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Abstract
Over the past decade, there has been a resurgence in the importance of data-
driven techniques in materials science and engineering. The utilization of
state-of-the art algorithms, coupled with the increased availability of exper-
imental and computational data, has led to the development of surrogate
models offering the promise of rapid and accurate predictions of materials’
properties based solely on their structure or composition. Such machine
learning (ML) models are trained on available past data and are thus sus-
ceptible to the intrinsic uncertainties/errors associate with these past mea-
surements. The glass transition temperature (Tg) of polymers, a property of
paramount interest in polymer science, is one strong example of a material
property that can show widespread variation in the final reported value as a
result of a variety of intrinsic and extrinsic factors that occur during the
experimental measurement process. In the current work, we curate a large
database of Tg measurements from a variety of data sources and proceed to
investigate the statistical nature of the inherent uncertainties in the database.
Through the partitioning of the dataset using statistically relevant measures,
we investigate the effect of variations in the dataset on the performance of the
final ML model. We demonstrate that the measure of central tendency, median
is a valid approximation when dealing with multiple reported values for Tg
when dealing with multiple reported values of Tg for the same polymeric
material. Moreover, the Bayesian model noise/uncertainty that emerges from
our machine-learning pipeline is able to represent quantitatively the underlying
noise/uncertainties in the experimental measurement of Tg.

Keywords: machine learning, polymers, glass transition temperature

Modelling and Simulation in Materials Science and Engineering

Modelling Simul. Mater. Sci. Eng. 27 (2019) 024002 (9pp) https://doi.org/10.1088/1361-651X/aaf8ca

0965-0393/19/024002+09$33.00 © 2019 IOP Publishing Ltd Printed in the UK 1

https://orcid.org/0000-0002-2794-3717
https://orcid.org/0000-0002-2794-3717
mailto:rampi.ramprasad@mse.gatech.edu
https://doi.org/10.1088/1361-651X/aaf8ca
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-651X/aaf8ca&domain=pdf&date_stamp=2019-01-17
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-651X/aaf8ca&domain=pdf&date_stamp=2019-01-17


(Some figures may appear in colour only in the online journal)

1. Introduction

Data-driven methods are seeing a revival within materials science [1–6], and are deeply
influencing multiple aspects of materials research [7–13]. Materials property data, obtained
either from computational or experimental efforts, are being utilized to create surrogate
models using machine learning (ML) techniques [1, 14–21]. These models can be utilized to
provide rapid predictions of the properties of new materials at a minuscule fraction of the cost
involved in actual experimentation or computation [7, 22–26]. Moreover, a variety of tech-
niques are being explored to invert the property prediction pipeline so as to allow for
designing materials that display a desired target set of property values [4–6, 17, 27–32].

The quality of the developed surrogate model, though, depends on the quality (and
quantity) of the dataset used in the model training step. Often, different experimental studies
may report different values for the same property of the same material. This may be because
of variations in measurement techniques, measurement conditions, and sample quality among
others. How should one treat such uncertainties in data during surrogate model development?
And, what is the impact of such uncertainties on the surrogate model performance?

The present contribution attempts to address the above questions for the specific case of
the glass transition temperature (Tg) of polymeric materials. Tg is a complex property, the
measurement of which is affected by a variety of intrinsic and extrinsic factors. The intrinisic
factors include material properties such as morphology, crystallinity, tacticity, cross-linking,
molecular weight and density. Extrinsic factors such as the method of measurement and the
rate of cooling/heating also significantly impact the reported Tg value. Above and beyond
such measurement uncertainties, the surrogate modeling pipeline (illustrated in figure 1) also
entails the introduction of additional uncertainties at various stages of the process [33]. For
example, the fingerprint stage necessitates the numerical representation of the polymer repeat
unit in terms of a fixed dimensional vector [19] and this representation may result in a loss of
chemical information. Thus, the final prediction obtained from the ML model naturally
contains contributions from the errors propagated from the dataset and fingerprinting step. In
the present article, we primarily address the role of the initial dataset uncertainties in the final
model performance.

This paper is organized as follows. In section 2, we describe in detail the expansive
dataset accumulated for Tg of polymers, highlighting specifically the statistical nature of the
uncertainties in the Tg measurements. In section 3, we discuss the fingerprinting and ML
techniques [19] that we employ to develop surrogate models for the prediction of Tg. In
section 4, the results are summarized and the sensitivity of the model performance as a result
of statistical variations in the dataset is demonstrated.

2. Dataset

2.1. Sources of data

Data for this work was gathered from two books: the Polymer Handbook [34] and Prediction
of Polymer Properties [35] and also from an online repository of polymer properties [36].
From these publicly available data sources, we extracted the polymer name, SMILES string
[37, 38] and Tg measurements of 751 polymers. A subset of this dataset has been utilized in an
earlier work [19].
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The chemical space that comprises all these three datasets consists of nine elements (C,
H, O, N, S, F, Cl, Br and I). We only considered Tg values reported for neat polymers (not
composites) without any additives. However, we did not differentiate between tacticity,
isomerism, crystallinity, different measurement techniques or different heating/cooling rates.
The type of polymers that were considered as part of this dataset include main chain acyclic
polymers such as poly(acrylics) and poly(methacrylics), poly(alkenes), poly(dienes), poly
(styrenes), poly(vinyl alchohols) and poly(ketones), poly(vinyl esters), poly(vinyl ethers) and
poly(thioethers) and some others, as well as main chain carbocylic polymers such as poly
(phenylenes) and others. As can be seen from figure 2, there is a wide distribution of Tg for
polymers which ranges from 76 K to 773 K. The frequency plot looks to be roughly normal
with a standard deviation of 74 K with a mean of 326.1 K. The glass transition temperature is

Figure 1. Workflow of data-driven surrogate modeling and property prediction with
error sources associated with each step.

Figure 2. Distribution of the Tg values for all polymers.
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known to be higher for polymers with more polar groups and for those with high van der
Waals surface area. Also, it is known to be higher for polymers that have more rigid
monomers [39].

2.2. Spread in the data

Tg is a property which cannot be defined in terms of thermodynamic state variables, unlike the
melting point of materials. Rather, it is considered to be a phenomenon driven by kinetics
[35, 39]. Therefore, its value is highly dependent on the time scale of the measurement. Other
factors that contribute to the uncertainty are the history of the sample, percent crystallinity,
tacticity, isomerism, solvents and additives used, cross linking and molecular weight of the
polymer. There are uncertainties also associated with the choice of the measurement method,
the accuracy of the calculations due to the inherent resolution of the method and human error.

Out of the 751 polymers considered in this study, 75 polymers had multiple reported
values (as a result of the aforementioned variations). For these 75 polymers, a histogram for
deviations from their respective mean measurements is shown in figure 3(a). Among the 75
polymers for which multiple Tg values were reported, most of the polymers possessed two
reported values as can be seen in figure 3(b). The maximum number of reported values for a
particular polymer was 24 (for the case of the polymer PMMA). It appears that the measured
uncertainties (or errors or noise) follow a normal distribution with a standard deviation of
40 K with peak at 0 (representing the mean value). This behavior sets this problem up as an
ideal candidate for checking if a model constructed with mean measurements would yield
good results. The above analysis also implies that Tg measurements have an intrinsic typical
uncertainty of about 40 K.

3. Method

3.1. Fingerprinting and ML pipeline

Both the fingerprinting and ML model were described in detail in a recent work [19]. The
fingerprint building process consists of three hierarchical levels of descriptors [40, 41]. The

Figure 3. (a) Normal distribution fit for variation from mean for the 75 polymers with
multiple reported values of Tg. (b) Frequency distribution of Tg values for the polymers
with multiple reported values of Tg.
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first one is at the atomic scale wherein the number fraction of atomic triples (or a set of three
contiguous atoms) was calculated. The next level deals with quantitative structure property
relationship (QSPR) descriptors, such as van der Waals surface area [42], topological surface
area [43, 44] and fraction of rotatable bonds [19], implemented in the RDkit cheminformatics
library [45–47]. The third level and largest length scale descriptors captured morphological
feautures such as the topological distance between rings, fraction of atoms that are part of side
chains and length of largest side chain [19].

After the three levels of fingerprints are generated for all the polymers, we employed a
recursive feature elimination technique [19] to eliminate unwanted descriptors. This feature
elimination process aided in reducing over-fitting and improved the final model performance.
The final model was obtained by mapping the filtered descriptors to the Tg values using
Gaussian process regression (GPR) with a sum-kernel consisting of a radial basis function
kernel and a white-noise kernel. The white-noise kernel provides us with the so-called noise
parameter which gives us an estimate of the intrinsic noise or uncertainty in the output value
(in our case, the Tg measurement).

The advantage of using GPR over other kernel methods (like kernel ridge regression) is
that one automatically obtains both the target value (Tg in our case) and the associated
uncertainty of the prediction [48]. For example, when a prediction is made for a polymer
which is chemically very different from the polymer in the training set, we automatically
observe a large uncertainty associated with the prediction.

3.2. Effects of variation in the dataset

As mentioned in the earlier section, a wide variation exists in the reported values of Tg for 75
polymers and therefore it is difficult to decide what is the most appropriate Tg value to be used
in the input dataset while building the model. To understand the effect of these variations, we
first calculate the median, mean, minimum and maximum of the Tg measurements of the 75
polymers with multiple reported values. These values were then used to create four training
datasets (Datasets 1, 2, 3 and 4 respectively), thus resulting in four different models (Models
1, 2, 3 and 4 respectively), as shown in figure 4. As described in the next section, the
predictions of the resulting 4 models were used to assess which strategy is most suitable when
we are confronted with dataset uncertainty.

4. Results

The performance of the above four models were then evaluated based on four metrics: 1-R2,
root mean squared error, average GPR-uncertainty and GPR noise-hyperparameter. As
depicted in figure 5, the model build using the median value dataset shows the best perfor-
mance (lower errors). On the other hand, the dataset containing the maximum Tg values
systematically exhibited the poorest performance with respect to all four error metrics. The
results of the thus obtained best and worst model (i.e. the median-model and maximum-
model) results are shown in more detail through the parity-plots depicted in figure 6. The
model constructed from the maximum of the measurements not only shows poorer perfor-
mance (in terms of prediction accuracy) but the Bayesian model uncertainty (i.e. the noise
hyperparameters) for every prediction, depicted by the gray bars in figure 6, is also sig-
nificantly larger. It is also worth noting that the GPR noise hyperparameter, determined here
independently during the training process, is of the same magnitude as the dataset uncertainty
of about 40 K noted earlier.
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These results indicate that using the median of a distribution of property values would be
the best approach to tackle uncertainty in data sources. The calculated mean and median is
found to be very close for most polymers as can be seen from figure 3(a) which shows the
symmetric nature of the deviations from mean Tg values. The median-model, however, is less
sensitive to extremely low and high Tg values and this could be the likely cause of the
median-model outperforming the mean-model.

Figure 4.Workflow for building the four different datasets and models for capturing the
effect of dataset variation on model performance.

Figure 5. Comparison between the four models built from four different datasets using
metrics 1-R2, RMSE, average GPR uncertainty and GPR noise-parameters.
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Across the four models, we observe that the 1-R2 ranges from 13% to 21% indicating that
variations in small portions of the dataset can have a significant impact on the performance of
the model.

5. Conclusions and future work

Measurement uncertainty in data is common. In the current work, we have investigated which
value from a range of reported values would be ideal for model development for the example
of the glass transition temperature (Tg) of polymers. Using different statistical measures, we
have constructed four different datasets and evaluated the performance of four models trained
on these corresponding datasets. The model constructed with the median of the experimental
measurements was found to outperform other models. Also, there was a large change in
model accuracy for changes in the data and therefore it can be said that the model is highly
dependent on the input dataset.

As seen from figure 5, both the average uncertainty and the noise parameter of the
models approximately range between 30 and 40 K. The standard deviation of the Tg mea-
surements of the 75 polymers is, as mentioned earlier, about 40 K. The similarity of these two
values likely indicates the ability of our surrogate modeling pipeline (hierarchical finger-
printing + GPR) to capture the intrinsic noise in Tg measurement across the dataset.

Going forward, we intend to continue to expand the list of polymers in our Tg dataset to
not only improve the model performance but also to obtain a better understanding of the
statistical nature of Tg measurements. Moreover, the development of additional descriptors
(capturing, for example, tacticity and isomerism) would lead to better performing models and
also simultaneously reduce uncertainty propagation in our model development pipeline.
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