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Predicting the dynamic behavior of the mechanical properties of Platinum
with machine learning

James Chapman® and Rampi Ramprasad®
(Dated: 7 May 2020)

Over the last few decades, computational tools have been instrumental in understanding the behavior of materials
at the nano-meter length scale. Until recently, these tools have been dominated by two levels of theory: quantum
mechanics (QM) based methods and semi-empirical/classical methods. The former are time- intensive, but accurate
and versatile, while the latter methods are fast but are significantly limited in veracity, versatility and transferability.
Recently, machine learning (ML) methods have shown the potential to bridge the gap between these two chasms due
to their (i) low cost, (ii) accuracy, (iii) transferabilty, and (iv) ability to be iteratively improved. In this work, we further
extend the scope of ML for atomistic simulations by capturing the temperature dependence of the mechanical and
structural properties of bulk Platinum through molecular dynamics (MD) simulations. We compare our results directly
with experiments, showcasing that ML methods can be used to accurately capture large-scale materials phenomena
that are out of reach of QM calculations. We also compare our predictions with that of a reliable embedded atom
method (EAM) potential. We conclude this work by discussing how ML methods can be used to push the boundaries

of nano-scale materials research by bridging the gap between QM and experimental methods.

I. INTRODUCTION

Atomistic computational techniques have been used to
examine a plethora of nano-scale materials phenomena!=S.
These methods have generally fallen into two broad cate-
gories: QM based methods, e.g., density functional theory
(DFT)”#, and semi-empirical methods, e.g., the embedded
atom method®~!>. While both classes have been widely used
to accurately study materials under a range of conditions'¢-1?,
they both suffer from serious drawbacks. QM methods, while
able to provide access to properties at an extremely high level
of fidelity, are computationally cumbersome, and severely re-
strict both the time and length scales that can be studied.
Semi-empirical methods however, fill this void by signifi-
cantly reducing the computational cost and allow for the ex-
ploration of both large systems and long simulation times.
However, the trade-off is accuracy, as such methods are gener-
ally fit to specific regions of a material’s configuration space,
and are often not generalizable®.

To this end, data-driven machine learning (ML) methods
have demonstrated their ability to be a reliable alternative,
bridging the gap in cost, accuracy, and transferability?!=2°.
Unlike the previously mentioned classes of computational
techniques, ML methods rely on functional forms that are sta-
tistically derived, rather than physically derived. Such mod-
els will still suffer when extrapolating, and will generally fail
more quickly than their semi-empirical counterparts. How-
ever, ML approaches offer a number of advantages over these
method such as the time required to construct a new model,
their accuracy when compared to QM methods, and their abil-
ity to be iteratively improved in a systematic manner!-30-38,
ML methods are also opening up avenues for accelerating ma-
terials discovery, in general>-2%39-42,
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Throughout the last half-century, numerous experimental
studies for Platinum have provided a robust understanding of
how the mechanical properties of Platinum are affected by
changes in temperature*>”. However, recent work using sev-
eral embedded-atom method (EAM) based classical potentials
have shown that all studied models cannot reliably predict
this behavior’. QM methods have also struggled to reliably
capture such phenomena due to the time and length scales
required to accurately study them*®*°. Furthermore, we re-
cently demonstrated the capability of the AGNI platform to
accglgrately predict the mechanical properties of Platinum at
0K~°.

In this letter, we demonstrate the use of these recent AGNI
models in exploring how the mechanical properties of Plat-
inum are affected by changes in temperature. In particular,
we utilize molecular dynamic (MD) simulations, coupled with
varying forms of strain, to predict the dynamic behavior of
elastic constants. Mechanical properties, such as the bulk,
shear, and Young’s modulus, can then be predicted using the
Voigt-Reuss-Hill approximation®’. The remainder of this let-
ter is as follows. We first begin by providing the reader with a
brief overview of the AGNI methodology. Second, we discuss
the dynamic behavior of the elastic constants of Platinum, and
from them, the bulk, shear, and Young’s modulus. Finally, we
discuss the temperature dependence of several other proper-
ties, such as the coefficient of thermal expansion, lattice pa-
rameter, and isothermal compressability. The compilation of
atomistic phenomena presented in this work aims to further
push the boundaries of ML methods for dynamic materials
simulations by bridging the gap between QM, semi-empirical,
and experimental methodologies.

1. COMPUTATIONAL DETAILS
A. AGNI Workflow

The AGNI platform consists of several key steps, regard-
less of the property being predicted: (1) The generation
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TABLE 1. Summary of the reference data set that was prepared for
Platinum force field generation. The data is divided into subsets
based on the type of defect that is present. T=0K represents NEB cal-
culations, where T>0K represents MD calculations. Configurations
are represented by each atomic configuration present in the data. For
the system containing 4 vacancies, the vacancy configurations rep-
resent two isolated vacancies and one divacancy in a 108-atom cell
(104 total atoms).

Defect Type Systems

Bulk (w/o strain)
Bulk (w/ strain + 7 %)

Temperature (K)

300,1000,2000
300,1000,2000

Defect-free
Defect-free

Point Defect Bulk with 1 vacancy 0, 1000, 1500, 2000
Point Defect Bulk with Divacancy 0, 1000, 1500, 2000
Point Defect Bulk with 4 vacancies 1000, 1500, 2000

of a diverse set of reference data, (2) Numerically encod-
ing local/structural geometric information (fingerprinting), (3)
Training a ML model given some subset of the reference
data, (4) Employing the final ML models in an MD en-
gine, capable of simulating the dynamic, time-evolution of
atomistic processes. In the following sections we will pro-
vide a brief explanation of steps (1), (2) and (3), and we
refer the reader to our previous works for a more thorough
understanding30-3237:38,31,

B. Reference Data Generation

A comprehensive set of reference data, summarized in Ta-
ble 1, was prepared for Pt in an accurate and uniform man-
ner in order to minimize numerical noise intrinsic to atomistic
calculations. All reference data was obtained using the Vi-
enna Ab initio simulation package (VASP)*2>7¢. The Perdew-
Burke-Ernzerhof (PBE) functional®’ was used to calculate the
electronic exchange-correlation interaction. Projector aug-
mented wave (PAW) potentials>® and plane-wave basis func-
tions up to a kinetic energy cutoff of 500 eV were used. All
projection operators (involved in the calculation of the non-
local part of the PAW pseudopotentials) were evaluated in
the reciprocal space to ensure further precision. Monkhorst-
Pack® k-point meshes were carefully calibrated for each
atomic configuration to ensure numerical convergence in both
energy and atomic forces. For all nudged elastic band (NEB)
calculations, the climbing image formalism was employed>®,
with ionic relaxations considered converged at an energy dif-
ference of 1072 eV, and electronic convergence terminated at
an energy difference of 1074 eV.

C. Fingerprinting atomic configurations

A stratified representation of an atom’s local structural en-
vironment was created to capture geometric information that
is mapped directly to properties such as the total potential en-
ergy, atomic forces, and stresses. This hierarchy aims to cap-
ture unique aspects of the atomic neighborhood with features

resembling scalar, vector, and tensor quantities. The func-
tional forms of all atomic-level fingerprint components are de-
fined as>!-:60;

1 (1 2
Sik = ck Y exp l—Z (;J() ] Jeu(rij) M

J#i

i Lr\?
Vi,a;kzckziexp ) (@) Jeu (7ij) (2)

ji T

G 12
Ti,{a,[s};kZij; 7 exp | — (%) Jeu(rij) — (3)

with r; and 7; being the Cartesian coordinates of atoms i and
Jj» and rjj = |rj - r;|. o and B represent any of the three
X, ¥, or z directions. The o} values control the width of
the Gaussian functions, and are determined via a grid-based
optimization process®?. The damping function Seu (rij) =
%[cos(;(r_z
radius R, chosen to be 8 A. ¢, is a normalization constant

3
given by (ok\l/ﬁ> (for the force model this normalization

) + 1], smoothly decays towards zero, has a cut-off

constant was set to 1).

In order to learn rotationally-invariant properties, such as
the total potential energy, a separate step is required to map the
atomic fingerprints, to rotationally-invariant structural finger-
prints. This process involves mapping the atomic fingerprints
described above to a single, structural fingerprint, which are
defined as®-!:

Vi =/ Vi) + (Vi) + (Vi) 4

T = Tifeay i Ty e T Ti et i Ti bk Ty i T2y &

2 2 2
(Lo i) = (Lppayn)” = (Tipyapa)
(5)

and

T, = det (Ti (0.5 1) 6)

In this work, ML models that learn the potential energy
employ such a procedure. Table 2 indicates the final forms
of all fingerprints for energy, stresses, and forces. Here the
function M"(X) represents the n'" moment of the fingerprint
components. For this work only the first (n = 1) moment is
considered, and can be interpreted as the average atomic envi-
ronment of the system.
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TABLE II. The final fingerprint forms utilized to learn energy, stresses, or atomic forces. For the property type, the subscripts i and / represent
a per-atom or per-structure quantity respectively, and the superscripts a,f3 represent two possible Cartesian directions. The complete set of
optimized o}, values for each property type can be found in the supplemental information.

Property Type # oy, o Range A) Final Fingerprint Form
Forces (F%) 8 (1.0, 9.0) Vi ok
Stresses (SP) 20 (1.5,11.5) M (EY T o gyt )
Energy (Ey) 20 (15,11.5) {M" (T Sin)  M™ (T Vik) M™ (T Tix) }

D. Machine learning

After the final fingerprint forms have been established, and
a subset of our reference data has been selected, we turn to
Kernel Ridge Regression (KRR) to create ML models for
atomic forces, potential energy, and the stress tensor. This
learning scheme employs a similarity-based non-linear func-
tional form to create a mapping between the reference fin-

gerprints and the desired property using a form described
51:30-33,38.

Py = () 7
X—;aYexP 3 (G> @)

Here the summation runs over the number of reference en-
vironments Y in a model’s training set. P symbolizes the
desired property (total potential energy, stress tensor compo-
nents, or atomic forces), with X being the fingerprint of the
structure whose properties are being predicted. dxy represents
the L2 norm between fingerprints X and Y, calculated within
the fingerprint hyperspace, and is specified by a length scale
o. During the model’s training phase, the regression weights
ay and the length scale ¢ are determined via a regularized
objective function, which is optimized through a 5-fold cross
validation process. At the end of the model generation pro-
cess, there will be three independent ML models for energy,
forces, and stresses. Statistical metrics, used to compare the
ML model’s predictions with all reference data used in this
work, can be found in Table 3.

E. Simulations Details

MD simulations were used to capture both the tensile
and shear strains of single crystal FCC Platinum, using the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package®!. This ML scheme has been bench-
marked against both EAM and DFT, for the calculation of
energy, forces, and stresses, and is approximately 5 orders
of magnitude faster than DFT, but roughly 2 orders of mag-
nitude slower than EAM. Simulations were performed for a
temperature range of 100K to 1000K. Temperatures above
1000K were not considered, as reliable experimental values
do not exist in this regime. Simulations at temperatures lower
than 100K were also not considered in this work, as it has

been shown that zero-point energy contributions become non-
negligible below 100K for Platinum®>%3. As the simulations
considered in this work are classical in nature, and do not con-
sider quantum effects, temperatures below 100K cannot be re-
liably predicted.

For the case of tensile strain, a 21x21x21 supercell contain-
ing 37,044 atoms is used. NPT simulations, run for 2 ns at
P =0, are used to equilibrate the supercell volume at a given
temperature. Then, NVT simulations are performed, in which
the cell was strained along the X axis at a rate of 10’3ﬁ for
10 ns. As the strain along the Y and Z axis remains constant
at 0, the elastic constants can be calculated from the stress-
strain relationships defined by oy = Ciiex + Cia(eyy + €;)
and oy, = Cj1eyy + Cia(ex +e;;), where Cj; is a given elastic
constant, oj; is the stress along the ii direction, and e;; is the
strain along the ii direction.

For the case of shear strain, the same supercell and simula-
tion arrangement employed during the tensile strain test was
used. However, due to the stress-strain relationship, defined
by 0y, = Cyseyy, the initial supercell was defined with tilt fac-
tors, initially set to 0. After an equilibration run, as defined
previously, the cell was deformed along both the X and Y
axis, uniformly, at a rate of 1073 ﬁ for 10 ns. For both tensile
and shear strains, the stress was plotted against the strain, for
a given elastic constant. A linear regression curve was then
fit to the stress-strain relationship, whose slope is the corre-
sponding elastic constant. An R? fit of 0.95, as a minimum,
was used to determine a line’s convergence, before extracting
the elastic constants. The bulk, shear, and Young’s modulus
was then calculated from the predicted elastic constants using
the Voigt-Reuss-Hill approximation.

MD simulations were also performed for properties such as
the coefficient of linear expansion, and the change in lattice
parameter as a function of temperature. A 25x25x25 super-
cell, containing 62,500 atoms, was used. NPT simulations,
run for 10ns, were performed for temperatures between 100K
and 2000K. The final lattice parameter was carefully chosen
only after a strict convergence criteria of 10~3A was met. For
the calculation of the coefficient of linear expansion, the ref-
erence temperature was set at 300K to compare with experi-
mental values.
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TABLE III. Statistical error metrics of the final ML models, for each property learned, generated in this work. All values presented here are
the metrics calculated on a given model’s test set. The final row corresponds to the number of training points in the final models chosen for

this work.

Error Metric Energy model (meV/atom)

Force model (eV//°\) Stress model (GPa)

RMSE 273 0.15 0.42
STD 2.71 0.15 0.41
Max 1 % Error 7.90 0.80 1.68
2 0.99 0.99 0.99
# Training Points 1728 3000 3000
350 EAM (b) 75
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FIG. 1. (Top) The elastic constants C;j, Cjp, and Cyq, (a-c) respectively, for our AGNI models (blue), an EAM potential (yellow), and
experiments (red) are shown. While absolute values between computational methods and experiments will rarely agree explicitly, due to
deviations between experiments and the reference data used to fit the computational models, the difference in slopes should be negligible in
order to be considered in agreement with experiments. The AGNI models are the only computational method whose slopes agree quantitatively
with experiments. (Bottom) The bulk, shear, and Young’s modulus, (d-f) respectively, is shown for our AGNI models (blue), an EAM potential
(yellow), and experiments (red). These values were calculated using the elastic constants using the Voigt-Reuss-Hill approximation

I1l. RESULTS AND DISCUSSION

The dynamic, temperature dependent behavior of the me-
chanical properties of Platinum was calculated via MD sim-
ulations. Figure 1 shows the change in the C;;, Ci2, and Cyq
elastic constants as the temperature is increased from 100K
to 1000K. Three sets of values are shown: (1) Experimental
values>%*, (2) AGNI predictions, and (3) EAM predictions.

The EAM values shown in Figure 1 were taken from previ-
ous studies’. While several EAM potentials were studied in
previous works, only the most reliable potential’s values are
shown here. This EAM potential will henceforth be referred
to as EAM-A, due to its primary author James Adams.

One important point that must be mentioned is the relative
versus absolute nature of the properties discussed in the re-
mainder of this article. As both ML and semi-empirical poten-
tials are fit to a set of reference data, one cannot always com-
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TABLE IV. Absolute values for the properties predicted in this work.
S represents the percent difference between the property values at
100K vs 1000K. % represents the slope of a given property as a
function of temperature.

Property Experiments EAM-A AGNI

8Cy1 (%) 22 14 20

5C1a (%) 1 11 1

8Cys (%) 4 21 16
5B (%) 10 12 8

dB (GPa) -0.03 -0.04 -0.02
Su (%) 39 29 54

ah (Gha) -0.03 -0.01 -0.03
SE (%) 37 29 53

dE (Gla) -0.07 -0.03 -0.07

B () 4.17x1077 5.67x1077 4.11x1077
da (&) 9.33x1073 - 1.16x104

pare the absolute values of a predicted property to experimen-
tal values. For example, as shown in our previous work!-8,
the absolute value of the OK elastic constants will deviate sig-
nificantly from experiments at low temperature. This discrep-
ancy however, is not due to the model’s failure, but rather
the value that the model’s reference level of theory predicts.
In this case, the AGNI models are trained on reference DFT
data, generated using the PBE exchange-correlation func-
tional, which deviates from experiments significantly38:6>-66,
Therefore, AGNI cannot be expected to predict absolute prop-
erty values equivalent to experiments, but will make predic-
tions at the corresponding DFT level of theory. Due to these
differences amongst various levels of theory, one cannot rely
on absolute values, but rather the quantitative, and qualitative,
trends that the models yield with respect to experiments.

With this in mind, we begin by looking at several impor-
tant trends that can be observed from the Ciq, Ci2, and Cyq4
elastic constants as the temperature is increased from 100K to
1000K. Figure 1 shows a visual manifestation of these trends,
while Table 4 provides the absolute values. Experimentally,
C11 has been shown to decrease by approximately 22% be-
tween 100K and 1000K, while EAM-A predicts a thermal
degradation of (14%), and the AGNI framework a degrada-
tion of (20%). Contrary to Cj;, however, both Cj,, and Cy4
show little to no thermal degradation experimentally, (1%)
and (4%) respectively. However, EAM-A shows significant
thermal degradation with respect to experiments in both Cj2
(11%), and Csq (21%). The AGNI framework performs sub-
stantially better than EAM-A, yielding degradation of (1%)
and (16%) , for C1», and Cy4 respectively. While AGNI’s pre-
dicted change in C;; and Cj; between is nearly identical when
compared to experiments, thermal degradation in Cy4 is still 4
times that of experiments; though EAM-A yields a degrada-
tion greater than 5 times that of experiments.

Understanding how a material will respond to various

forms of stress is critically important for a variety of
applications>%7%. To this end, the dynamic behavior of the
bulk, shear, and Young’s modulus can be calculated from
the predicted elastic constants using the Voigt-Reuss-Hill
approximation®. Figure 1, and Table 4 show the change in
these properties as the temperature is increased from 100K to
1000K. Experimental predictions of the bulk modulus indicate
a thermal degradation of (10%), compared to a degradation of
(12%) and (8%) for EAM-A and AGNI respectively. There-
fore, one can argue that both EAM and AGNI will perform
equally well in understanding the resistance to compression.
For the shear modulus, experimental values indicate a thermal
loss of (39%), compared to a degradation of (29%) and (54 %)
for EAM-A and AGNI respectively. Finally, for Young’s mod-
ulus, experimental values indicate a decrease of (37%), com-
pared to a decrease of (29%) and (53%) for EAM-A and AGNI
respectively. From these metrics, both AGNI and EAM show
moderate deviations, when compared to experiments, when
understanding the response to both linear and shear stresses.
However, If we assume that the change of these properties
is perfectly linear between 100K and 1000K, we can easily
calculate their slopes, shown in Table 4, which will provide
the rate in which these properties change as a function of tem-
perature. For the case of the bulk modulus, we arrive at slopes
of -0.03 €22 0,04 €% and -0.02 “22 for experiments, EAM-
A, and AGNI respectively. For the shear modulus, we obtain
slopes of -0.03 %, -0.01 %, and -0.03 % for experiments,
EAM-A, and AGNI respectively. Finally, for Young’s modu-
lus, we calculate slopes of -0.07 GPa ()03 G2 “, and -0.07

% for experiments, EAM-A, and AGNI respectively. There-
fore, while EAM-A and AGNI’s prediction yield moderate er-
rors when one considers only the absolute thermal degradation
over the entire temperature range, the slopes of these relation-
ships tell a different story, where AGNI outperforms EAM-A
significantly.

Another important aspect of the dynamic mechanical re-
sponse of Platinum that must be well understood is the phys-
ical change in the supercell as a function of temperature. To
this end we present calculations for the lattice parameter, coef-
ficient of isothermal compressibility, and coefficient of linear
expansion, shown in Figure 2 and Table 4. In a bulk mate-
rial, the coefficient of isothermal compressibility can be rep-
resented as the inverse of the bulk modulus’®, and can be
thought of as the relative volume change that will occur in
response to an applied stress. From Figure 2 one can see
good agreement between the AGNI platform and experiments.
As described previously, the rate of change in the isothermal
compressibility can be calculated by assuming a linear rate
of change. Experiments predict a rate of change of 4.17x10~7

. . -7 _1
while EAM-A and AGNI yield rates of 5.67x10™" 5=

and 4.11x10~7 ﬁ respectively.

Figure 2 also provides information about change in lattice
parameter as a function of temperature. As can be seen in
Figure 2b, AGNI and experimental values of the change in
lattice parameter as a function of temperature, show excep-
tional agreement between over the entire temperature range.
Small deviations close to the melting temperature can be ex-

plained from the results obtained in our previous work®. As
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FIG. 2. The coefficient of isothermal compressability, change in lattice parameter, and coefficient of linear expansion, (a-c) respectively, is
shown for our AGNI models (blue),and experiments (red). Lattice parameter values (b) are used to fit a cubic spline (shown in black). Linear
expansion values (c) are then calculated from the derivative of the cubic spline.

before, if we take the slope of this curve, information about
the rate of change in lattice parameter as a function of temper-
ature can be calculated. Experiments indicate a rate of change

of 9.33x107> £, while AGNI predicts a rate of 1.16x10~* %
respectively.

Finally, the information encoded in the change in lattice pa-
rameter can be used to calculate the coefficient of linear ex-
pansion as a function of temperature’!. A cubic spline is fit to
the lattice parameter values, shown in black in Figure 2b. The
derivative of this spline is then used to calculate the coefficient
of linear expansion, shown in Figure 2c. As the difference in
lattice parameter between experiments and PBE creates an ar-
tificial shift in the coefficient of linear expansion, the values in
Figure 2c are referenced to the value at 100K for both AGNI
and experiments. As there are small deviations in the lattice
parameter at high temperatures, errors in the coefficient of lin-
ear expansion, at these same temperatures, are to be expected.
Even with small discrepancies near the melting temperature,
the agreement between AGNI and experiments can clearly be
seen.

IV. CONCLUSION

In this work, the AGNI ML scheme was used to simu-
late the dynamic behavior of Platinum under various forms of
strain. We employed MD simulations to simulate the stress-
strain relationships, under those strains, to predict the temper-
ature dependence of the elastic constants of Platinum. From
these constants, other properties such as the bulk, shear, and
Young’s modulus were also calculated, as a function of tem-
perature. MD simulations were also performed to obtain the
temperature dependence of properties such as the lattice pa-
rameter, isothermal compressibility, and coefficient of linear
expansion. The results obtained from these simulations were
then compared against experimental values. A critical topic
that must be addressed is the model’s transferability to con-

figuration spaces not included in its training set. While many
of the configurations presented in this work are not explicitly
contained in any of the three model’s training data, they do
share similarities to them, and therefore the model can rea-
sonably predict such environments. In contrast, the models
used in this work cannot be used to make accurate predic-
tions of surface regions, as such domains are geometrically
very different. However, as the ML models can be iteratively
improved, unlike semi-empirical/classical potentials, this de-
ficiency can be addressed by adding these poorly predicted
configurations to each model’s respective training set to im-
prove their accuracy.

As the AGNI models presented in this work were trained
on DFT data, using the PBE exchange-correlation functional,
it is expected that the AGNI will make predictions at the DFT
level-of-theory. Therefore, one cannot directly compare the
absolute values of experiments and AGNI, just as one could
not directly compare the results of experiments with DFT.
However, qualitative trends can be compared, and from them,
quantitative changes in these trends can also be calculated.
Upon examination of these trends, and their rates of change,
AGNI shows excellent agreement with respect to experiments,
outperforming all EAM potentials for Platinum. Using ML to
obtain high fidelity materials properties, with accuracy greater
than that of semi-empirical potentials, such as those consid-
ered in this work, at time and length scales far beyond those
of QM methods, provides yet another layer of validation that
these methodologies can, and should, be used to push the
boundaries of nano-scale materials research.

V. DATA AVAILABILITY

The raw data required to reproduce these findings are avail-
able to download from https://khazana.gatech.edu. All ML
models used in this work can be found at our web platform
located at https://agni-web.herokuapp.com.
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