constant AQ + RFE 35 0.48
Refractive index AQM + RFE 19 0.08
Atomization energy AQ 207 0.01 eV/atom
Glass transition temperature AQM + RFE 69 18K
Solubility parameter AQM + RFE 24 0.56 MPal/2
Density AQ + RFE 9 0.05 g/em?

Best fingerprint is selected based on average RMSE of test set for 100 models. (A Atomic level
descriptors; Q QSPR descriptors; M Morphological descriptors; +RFE subject to the RFE process)
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Fig. 18.6 Learning curves constructed from the RMSE of the machine learning models for (a)
bandgap and (b) dielectric constant. For each model, data was obtained from 100 independent runs
with different selection of train and test set

mean absolute relative error (MARE), and 1 — R? were considered to evaluate the
performance of these models, and shown together in Fig. 18.7h.

As mentioned earlier, the utilization of GPR provides meaningful uncertainties
associated with each prediction. Moreover, the noise parameter of the GPR kernel
gives insights into the overall errors and uncertainties associated with the prediction
of that particular property for a given dataset. These uncertainties could arise as
a result of variation in measurement techniques (in the case of T,, for example)
or it may even arise as a result of limitations of our representation technique.
For example, we are providing estimates of the bandgap through purely the
SMILES string rather than the 3D crystal structure of the polymer. Therefore,
the representation technique itself results in partial loss of information and this
underlying uncertainty can be estimated statistically using the GPR noise parameter.

18.6 Polymer Genome Online Platform

For easy access and use of the prediction models developed here, an online platform
called Polymer Genome has been created. This platform is available at www.
polymergenome.org [64]. The Polymer Genome application was developed using
Python and standard web languages such as Hypertext Preprocessor (php) and
Hypertext Markup Language (HTML). As user input, the repeat unit of a polymer
or its SMILES string may be used (following a prescribed format described in the
Appendix). One may also use an integrated drawing tool to sketch the repeat unit of
the polymer.
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Fig. 18.7 The performance of the cross-validated machine learning models developed by GPR
with combination of RBF and white noise kernels [39]. Comparison of DFT computed (a)
bandgap, (b) diclectric constant, (c) refractive index, (d) atomization energy, experimental (e) Ty,
(f) Hildebrand solubility parameter, and (g) density for the predicted values are shown with inset of
distribution of % relative error, (y — Y)/Y x 100 where Y is DFT computed or experimental value,
and y is machine learning predicted value. The error bars in the parity plots represent uncertainties
(standard deviations) obtained using GPR. Other error metrics including RMSE, mean absolute
error (MAE), mean absolute relative error (MARE), and 1 — R? are summarized in (h)

Once the user input is delivered to Polymer Genome by the user, property
predictions (with uncertainty) are made, and the results are shown in an organized
table. The names of polymers (if there are more than one meeting the search
criteria) with SMILES and repeat unit are provided with customizable collection of
properties. Upon selection of any polymer from this list, comprehensive information
is reported. This one-page report provides the name and class of the polymer, 3D
visualization of the structure with atomic coordinates (if such is available), and
properties determined using our machine learning models. A typical user output
of Polymer Genome is captured in Fig. 18.8.
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Fig. 18.8 Overview of Polymer Genome online platform available at www.polymergenome.org.
Keyword PE is used as an example user input to show resulting Polymer details page [39]

18.7 Conclusions and Outlook

The Materials Genome Initiative and similar other initiatives around the world have
provided the impetus for data-centric informatics approaches in several subficlds of
materials research. Such informatics approaches seek to provide tools and pathways
for accelerated property prediction (and materials design) via surrogate models
built on reliable past data. Here, we have presented a polymer informatics platform
capable of predicting a varicty of important polymer propertics on-demand. This
platform utilizes surrogate (or machine learning) models that link key features
of polymers (i.c., their “fingerprint”) to propertics. The models arc trained on
high-throughput DFT calculations (of the bandgap, diclectric constant, refractive
index, and atomization energy) and experimental data from polymer data handbooks
(on the glass transition temperature, solubility parameter, and density). Certain
properties, like the atomization energy, depend mainly on the atomic constituents
and short-range bonding, whereas other properties, such as the glass transition
temperature, are strongly influenced by morphological characteristics like the chain-
stiffness and branching. Our polymer fingerprinting scheme is thus necessarily
hierarchical and captures features at multiple length scales ranging from atomic
connectivity to the size and density of side chains. The property prediction models
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are incorporated in a user friendly online platform named Polymer Genome (www.
polymergenome.org), which utilizes a custom Python-based machine learning and
polymer querying framework.

Polymer Genome, including the dataset, fingerprinting scheme, and machine
learning models, remains in early stages. Coverage of the polymer chemical space
needs to be progressively increased, and further developments on the fingerprinting
scheme are necessary to adequately capture conformational (e.g., cis versus trans,
tacticity, etc.) and morphological features (e.g., copolymerization, crystallinity,
etc.). Systematic pathways to achieve such expansion are presently being examined
to extend the applicability of the polymer informatics paradigm to a wide range
of technological domains. Moreover, looking to the future, the ability of our
informatics platform to automatically suggest polymers that are likely to possess a
given set of properties would be of tremendous value within the context of “inverse
design” [65]. Approaches involving Bayesian active learning techniques [66]
and variational autoencoders [67] will allow the automated search of chemical
and morphological space for materials with desired properties at a significantly
accelerated pace.
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