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A B S T R A C T

Materials properties such as defect diffusion and/or dissociation, mechanical fracture and void nucleation, under
extreme temperatures and pressures, are all governed by the interactions between individual and/or groups of
atoms. Computational tools have been instrumental in understanding the atomistic properties of materials at
these length scales. Over the past few decades, these tools have been dominated by two levels of theory: quantum
mechanics (QM) based methods and semi-empirical/classical methods. The former are time-intensive, but ac-
curate and versatile, while the latter methods are fast but are significantly limited in veracity, versatility and
transferability. Machine learning (ML) algorithms, in tandem with quantum mechanical methods such as density
functional theory, have the potential to bridge the gap between these two chasms due to their (i) low cost, (ii)
accuracy, (iii) transferability, and (iv) ability to be iteratively improved. In this work, we prescribe a new
paradigm in which potential energy, atomic forces, and stresses are rapidly predicted by independent machine
learning models, all while retaining the accuracy of quantum mechanics. This platform has been used to study
thermal, vibrational, and diffusive properties of bulk Platinum, highlighting the framework’s ability to reliably
predict materials properties under dynamic conditions. We then compare our ML framework to both QM, where
applicable, and several Embedded Atom Method (EAM) potentials. We conclude this work by reflecting upon the
current state of ML in materials science for atomistic simulations.

1. Introduction

Many dynamic phenomena, such as the nucleation of voids, and
how a material fractures, aregoverned by individual atomistic processes
interacting with one another [1–3]. However, accurately capturing the
intricacies of such processes is often non-trivial, owing to the com-
plexity of the interactions, as well as the time and length scales required
to accurately study them [4]. Therefore, any strategy that probes the
atomic regime, be it experimental or computational, must be capable of
capturing the dynamic evolution of atomistic processes.

Historically, computational methods have been employed to study
the dynamic evolution of such mechanisms, and have been widely used
to explain a plethora of atomsitic processes [5–7]. In particular, two
broad classes of computational methodologies have been widely used to
study an abundance of materials phenomena: QM based methods, e.g.,
density functional theory (DFT), and semi-empirical/ classical methods,
e.g., EAM [8–13]. While QM provides access to properties with an ex-
tremely high level of fidelity, the computational cost of such methods
severely restricts the types of problems that can be practically studied.
On the other hand, classical methods, such as EAM, have been widely

used to study such properties. While these methods have seen success
over the years, due to their significant cost reduction when compared to
QM methods, they generally break down when making predictions
outside of the respective reference data, which is usually aimed at
predicting a specific set of properties.

A third pathway, data-driven methods, have recently emerged as a
possible suitor whose aim is to bridge the gap between these two ex-
tremes [14–22]. Recent progress in the area of machine learning (ML)
for atomistic simulations [23–27] have lead to the development of
plethora of new models for Al [27–32], Cu [31,33], Ti [31], W
[31,34,89], Pd [88], C [31,35,36], Si [31,32,37], Na [32], Mo [38], Fe
[39], Zr [40], SiO2[33]. ML models have a functional form, which is
often non-linear in nature, backed by statistics rather than physics.
While ML models still suffer from inaccuracies during extrapolations,
and are in-fact more likely to fail under such conditions than their
classical counterparts, these approaches offer a number of advantages
over the fixed-functional forms of empirical models such as the speed
required to generate new models, their accuracy when compared to
first-principles methods (force and energy prediction errors on the
order of 0.05 eV/Å and 10 meV/atom, respectively) [27–31,24–26],
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and their ability to be iteratively improved in a systematic manner [41].
However, the ML methodologies described above have a drawback

in that models are generally fit to predict a single property, e.g,. po-
tential energy, while other properties such as forces, stresses, etc, are
derived from the first property. This poses a problem, as any errors in
the model’s primary output will be propagated down to any of the
subsequently derived properties [42–48]. To bypass this issue, a new
paradigm, henceforth referred to as AGNI, is proposed here to rapidly
predict properties such as energy, stresses, and atomic forces, as well as
electronic charge density, electronic density of states, etc., as has been
demonstrated recently [49], simultaneously through the use of in-
dependent ML models. By using independent ML models to learn each
desired property, error propagation via derivation/integration cannot
occur. Therefore, each ML model can be optimized to obtain a high
level of fidelity. Fig. 1 shows a qualitative description of the differences
between current ML schemes and the AGNI scheme.

To validate this scheme we have chosen elemental Platinum because
of its commercial importance, particularly in the regime of catalysis
[50–56], as well as its importance as a bulk material, in part because of
its strong mechanical properties and high melting temperature [57–59].
Classical methods have generally struggled to accurately, and uni-
versally predict both Pt’s surface and bulk properties [60,61]. While
less complex properties, such as the cohesive energy, can be accurately
reproduced by many semi-empirical models, more complex phenomena
such as the activation energy of a single vacancy, are not reliable [61].

To this end, predictions of more complex properties, such as the dis-
sociation of coupled vacancies, void nucleation, and melting, which are
governed by the interactions of less complex phenomena [62–64],
cannot be universally trusted. Therefore, ML can be employed to fill this
void and bring the community closer to bridging the gap between QM
methods and experimental observations for Pt.

In this work, a plethora of Pt bulk properties are simulated to
showcase the breadth of our three ML models for the direct (and in-
dependent) prediction of energy, atomic forces and stresses, given only
the atomic configuration. Properties, such as the bulk modulus, vacancy
formation energy, and elastic constants, among others, are predicted
using all three ML models. Ionic relaxations of highly disordered sys-
tems, as well as calculations of phonon frequencies are used to show
how our ML models respond to both large and small atomic perturba-
tions. The diffusion of a single vacancy within an otherwise pristine
bulk system is considered, along with how entropic effects can help to
lower the activation barrier for diffusion. The kinetics of the dissocia-
tion and diffusion of a divacancy are simulated via nudged elastic band
calculations. Finally, a discussion of the disagreement between several
EAM potentials and DFT, for the cases of vacancy diffusion and diva-
cancy dissociation, and how the ML models presented in this work al-
leviate this difference follows. The collection of atomistic phenomena
studied in this work, along with further improvements to the platform
itself, lays the groundwork for the future study of more complex
properties not explicitly considered in this work, such as the intricate
kinetics surrounding non-trivial line and planar defects, as well as the
temperature dependence of mechanical properties, none of which can
be accurately predicted with current classical methods [61].

2. Computational details

2.1. AGNI workflow

As described earlier [30,41,65], our ML platform consists of several
key steps, regardless of the property being predicted: (1) The generation
of a diverse set of reference data, (2) Numerically encoding local/
structural geometric information (fingerprinting), (3) Training a ML
model given some subset of the reference data, (4) Employing the final
ML models in an MD engine, capable of simulating the dynamic, time-
evolution of atomistic processes. A visual workflow of these steps can
be found in the Supplemental information.

2.2. Reference data generation

A comprehensive set of reference data, summarized in Table 1, was
prepared for Pt in an accurate and uniform manner in order to minimize
numerical noise intrinsic to atomistic calculations. All reference data
was obtained using the Vienna Ab initio simulation package (VASP)
[66–70]. The Perdew-Burke-Ernzerhof (PBE) functional [71] was used
to calculate the electronic exchange-correlation interaction. Projector
augmented wave (PAW) potentials [72] and plane-wave basis functions
up to a kinetic energy cutoff of 500 eV were used. All projection op-
erators (involved in the calculation of the non-local part of the PAW
pseudopotentials) were evaluated in the reciprocal space to ensure

Fig. 1. (Top) General workflow for current ML schemes, in which a single
property such as potential energy, is calculated directly via ML, and subsequent
properties, such as forces and stresses, are derived from the predicted energy
(however, this general workflow can also operate along many different path-
ways, e,g. learning forces directly and integrating to get the energy) (Bottom)
General workflow for our AGNI platform, in which all properties (energies,
forces, stresses) are predicted simultaneously via independent ML models.

Table 1
Summary of the reference data set that was prepared for Platinum force field generation. The data is divided into subsets based on the type of defect that is present.
T = 0 K represents NEB calculations, where T > 0 K represents MD calculations. Configurations are represented by each atomic configuration present in the data.
For the system containing 4 vacancies, the vacancy configurations represent two isolated vacancies and one divacancy in a 108-atom cell (104 total atoms).

Defect Type Systems Temperature # Configurations # atoms Phase

Defect-free Bulk (w/o strain) 300,1000,2000 2500 32 FCC
Defect-free Bulk (w/strain ± 7 %) 300,1000,2000 3000 32 FCC
Point Defect Bulk with 1 vacancy 0, 1000, 1500, 2000 5000 255 FCC
Point Defect Bulk with Divacancy 0, 1000, 1500, 2000 5000 254 FCC
Point Defect Bulk with 4 vacancies 1000, 1500, 2000 5000 104 FCC
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further precision. Monkhorst-Pack [73] k-point meshes were carefully
calibrated for each atomic configuration to ensure numerical con-
vergence in both energy and atomic forces. For all nudged elastic band
(NEB) calculations, the climbing image formalism was employed [70],
with ionic relaxations considered converged at an energy difference of

−10 2 eV, and electronic convergence terminated at an energy difference
of −10 4 eV.

2.3. Fingerprinting atomic configurations

A hierarchical representation of an atom’s local structural environ-
ment was created to encode geometric information that maps directly
to properties such as the total potential energy, atomic forces, and
stresses. This hierarchy aims to capture different aspects of the atomic
neighborhood with features resembling scalar, vector, and tensor
quantities. The functional forms of all atomic-level fingerprint compo-
nents are defined as [65]:
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with ri and rj being the Cartesian coordinates of atoms i and j, and =r |ij
−r r |j i . α and β represent any of the three x, y, or z directions. The σk

values control the width of the Gaussian functions, and are determined
via a grid-based optimization process [29]. The damping function
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components respectively, help to capture angular information about the
local atomic environment by computing all possible dipoles between
atomic neighbors, and their interactions in different directions.

This processes of atomic fingerprinting renders the vector and
tensor components directionally-dependent, in contrast to the scalar
quantity [65]. Therefore, for the case of learning the potential energy,
rotationally-invariant forms of these quantities must be created. The
invariant form of the vector component is then defined as:
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and

″ =T det T( )i k i α β k, ,{ , }, (6)

2.4. Machine learning

For global properties, such as potential energy, the atomic finger-
prints described above are not sufficient, as the they cannot map di-
rectly to a global property (only per-atom quantities). Therefore, a
second process mapping the atomic fingerprints to a single, structural
fingerprint is required [65]. In this work, ML models that learn the
potential energy, as well as the stress tensor, employ such a procedure.
Table 2 indicates the final forms of all fingerprints for energy, stresses,

and forces. Here the function M X( )n represents the nth moment of the
fingerprint components. For this work only the first ( =n 1) moment is
considered, and can be interpreted as the average atomic environment
of the system.

After the final fingerprint forms have been chosen, and a subset of
our reference data has been selected, we employ Kernel Ridge
Regression (KRR) to create three independent ML models for atomic
forces, potential energy, and the stress tensor. This learning scheme
employs a similarity-based non-linear kernel to establish a mapping
between the reference fingerprints and the desired property using a
functional form defined by [27–31]:
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Here the summation runs over the number of reference environments,
with Y being each fingerprint within a given model’s training set. P
represents the desired property (total potential energy, stress tensor
components, or atomic force components), where X is the fingerprint of
the new structure. dXY represents the euclidean distance between fin-
gerprints X and Y in the hyperspace they are defined on, specified by a
length scale σ . During the model’s training phase, the regression
weights αY and the length scale σ are determined by optimizing a
regularized objective function through a 5-fold cross validation process.

2.5. Other computational details

Three Embedded Atom Method (EAM) potentials, henceforth re-
ferred to as EAM-B [57] EAM-Z [58], and EAM-F [59] (due to their
respective authors) were chosen for this work and were used as a
comparison to the ML models presented in this work. All EAM poten-
tials were chosen for their ability to accurately capture a variety of bulk
properties for Pt with respect to experimental evidence. All MD simu-
lations (outside of DFT reference data generation) were performed
using the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package [74]. Vibrational calculations were performed
using the Atomic Simulation Environment (ASE) [75]. This ML scheme
has been benchmarked against both EAM and DFT, for the calculation
of energy, forces, and stresses, and is approximately 5 orders of mag-
nitude faster than DFT, but roughly 2 orders of magnitude slower than
EAM.

3. Results

3.1. ML model statistics

During the training phase of the model creation process, statistical
measures are first used to determine if a given model is capable of
making reliable predictions. In Fig. 2, several such metrics are pro-
vided: (1) the root mean square error (RMSE) as a function of the
number of training points, (2) the maximum 1% error as a function of
the number of training points, and (3) a parity plot for the best

Table 2
The final fingerprint forms utilized to learn energy, stresses, or atomic forces.
For the property type, the subscripts i and I represent a per-atom or per-
structure quantity respectively, and the superscripts α β, represent two possible
Cartesian directions. The complete set of optimized σk values for each property
type can be found in the Supplemental information.

Property Type # σk σk Range
(Å)

Final Fingerprint Form

Forces (Fi
α) 8 (1.0, 9.0) Vi α k, ;

Stresses (SI
α β, ) 20 (1.5,

11.5)
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generated model. For all three cases, both the overall RMSE, as well as
the maximum 1% error, decrease as the training set size increases.

However, saturation occurs in the overall learning for all models by
a training set size of 3000 points. All statistical error metrics used for
this work for the final ML models can be seen in Table 3. Overall, these
metrics indicate that all three ML models can adequately capture their
respective DFT reference data over a large range of external conditions.
However, such statistical metrics are not the deciding factor when de-
termining if a given model can be used to simulate dynamical material
properties. Further validation, as seen in the following sections, must be
performed to say that a given ML model can be confidently deployed to
study more complex phenomena.

3.2. Thermodynamic properties

The three generated ML models were used to reproduce several
thermodynamic quantities, shown in Table 4. We begin this discussion
by looking at the predictions made by the ML-energy model. The co-
hesive energy (E0), equilibrium volume (V0), and bulk modulus (B) were
all obtained by fitting the Birch-Murnaghan equation of state [76]
(EOS) to energies corresponding to volumes between 14 and 17 Å3. The
cohesive energy and the equilibrium volume were also obtained from a
geometry optimization. The bulk modulus, along with upper and lower
bounds for the shear modulus (G), as well as the Young’s modulus (E),
can also be calculated via the Voigt-Reuss-Hill approximation [77].

Employing both the Birch-Murnaghan EOS and the Voigt-Reuss-Hill
approximation allows one to compare the agreement between the ML
energy and stress values. The elastic constants C11, C44, and C12 were
calculated according to a prescription described by Ding et al. [78].
Fig. 3 shows energy and stress as a function of strain for the several
types of strain used in this work. It can seen that the ML-energy model
reproduces DFT with exceptional accuracy.

The elastic properties mentioned above can also be calculated with
the ML-stress model. For the case of the bulk, shear, and Young’s
modulus, the Voigt-Reuss-Hill approximation was used, as this ML
model only has access to stress. The elastic constants were calculated
according to = ∊σ Cii ii ii, where σii is the stress. The agreement across
multiple, unique approximation methods can be seen between not only
the ML-energy and ML-stress models, but also between the ML-stress
model and DFT. This agreement shows that both models can be used
interchangeably to reliably make predictions of a material’s mechanical
properties.

For the case of the single vacancy formation energy (E f1 ), and the

Fig. 2. Statistical error metrics used to compare ML
models during the optimization process. The col-
umns are labelled as (a) Energy, (b) Force, (c)
Stress. The top row shows the average RMSE of
both the training and test sets. The middle row
measures the max 1% error of the test set. The x-
axis for the top two rows corresponds to the
number of training points in a given model. The
bottom row shows parity plots of the final model
used throughout this work. Column titles indicate
the property’s units.

Table 3
Statistical error metrics of the final ML models, for each property learned,
generated in this work. All values presented here are the metrics calculated on a
given model’s test set. The final row corresponds to the number of training
points in the final models chosen for this work.

Error Metric Energy model (meV/
atom)

Force model
(eV/Å)

Stress model
(GPa)

RMSE 2.73 0.15 0.42
STD 2.71 0.15 0.41

Max 1% Error 7.90 0.80 1.68
r2 0.99 0.99 0.99

# Training Points 1728 3000 3000

Table 4
Thermodynamic properties of Pt, calculated using either the ML energy or stress
models, and DFT. ∗ represents the Birch-Murnaghan EOS [76], where ‡ re-
presents the Voigt-Reuss-Hill approximation [77], and ℘ represents a geometry
optimization. The values in brackets for the shear and Young’s modulus re-
present the calculated lower and upper bounds. For DFT’s calculation of the
elastic coefficients, two values are reported using different methods: (1) Energy
as a function of strain, and (2) Stress as a function of strain (in brackets). Please
see text for details on the prescription used to calculate the elastic constants.

Property DFT ML-Energy ML-Stress

E0 (eV/atom) −6.05∗, −6.05℘ −6.05∗, −6.05℘ –

V0 (Å3/atom) 15.68∗,15.73℘ 15.69∗,15.74℘ –

B (GPa) 265.62∗, 227.39‡ 265.95∗, 239.86‡ 234.39‡
G (GPa) [76.51‡, 77.08‡] [80.91‡, 81.48‡] [76.22‡, 76.85‡]
E (GPa) [206.38‡, 207.76‡] [218.19‡, 219.57‡] [206.29‡, 207.83‡]

C11 (GPa) 341.12 (341.36) 359.83 348.46
C12 (GPa) 170.53 (179.07) 179.88 177.36
C44 (GPa) 71.61 (65.32) 75.83 71.06
E f1 (eV) 0.65 0.55 –
E b2 (eV) −0.18 −0.15 –
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divacancy binding energy (E b2 ), both the ML force and energy models
were employed. The binding energy is calculated as the difference in
energy between the two vacancies adjacent to one another, and the two
vacancies being separated by several intermediate sites. For this, two
vacancies were placed next to each other, and NEB calculations were
performed (which will be explained in detail in later sections), allowing
for one of the vacancies to move away from the other. At some distance
away, each vacancy effectively acts as a single vacancy, and no longer
feels the effect of the other. Forces and energies, calculated by each of
their respective ML models, were used to relax the corresponding
structures.

The vibrational density of states (VDOS) as well the phonon band
structure, calculated via the finite displacement method [79], which
have to be properly represented to allow for the prediction of ther-
modynamic quantities such as thermal expansion, heat capacity, etc,
are used to determine the ML force model’s capability of capturing
small atomic perturbations. The ML-force model shows good agreement
with respect to DFT for predicting the acoustic modes of the phonon
band structure, indicating that under small atomic perturbations (as
opposed to the much larger displacements often encountered during
dynamic trajectories), the fidelity of the force model is maintained. This
also implies that any properties one desires to extract from the phonon
frequencies, e.g,. heat capacity, vibrational density of states, etc, can be

reliably obtained as well. Figures regarding the vibrational analysis
performed here can be found in the Supplemental information.

3.3. Dynamic properties

The ML model’s performance during dynamic conditions is of great
importance, as the complex materials phenomena that we aim to cap-
ture often occur under these conditions. To this end, we consider MD
simulations of a 256-atom bulk configuration. Canonical ensemble MD
was performed at several temperatures between 300 and 1800 K. A
timestep of 0.5 fs was chosen with a total simulation time of 10 ns.
Single-step DFT calculations were also performed on several snapshots,
randomly chosen from each trajectory, to verify the accuracy of the
models. Parity plots comparing the forces, stresses, and energies, pre-
dicted by DFT and each corresponding ML model, on these snapshots
are shown in Fig. 4. The excellent agreement between the ML models
and DFT indicates that all three ML models can make accurate pre-
dictions within configuration spaces not explicitly employed in their
respective training sets. Similar results were obtained when an identical
analysis was performed on systems containing a single vacancy, and can
be found in the Supplemental information.

Fig. 3. Comparison of different elastic constants as computed using DFT and ML models, as derived using the energy vs strain trends (first column) and stress vs strain
trends (second column). Please see text for more details.

Fig. 4. ML model predictions, compared against
DFT for (a) force, (b) stress, (c) energy. Structures
were gathered from trajectories of defect-free bulk
Pt at different temperatures, generated during MD
using the ML-force model. It should be noted that
the configurations encountered during these MD
simulations are not explicitly present in the
model’s training set. Colors correspond to the dif-
ferent temperatures used.
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3.4. Vacancy kinetics

The ML model’s ability to extrapolate during dynamic conditions
gives rise to another question: can the ML models accurately predict the
kinetics of specific atomistic processes with the accuracy of QM? A
straightforward approach to answer this question is to perform an ionic
relaxation starting from a highly disordered state. To this end, we
employ the ML-force and ML-energy models to perform ionic relaxa-
tions on highly disordered systems, starting from initial configurations
of: (1) defect-free bulk, (2) bulk with a single vacancy, and (3) bulk
with a divacancy, in a 7 × 7 × 7 supercell. Random displacements on
these configurations of up to 0.5 Å, in each of the x, y, and z cartesian
directions, were used. Each relaxation was terminated when an accu-
racy of −10 7 eV and −10 2 eV/Å, for energies and forces respectively, was
reached. Several runs were performed with varying random displace-
ment seeds to ensure the fidelity of the model under different dis-
ordered configurations. All three scenarios show excellent agreement
with their respective equilibrium geometries. A video of all optimiza-
tions can be found in the Supplemental section.

Next, we consider the pathway of a single vacancy hopping from
one site to a nearest-neighbor site in a bulk fcc configuration. NEB
calculations, performed with the ML energy and force models (as well
as all three EAM potentials and DFT), along with the climbing image
formalism, were used to determine the minimum energy pathway
(MEP) of the hop. Fig. 5(left) shows the MEP predicted by ML as well as
DFT. For the case of ML, the diffusion barrier was predicted to be
1.20 eV, which is in excellent agreement with the calculated DFT value
of 1.19 eV. EAM-B, EAM-F, and EAM-Z predict barrier heights of 0.83,
0.81, and 0.54 eV respectively. Experimental values vary depending on
vacancy concentration and quench rates[80–82], however, the values
reported are typically between 1.0 and 1.4 eV. Many factors can con-
tribute to the accuracy of the calculated DFT barrier, including the
treatment of surface effects around the vacancy [83], as well as the cell
size’s possible restriction of relaxations [84]. However, one should be
reminded that the ML models can only be as accurate as the reference
data used to train them, and therefore should only be compared to the
DFT value, and not experimental values.

The activation energy predicted by the NEB calculations can also be
determined through dynamic simulations. In this case, MD runs were
performed on a 7 × 7 × 7 supercell containing 1371 atoms and a
vacancy, between 1000 K and 2000 K, using the ML-force model to
drive the dynamics. Simulations were run for a minimum of 1 ns (with a
time step of 0.5 fs), but were extended for lower temperatures to ensure
statistical diversity with regards to the hop rates. By observing the

dynamics of the vacancy, the average rate constant (k) for the diffusion
process was calculated. k is represented as

t
1

hop
, where thop is the average

time taken for a vacancy to migrate from one arbitrary site to an ad-
jacent site. A minimum of 25 hops were recorded at each temperature
to ensure that thop was not dominated by events 2σ or greater away from
the mean. Fig. 5(right) shows an Arrhenius plot of k versus the re-
ciprocal temperature.

The ML force model predicts an activation energy of 0.94 eV. As one
cannot obtain a dynamic activation energy from DFT, the value of
1.19 eV, determined from the 0 K NEB calculation described earlier, is
used and agrees well with the dynamic ML result. While the predicted
ML barrier is slightly lower, when compared to the NEB barriers (for
both ML and DFT), one can expect that the activation energy obtained
through MD will be lower than that obtained through NEB calculations,
as such a methodology neglects any entropic effects that may help to
“soften” the barrier [85,86]. EAM-B, EAM-F, and EAM-Z predict acti-
vation energies of 0.96, 0.94, and 0.63 eV respectively, and is in good
agreement with their respective NEB energy barriers, indicating little
difference between the static and dynamic cases.

How vacancies interact with one another is also of importance. Here
we consider the diffusion/dissociation of a divacancy pair through NEB
calculations, using the ML force and energy models, along several
possible diffusion pathways. For this, a 4x4x4 FCC supercell containing
254 atoms and a divacancy was considered. Fig. 6 highlights two pos-
sible pathways that can occur during dissociation. From these minimum
energy pathways (MEP) we can conclude several important pieces of
information. The first pertains to the relative thermodynamic stability
of the divacancy versus two isolated vacancies. Both ML and DFT pre-
dict the divacancy configuration to be higher in energy than that of two
isolated vacancies, (this can be seen by observing the difference in
energy between the reaction coordinates 0 and 3, as well as 0 and 5, in
Fig. 6). The second belongs to the kinetics of the dissociation/diffusion
process. When travelling along the 〈110〉 direction (from reaction
coordinate 0 to 3), the barrier heights between each reaction coordinate
remain consistent, with a decrease in energy of the final configuration
(as mentioned previously). However, due to the prohibitively large
barrier height when travelling from reaction coordinate 4 to 5, one can
make the assumption that, under dynamic conditions, diffusion should
occur more frequently along the 〈110〉 direction.

However, for all three EAM potentials considered in this work, the
divacancy is predicted to be more energetically favorable than 2 iso-
lated vacancies, regardless of the diffusion pathway that is chosen. The
barrier heights are also predicted to be significantly lower than those
calculated by both ML and DFT, indicating a more diffuse solid. The

Fig. 5. (left) Nudged elastic band prediction of a
single vacancy migrating in bulk Pt. (right)
Arrhenius plots for a single vacancy migrating in
bulk Pt, generated from all methods used in this
work. For each temperature, the MD simulation
time was extended so as to allow at least 25
hopping events (thus allowing estimation of an
average hop rate, and the corresponding dis-
tribution. A linear fit (red lines) was used to de-
termine the dynamic activation energy (Ea).
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differing profiles presented here paint vastly different pictures of va-
cancy behavior, at least at 0 K. DFT and ML do not seem to favor di-
vacancy formation, indicating that energy must be provided to the
system to allow for vacancies to come together. All considered EAM
potentials indicate the opposite, in that energy must be supplied to the
system to favor vacancy separation. However, we must remind the
reader that this picture exists at T = 0 K, and how this portrayal
changes at T > 0 K is yet to be fully understood computationally.

At this point there is a critical aspect to all ML schemes that must be
discussed: the accuracy of the underlying reference data used to train
ML models. As ML methods begin to outperform existing methods, they
will be increasingly used to study unexplained phenomena. The accu-
racy of the reference data used to train the ML models will therefore
become an important factor, as the level of theory used to create the
reference data must be capable of accurately representing the problem
being studied.

For the case of this work, the PBE exchange correlation functional
was used to predict properties such as vacancy dynamics. It is well-
known that the PBE functional underestimates surface-related proper-
ties due to its under-prediction of the electron density around such
regions [87]. Therefore, properties such as the vacancy formation/ac-
tivation energy will be underestimated with respect to experiments. As
the DFT reference data is inaccurate, the corresponding ML potential
will follow its respective trends. Therefore, as the community pro-
gresses further into unknown territory, great care must be taken to
ensure the accuracy of the model’s reference data, under the conditions
being studied, and will ultimately require the use of more accurate, and
more computationally demanding, exchange correlation functionals.

4. Conclusion

In this work, a new machine learning scheme, designed to circum-
vent the computational cost of QM-based methods such as DFT, while
retaining their accuracy, has been proposed. Here, we further extend
the scope of current ML paradigms by incorporating the predictions of
atomic forces, stresses, and potential energy simultaneously and

seamlessly through three independent ML models. This paradigm by-
passes the primary drawback of many prominent ML strategies by in-
dependently learning all predicted atomic-level properties. The various
ML models were validated by accurately reproducing bulk thermal,
vibrational, elastic, and diffusive properties of bulk Platinum, with and
without the presence of vacancies. In particular, we highlight the ability
of the ML models to accurately predict properties such as the activation
energy required for a single vacancy to diffuse in bulk, and the kinetics
of divacancy dissociation/diffusion, as the EAM potentials used in this
work deviate significantly with respect to DFT.

More complex phenomena, such as how the mechanical properties
behave as a function of temperature, and the diffusive properties of
vacancies in the presence of planar defects, can be examined further, as
such properties are relevant not only because of their physical im-
portance, but also because modern classical methods fail to accurately
explain them. Due to the nature of ML, the reference data which ex-
amines such behavior can be iteratively added to the models presented
here, thus improving their predictive power. Using ML to obtain high
fidelity atomic-level materials properties, at a fraction of the cost of QM
methods, has already made significant progress to studying materials
and chemical phenomena, and such strategies will become essential in
pushing the boundaries of atomistic materials simulations.
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