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Physically informed artificial neural networks for
atomistic modeling of materials

G.P.Purja Pun’, R. Batra?, R. Ramprasad® 2 & Y. Mishin'

Large-scale atomistic computer simulations of materials heavily rely on interatomic potentials
predicting the energy and Newtonian forces on atoms. Traditional interatomic potentials are
based on physical intuition but contain few adjustable parameters and are usually not
accurate. The emerging machine-learning (ML) potentials achieve highly accurate inter-
polation within a large DFT database but, being purely mathematical constructions, suffer
from poor transferability to unknown structures. We propose a new approach that can
drastically improve the transferability of ML potentials by informing them of the physical
nature of interatomic bonding. This is achieved by combining a rather general physics-based
model (analytical bond-order potential) with a neural-network regression. This approach,
called the physically informed neural network (PINN) potential, is demonstrated by devel-
oping a general-purpose PINN potential for Al. We suggest that the development of physics-
based ML potentials is the most effective way forward in the field of atomistic simulations.

TDepartment of Physics and Astronomy, MSN 3F3, George Mason University, Fairfax, VA 22030, USA. 2 School of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, GA 30332, USA. Correspondence and requests for materials should be addressed to Y.M. (email: ymishin@gmu.edu)

| (2019)10:2339 | https://doi.org/10.1038/s41467-019-10343-5 | www.nature.com/naturecommunications 1


http://orcid.org/0000-0003-4630-1565
http://orcid.org/0000-0003-4630-1565
http://orcid.org/0000-0003-4630-1565
http://orcid.org/0000-0003-4630-1565
http://orcid.org/0000-0003-4630-1565
mailto:ymishin@gmu.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

arge-scale molecular dynamics (MD) and Monte Carlo

(MC) simulations of materials are traditionally implemented

using classical interatomic potentials predicting the potential
energy and Newtonian forces acting on atoms. Computations
with such potentials are very fast and afford access to systems
with millions of atoms and MD simulation times up to hundreds
of nanoseconds. Such simulations span a wide range of time and
length scales and constitute a critical component of the multiscale
approach in materials modeling and computational design.

Several functional forms of interatomic potentials have been
developed over the years, including the embedded-atom method
(EAM)!-3, the modified EAM (MEAM)*, the angular-dependent
potentials®, the charge-optimized many-body potentials®, reactive
bond-order potentials’~?, and reactive force fields!® to name a
few. These potentials address particular classes of materials or
particular types of applications. Their functional forms depend on
the physical and chemical models chosen to describe interatomic
bonding in the respective class of materials.

A common feature of all traditional potentials is that they
express the potential energy surface (PES) of the system, E=
E(ry, ..., In P), as a relatively simple function of atomic coordi-
nates (1, ..., ry), N being the number of atoms (Fig. 1a). Knowing
the PES, the forces acting on the atoms can be computed by
differentiation and used in MD simulations. The potential func-
tions depend on a relatively small number of fitting parameters
P = (P> --» pi) (typically, m = 10-20) and are optimized (trained)
on a relatively small database of experimental data and first-
principles density functional theory (DFT) calculations. The
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Fig. 1 Flowcharts of the development of atomistic potentials. a Traditional
interatomic potential. b Mathematical NN potential. ¢ Physically informed
NN (PINN) potential with all-local parameters. d PINN potential with
parameters divided into local and global. The dashed rectangle outlines the
objects requiring parameter optimization. PES is the potential energy
surface of the material

traditional potentials are, of course, much less accurate than DFT
calculations. Nevertheless, many of them demonstrate a reason-
ably good transferability to atomic configurations lying well
outside the training dataset. This important feature owes its
origin to the incorporation of at least some basic physics in the
potential form. As long as the nature of chemical bonding
remains the same as assumed during the potential development,
the potential can predict the system energy adequately even for
new configurations not seen during the training process. Unfor-
tunately, the construction of good quality potentials is a long and
painful process requiring personal experience and intuition and is
more art than science®!!. In addition, the traditional potentials
are specific to a particular class of materials and cannot be easily
extended to other materials or improved in a systematic manner.

During the past decade, a new direction has emerged wherein
interatomic potentials are developed by employing machine-
learning (ML) methods!?-22. The idea was originally conceived in
the chemistry community in the 1990s in the effort to improve
the accuracy of inter-molecular force fields?>24, an approach that
was later adopted by the physics and materials science commu-
nities. The general idea is to forego the physical insights and
reproduce the PES by interpolating between DFT data points
using high-dimensional nonlinear regression methods such as the
Gaussian process regression!®2>-27, interpolating moving least
squares?8, kernel ridge regression!220:21, compressed sensing?-30,
gradient-domain machine-learning model3!, or the artificial
neural network (NN) approach!3-18:32-38 If properly trained, a
ML potential can predict the system energy with a nearly DFT
accuracy (a few meV/atom). ML potentials are not specific to a
particular class of materials or type of chemical bonding. They
can be improved systematically if weaknesses are discovered or
new DFT data become available. The training process can be
implemented on-the-fly by running ab initio MD simulations2°.

A major weakness of ML potentials is their poor transferability.
Being purely mathematical constructions devoid of any physical
meaning, they can accurately interpolate the energy between the
training configurations but are generally incapable of properly
extrapolating the energy to unknown atomic environments. As a
result, the performance of ML potentials outside the training
domain can be very poor. There is no reason why a purely
mathematical extrapolation scheme would deliver physically
meaningful results outside the training database. This explains
why the existing ML potentials are usually (with rare excep-
tions3®) narrowly focused on, and only tested for, a particular
type of physical properties. This distinguishes them from the
traditional potentials which, although less accurate, are designed
for a much wider range of applications and diverse properties.

In this work we propose a new approach that can drastically
improve the transferability of ML potentials by informing them of
the physical nature of interatomic bonding. We focus on NN
potentials as an example, but the approach is general and can be
readily extended to other methods of nonlinear regression. Like
all ML potentials, the proposed physically informed NN (PINN)
potentials are trained using a large DFT dataset. However, by
contrast to the existing, mathematical NN potentials, the PINN
potentials incorporate the basic physics and chemistry of atomic
interactions leveraged by the extraordinary adaptivity and train-
ability of NNs. The PINN potentials thus strike a golden com-
promise between the two extremes represented by the traditional,
physics-guided interatomic potentials, and the mathematical NN
potentials.

The general idea of combining traditional interatomic poten-
tials with NNs was previously discussed by Malshe et al.49, who
constructed an adjustable Tersoff potential*!=43 for a Sis cluster.
Other authors have also applied machine-learning methods to
parameterize physics-based models of molecular interactions,
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primarily in the context of broad exploration of the compositional
space of molecular (mostly organic) matter*4-4°, Glielmo et al.#’
recently proposed to construct n-body Gaussian process kernels
to capture the n-body nature of atomic interactions in physical
systems. The PINN potentials proposed in this paper are inspired
by such approaches but extend them to (1) more advanced
physical models with a broad applicability, and (2) large-scale
systems by introducing local energies E; linked to local structural
parameters G The focus is placed on the exploration of the
configurational space of defected solids and liquids in single-
component and, in the future, binary or multicomponent sys-
tems. The main goal is to improve the transferability of intera-
tomic potentials to unknown atomic environments while keeping
the same level of accuracy of training as normally achieved with
mathematical machine-learning potentials.

Results
Physically informed neural network potentials. The currently
existing, mathematical NN potentials!3-18-32-36 partition the total
energy E into a sum of atomic energies, E = >, E;. A single NN is
constructed to express each atomic energy E; as a function of a set
of local fingerprint parameters (also called symmetry para-
meters'?) (G!,G2,...,G¥). These parameters encode the local
environments of the atoms. The network is trained by minimizing
the error between the energies predicted by the NN and the
respective DFT total energies for a large set of atomic config-
urations. The flowchart of the method is depicted in Fig. 1b.
The proposed PINN model is based on the following
considerations. A traditional, physics-based potential can always
be trained to reproduce the energy of any given atomic
configuration with any desired accuracy. Of course, this potential
will not work well for other configurations. Imagine, however,
that the potential parameters have been trained for a large set of
reference structures, one structure at a time, each time producing
a different parameter set p. Suppose that, during the subsequent
simulations, we have a way of identifying, on the fly, a reference
structure closest to any current atomic configuration. Then the
accuracy of the simulation can be drastically improved by
dynamically choosing the best set of potential parameters for
every atomic configuration accoutered during the simulation.
Now, since the atomic energy E; only depends on the local
environment of atom i, the best parameter set for computing E;
can be chosen by only examining the local environment of this
atom. The energies of different atoms are then computed by using
different, environment-dependent, parameter sets while keeping
the same, physics-motivated functional form of the potential.
Instead of generating and storing a large set of discrete
reference structures, we can construct a continuous NN-based
function mapping the local environment of every atom on a
parameter set of the interatomic potential optimized for that
particular environment. Specifically, the local structural para-
meters (fingerprints) Gf (I=1, .., k) of every atom i are fed into
the network, which then maps them to the optimized parameter
set p; appropriate for atom i. Mathematically, the local energy
takes the functional form

E; :Ei(ri17""rin’pi(Gg(rilv--~arin)))7 (1)

where (r;;, ..., I;;,) are atomic positions in the vicinity of atom i.

In comparison with the direct mapping G!—E; implemented
by the mathematical NN potentials, we have added an
intermediate step: Gh—p,—E,. The first step is executed by the
NN and the second by a physics-based interatomic potential. A
flowchart of the two-step mapping is shown in Fig. lc. It is
important to emphasize that this intermediate step does not
degrade the accuracy relative to the direct mapping, because a

feedforward NN can always be trained to execute any real-valued
function*4%. Thus, for any functional form of the potential, the
NN can always adjust its architecture, weights and biases to
achieve the same mapping as in the direct method. However,
since the chosen potential form captures the essential physics of
atomic interactions, the proposed PINN potential will display a
better transferability to new atomic environments. Even if the
potential parameters predicted by the NN for an unknown
environment are not very accurate, the physics-motivated
functional form will ensure that the results remain at least
physically meaningful. This physics-guided extrapolation is likely
to be more reliable than the purely mathematical extrapolation
inherent in the existing NN potentials. Obviously, the same
reasoning applies to the interpolation process as well, which can
also be more accurate.

The functional form of the PINN potential must be general
enough to be applicable across different classes of materials. In
this paper we chose a simple analytical bond-order potential
(BOP)>0-52 that must work equally well for both covalent and
metallic materials. For a single-component system, the BOP
functions are specified in the Methods section. They capture the
physical and chemical effects such as the pairwise repulsion
between atoms, the angular dependence of the chemical bond
strength, the bond-order effect (the more neighbors, the weaker
the bond), and the screening of chemical bonds by surrounding
atoms. In addition to being appropriate for covalent bonding, the
proposed BOP form reduces to the EAM formalism in the limit of
metallic bonding.

Example: PINN potential for Al. To demonstrate the PINN
method, we have constructed a general-purpose potential for
aluminum. The training and validation datasets were randomly
selected from a pre-existing DFT database?021, Some additional
DFT calculations have also been performed using the same
methodology as in refs. 2021, The selected DFT supercells
represent seven crystal structures for a large set of atomic volumes
under isotropic tension and compression, several slabs with dif-
ferent surface orientations, including surfaces with adatoms, a
supercell with a single vacancy, five different symmetrical tilt
grain boundaries, and an unrelaxed intrinsic stacking fault on the
(111) plane with different translational states along the [211]
direction. The database also includes several isolated clusters with
the number of atoms ranging from 2 (dimer) to 79. The ground-
state face centered cubic (FCC) structure was additionally subject
to uniaxial tension and compression in the [100] and [111]
directions at 0 K temperature. Most of the atomic configurations
were snapshots of DFT MD simulations in the microcanonical
(NVE) or canonical (NVT or NPT) ensembles for several atomic
volumes at several temperatures. Some of the high-temperature
configurations were part-liquid, part crystalline. In total, the
database contains 3649 supercells (127592 atoms). More detailed
information about the database can be found in the Supple-
mentary Tables 1 and 2. To avoid overfitting or selection bias, the
10-fold cross-validation method was used during the training.
The database was randomly partitioned in 10 subsets. One of
them was set aside for validation and the remaining data was used
for training. The process repeated 10 times for different choices of
the validation subset.

The local structural parameters G/ chosen for Al are specified
in the Methods section. The NN contained two hidden layers
with the same number of nodes in each. This number was
increased until the training process produced a PINN potential
with the root-mean-square error (RMSE) of training and
validation close to 3-4 meV per atom, which was set as our goal.
This is the level of accuracy of the DFT energies included in the
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database. For comparison, a mathematical NN potential was
constructed using the same methodology. The number of hidden
nodes of the NN was adjusted to give about the same number of
fitted parameters and to achieve approximately the same RMSE of
training and validation as for the PINN potential. Table 1
summarizes the training and validation errors averaged over the
10 cross-validation runs. One PINN and one NN potential were
selected for a more detailed examination reported below.

Figure 2 and Supplementary Fig. 1 demonstrate excellent
correlation between the predicted and DFT energies over a 7 eV
per atom wide energy range for both potentials. The error
distribution has a near-Gaussian shape centered at zero.
Examination of errors in individual groups of structures
(Supplementary Fig. 2) shows that the largest errors originate
from the crystal structures (especially FCC, HCP, and simple
hexagonal) subjected to large expansion.

Table 2 summarizes some of the physical properties of Al
predicted by the potentials in comparison with DFT data from
the literature. There was no direct fit to any of these properties,
although atomic configurations most relevant to some of the
properties were represented in the training dataset. While both
potentials agree with the DFT data well, the PINN potential tends

Table 1 Fitting and validation errors of the straight NN and
PINN models
Model NN Number of RMSE of RMSE of
architecture parameters training (meV validation (meV
per atom) per atom)
NN 60 x 16 x 1265 3.36 3.85
16 %1
NN’ 47 x18 x 1225 3.62 3.54
18 x1
PINN 60 x15x 1283 3.46 3.59
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to be more accurate for most properties. For the [110] self-
interstitial dumbbell, the NN potential predicts an unstable
configuration that spontaneously rotates to the [100] orientation,
whereas the PINN potential correctly predicts such configura-
tions to be metastable. Figure 3 shows the linear thermal
expansion factor as a function of temperature predicted by the
potentials in comparison with experimental data. The PINN
potential displays good agreement with experiment without direct
fit, whereas the NN potential overestimates the thermal expansion
at high temperatures. (The discrepancies at low temperatures are
due to the quantum effects that are not captured by classical
simulations.) As another test, the radial distribution function and
the bond angle distribution in liquid Al were computed at several
temperatures for which experimental and/or DFT data are
available (Supplementary Figs 4 and 5). In this case, both
potentials were found to perform equally well. Any small
deviations from the published DFT calculations are within the
uncertainty of the different DFT flavors (exchange-correlation
functionals).

For testing purposes, we computed the energies of the
remaining groups of structures that were part of the original
DFT database?%2! but were not used here for training or
validation. The full information about the testing dataset
(26,425 supercells containing a total of 2,376,388 atoms) can be
found in the Supplementary Table 3. For example, Fig. 4
compares the energies predicted by the potentials with DFT
energies from high-temperature MD simulations for a supercell
containing an edge dislocation or HCP Al In both cases, the
PINN potential is obviously more accurate. The remaining testing
cases are presented in the Supplementary Figs. 6-10. Although
there are cases where both potentials perform equally well, in
most cases the PINN potential predicts the energies of unknown
atomic configurations more accurately than the NN potential.

For further testing, the energies of the crystal structures of Al
were computed for atomic volumes both within and beyond the
training interval. Both potentials accurately reproduce the DFT
energy—-volume relations for all volumes spanned by the DFT
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Fig. 2 Accuracy of the PINN potential. a, ¢ Energies of atomic configurations in the a training and ¢ validation datasets computed with the PINN potential
versus DFT energies. The straight line represents the perfect fit. b, d Error distributions in the b training and d validation datasets
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Table 2 Aluminum properties predicted by the PINN and NN potentials

Property DFT NN PINN

Eo (eV per atom) —3.74802 —3.3606 —3.3609
ao (A) 4.03924; 3.9725-4.0676¢ 4.0409 4.0396
B (GPa) 832; 81 80 79

cn (GPa) 1042; 103-1064 108 n7z

cr2 (GPa) 732, 57-664 66 60

Caa (GPa) 322; 28-334 25 32
75(100) Um=2) 0.92b 0.897 0.899
7s(110) Jm~—2) 0.98b 0.986 0.952
7(111) Um=2) 0.80b 0.837 0.819

Ef (eV) 0.665-1.346¢; 0.7¢ 0.640 0.678

Ef (eV) unrelaxed 0.78¢ 0.71 0.77

ET (eV) 0.304-0.621° 0.627 0.495

E;‘ (T (eV) 2.200-3.294¢ 2.683 2.840

E/ (Op) (eV) 2.531-2.948¢ 1.600 2367

E,f (100) (eV) 2.295-2.607¢ 1.529 2.246

E’,‘ (MO) (eV) 2.543-2.981¢ 1.529* 2.713

EF (M) (eV) 2.679-3182¢ 2.631 2.815

yor (MIm—2) 1341; 1468; 158h 128 121

Yus (MIM=2) 162i; 169i; 175h 143 132

The potential predictions are compared with DFT calculations from the literature

Eo equilibrium cohesive energy, ag equilibrium lattice parameter, B bulk modulus, c; elastic constants, y, surface energy, EC vacancy formation energy, E)’ vacancy migration barrier, E,f interstitial formation
energy for the tetrahedral (T4) and octahedral (Oy,) positions and split dumbbell configurations with different orientations, ys¢ intrinsic stacking fault energy, y.s unstable stacking fault energy. All defect
energies are statically relaxed unless otherwise indicated

aRef. 61 bref, 62; cref, 63; dref, 64: eref, 65; fref 66 gref. 67: hyef, 68; iref. 69; iref, 70

*Unstable and flips to the (100) dumbbell orientation
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Fig. 3 Linear thermal expansion of Al relative to room temperature (295 K)
predicted by the PINN and NN potentials in comparison with experiment®©

database (Fig. 5 and Supplementary Fig. 3). However, extrapola-
tion to larger or smaller volumes reveals significant differences.
For example, the PINN potential correctly predicts that the
crystal energy continues to rapidly increase under strong
compression (repulsive interaction mode). In fact, the extra-
polated PINN energy goes exactly through the new DFT points
that were not included in the training or validation datasets, see
examples in Fig. 6. By contrast, the energy predicted by the NN
model immediately develops wiggles and strongly deviates from
the physically meaningful repulsive behavior. Such artifacts were
found for other structures as well.

To demonstrate that the unphysical behavior exhibited by the
NN potential is not a specific feature of our structural parameters
G or the training method, we constructed another NN potential
using a third-party NN-training package PROPhet>3. This
potential, which we refer to as NN’, uses the Behler-Parrinello
symmetry functions!3, which are different from our structural
descriptor G!. The NN-training algorithm is also different. A 47 x
18 x 18 x 1 network containing 1225 fitting parameters was

trained on exactly the same DFT database to about the same
accuracy as the NN and PINN potentials (Table 1). Figure 6
shows that the NN’ potential behaves in a similar manner as our
NN potential, closely following the DFT energies within the
training/validation domain and becoming unphysical as soon as
we step outside this domain.

While the atomic forces were not used for either training
or validation, they were compared with the DFT forces once
the training was complete. For the wvalidation dataset,
this comparison probes the accuracy of interpolation, whereas
for the testing dataset the accuracy of extrapolation. As expected, for
the validation dataset the PINN forces are in better agreement with
DFT calculations than the NN forces (RMSE = 0.1 eV A1 versus
~0.2eV A~1) as illustrated in Fig. 7a, b. For the testing dataset,
the advantage of the PINN model in force predictions is
even more significant. For example, for the dislocation and
HCP cases discussed above, the PINN potential provides more
accurate predictions (RMSE = 0.1 eV A~1) than the NN potential
(RMSE ~ 04 eV A—1 for the dislocation and 0.6eV A~1 for the
HCP case) (Fig. 7¢, f). This advantage persists for all other groups of
structures from the testing database.

It was also interesting to compare the PINN potential with
traditional, parameter-based potentials for Al. One of them was
the widely accepted EAM Al potential®* that had been fitted to a
mix of experimental and DFT data. The other was a BOP
potential of the same functional form as in the PINN model. Its
parameters were fitted in this work using the same DFT database
as for the PINN/NN potentials and then fixed once and for all.
Figure 8 compares the DFT energies with the energies predicted
by the EAM and BOP models across the entire set of reference
configurations. The PINN predictions are shown for comparison.
The plots demonstrate that the traditional, fixed-parameter
models generally follow the correct trend but become increasingly
less accurate as the structures deviate from the equilibrium, low-
energy atomic configurations. The adaptivity to the local atomic
environments built into the PINN potential greatly improves the
accuracy.
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Discussion

The proposed PINN potential model is capable of achieving the
same high accuracy in interpolating between DFT energies on the
PES as the currently existing mathematical NN potentials. The

construction of PINN potentials requires the same type of DFT
database, is equally straightforward, and does not heavily rely on
human intuition. However, extrapolation outside the domain of
atomic configurations represented in the training database is now
based on a physical model of interatomic bonding. As a result, the
extrapolation becomes more reliable, or at least more failure-
proof, than the purely mathematical extrapolation. The accuracy
of interpolation can also be improved for the same reason. As an
example, the PINN Al potential constructed in this paper
demonstrates better accuracy of interpolation and significantly
improved transferability than a regular NN potential with about
the same number of parameters. The advantage of the PINN
potential is especially strong for atomic forces, which are
important for molecular dynamics. The potential could be used
for accurate simulations of mechanical behavior and other pro-
cesses in Al. Construction of general-purpose PINN potentials for
Si and Ge is currently in progress.

We believe that the development of physics-based ML poten-
tials is the best way forward in this field. Such potentials need not
be limited to NNs or the particular BOP model adopted in this
paper. Other regression methods can be employed and the
interatomic bonding model can be made more sophisticated, or
the other way round, simpler in the interest of speed.

Other modifications are envisioned in the future. For example,
not all potential parameters are equally sensitive to local envir-
onments. To improve the computational efficiency, the para-
meters can be divided into two subsets#’: local parameters a; =
(ai, .. a;) adjustable according to the local environments as
discussed above, and global parameters b= (by, ..., b,) that are
fixed after the optimization and used for all environments (as in
the traditional potentials). The potential format now becomes

E = E,—(ril, S ai(Gi(ri17 ey rin))7b). (2)

During the training process, the global parameters b and the
network weights and biases are optimized simultaneously, as
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Fig. 6 Zoom into the repulsive part of the energy-volume relations
predicted by the PINN, NN, NN’, EAM, and BOP potentials (curves) and
DFT calculations (points)

shown in Fig. 1d. Extension of PINN potentials to binary and
multicomponent systems is another major task for the future.

All ML potentials are orders of magnitude faster than straight
DFT calculations but inevitably much slower than the traditional
potentials. Preliminary tests indicate that PINN potentials are
about 25% slower than the regular NN potentials for the same
number of parameters, the extra overhead being due to the BOP
calculation. However, the computational efficiency depends on
the parallelization method and computer architecture. All com-
putations reported in this paper utilized in-house software par-
allelized with MPI for training and with OpenMP for MD and
MC simulations (see example in Supplementary Fig. 14). Colla-
borative work is underway to develop highly scalable HPC soft-
ware packages for physically informed ML potential training and
MD/MC simulations using multiple CPUs or GPUs, or both. The
results will be reported in a forthcoming paper.

Methods

Local structural parameters. There are many possible ways of choosing local
structural parameters!3-18:3436_ After trying several options, the following set of
GP’s was selected. For an atom i, we define

g,-(m) = ZPm (cos Gl-j-k)f(rlj)f(r[k)7 m=0,1,2,..., 3)
jik

where 7;; and r; are distances to atoms j and k, respectively, and 8; is the angle
between the bonds #j and ik. In Eq. (3), P,,(x) is the Legendre polynomial of order

m and
|
f() =S5 ) (1)
is a truncated Gaussian of width ¢ centered at point ry. The truncation function
fe(r) is defined by

(r—ro)*

fc(r) = {d“%»(y—r{)4

0, r>r.

r<r,

()

This function and its derivatives up to the third go to zero at a cutoff distance r,.
The parameter d controls the truncation range.

For example, Py(x) =1 and g,-(o) characterizes the local atomic density near atom

i. Likewise, P;(x) = x and g[“) can be interpreted as the dipole moment of a set of
unit charges placed at the atomic positions j and k. As such, this parameter
measures the degree of local deviation from spherical symmetry in the
environment (gi(l) = 0 for spherical symmetry). For m = 2, we have P,(x) = (3x% —
1)/2 and gfz) is related to the quadrupole moment of a set of unit charges placed at
the atomic positions around atom i. We found that polynomials up to degree m =
6 should be included to accurately represent the diverse atomic environment. Each
gi(l) is computed for several values of o and r, spanning a range of interatomic
distances. For each atom, the set of k gfm)’s obtained is arranged in a one-
dimensional array (G!, G, ..., Gf) In this work we chose 0= 1.0 and used
polynomials with m =0, 1, 2, 4, 6 for 12 r, values, giving a total of k=60 G'’s.

The BOP potential. In the BOP model adopted in this work, the energy of an atom
i is postulated in the form
1 EA —ar; B;—p,r, (p)
E= 32 [ = sy i) + 5 )

J#i

where r;; is the distance between atoms i and j and the summation is over all atom j
other than i within the cutoff radius r.. The bond-order parameter b;; is taken in the
form

_ ~1/2
b= (1), o)
where
Z; = a kz: Six(cosfy + ) f(rye) (8)
#i,j

represents the number of chemical bonds (other than ij) formed by atom i. Larger
z;; values (more bonds) lead to a smaller b;; and thus weaker ij bond.

The screening factor S;; reduces the strength of bonds by surrounding atoms.
For example, when counting the bonds in Eq. (8), we screen them by Sy, so that
strongly screened bonds contribute less to z;;. The screening factor Sj is given by

Sy =11 )

k=i j

where the partial screening factor S represents the contribution of a neighboring
atom k (different from i and j) to the screening of the bond ij. Sy is given by

S =1—folry + 1y — fij)eia‘z(r’kﬂ"fr‘/x (10)
It has the same value for all atoms k located on the surface of an imaginary
spheroid whose poles coincide with the atoms i and j. For all atoms k outside this
cutoff spheroid, on which ry + rj — r;; =r,, we have Sz =1 — such atoms are too
far away to screen the bond. If an atom k is placed on the line between the atoms i
and j, we have 7 + rj — r;;= 0 and S is small — the bond ij is strongly screened
(almost broken) by the atom k. This behavior reasonably reflects the nature of
chemical bonding.

Finally, the promotion energy E,.(P ) is taken in the form

1/2
E,@) = —o0; <Z Sijbiifc(rij)> .

J#i

(11)

For a covalent material, E,-(P ) accounts for the energy cost of changing the
electronic structure of a free atoms before it forms chemical bonds. For example,
for group IV elements, this is the cost of the s2p? — sp3 hybridization. On the other

hand, E,-(p) can be interpreted as the embedding energy

E(p;) = —o; (pi)l/z (12)

appearing in the EAM formalism!-2. Here, the host electron density on atom i is
given by p; = ... S;b;; f.(;;). Due to this feature, this BOP model can be applied
to both covalent and metallic systems.

The BOP functions depend on eight parameters A;, B;, a;, B a;, h;, 05, and A,
which constitute the parameter set (p,, ..., p,,) with m = 8. The cutoff parameters
were fixed at . =6 A and d=1.5A.
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Fig. 7 Testing of atomic force predictions. The x-component of atomic forces for a, b validation database, ¢, d edge dislocation in NVE MD simulations
starting at 700 K, and e, f HCP Al in NVT MD simulations at 300, 600, 1000, 1500, 2000, and 4000 K. The forces predicted by the PINN (a, ¢, e) and NN
(b, d, f) potentials are compared with DFT calculations from refs. 2021, The straight lines represent the perfect fit. See Supplementary Figs 11-13 for all

components of the forces

The neural network and training procedures. The feedforward NN contained
two hidden layers and had the 60 x 15 x 15 x 8 architecture for the PINN potential
and 60 x 16 x 16 x 1 for the NN potential. The number of nodes in the hidden
layers was chosen to reach the target accuracy of about 3-4 meV/atom without
overfitting.

The training/validation database consisted of DFT total energies for a set of
supercells. The DFT calculations were performed using projector-augmented wave
(PAW) pseudopotentials as implemented in the electronic structure Vienna Ab
initio Simulation Package (VASP)>>%. The generalized gradient approximation
(GGA) was used in conjunction with the Perdew, Burke, and Ernzerhof (PBE)
density functional®’-38. The plane-wave basis functions up to a kinetic energy cutoff
of 520 eV were used, with the k-point density chosen to achieve convergence to a
few meV per atom level. Further details of the DFT calculations can be found in
refs. 2021, The energy of a given supercell s, ES = }_, E;, predicted by the potential
was compared with the DFT energy E},p;. Note that the original Ej,.;. values were
not corrected to remove the energy of a free atom. To facilitate comparison with

literature data, prior to the training all DFT energies were uniformly shifted by
0.38446 eV per atom to match the experimental cohesive energy of Al, 3.36 eV per
atom®. The NN was trained by adjusting its weights w,, and biases b, to minimize
the objective function

E=) (B~ Em)' + r(Z e + zw) + y<2 2, —ﬁ,,\z) (13)
s €K K n

The second term was added to avoid overfitting by controlling the magnitudes
of the weights and biases. The parameter 7 controls the degree of regularization.
The third term ensures that the variations of the PINN parameters relative to their
database-averaged values p, remain small. The minimization of £ was
implemented by the Davidson-Fletcher-Powell algorithm of unconstrained
optimization. The optimization was repeated several times starting from different
random states and the solution with the smallest £ was selected as final. The PINN
and NN forces were computed by the finite-difference method.
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