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A universal strategy for the creation of machine learning-based
atomistic force fields
Tran Doan Huan 1, Rohit Batra1, James Chapman1, Sridevi Krishnan1, Lihua Chen1 and Rampi Ramprasad1

Emerging machine learning (ML)-based approaches provide powerful and novel tools to study a variety of physical and chemical
problems. In this contribution, we outline a universal strategy to create ML-based atomistic force fields, which can be used to
perform high-fidelity molecular dynamics simulations. This scheme involves (1) preparing a big reference dataset of atomic
environments and forces with sufficiently low noise, e.g., using density functional theory or higher-level methods, (2) utilizing a
generalizable class of structural fingerprints for representing atomic environments, (3) optimally selecting diverse and non-
redundant training datasets from the reference data, and (4) proposing various learning approaches to predict atomic forces
directly (and rapidly) from atomic configurations. From the atomistic forces, accurate potential energies can then be obtained by
appropriate integration along a reaction coordinate or along a molecular dynamics trajectory. Based on this strategy, we have
created model ML force fields for six elemental bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them can reach
chemical accuracy. The proposed procedure is general and universal, in that it can potentially be used to generate ML force fields
for any material using the same unified workflow with little human intervention. Moreover, the force fields can be systematically
improved by adding new training data progressively to represent atomic environments not encountered previously.
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INTRODUCTION
The most direct computational strategy to monitor the atomic-
level time-evolution of chemical and physical processes is by the
molecular dynamics (MD) method. Starting with an initial atomic
configuration and atomic velocities, MD simulations require the
atomic forces as input to propagate the atoms and their velocities
to the next time-step (at which point, the atomic forces are re-
evaluated); the cycle continues, thus allowing for an iterative time-
evolution of the system. The atomic forces at each time-step may
be obtained either using quantum mechanics-based methods,
such as density functional theory (DFT), or parameterized classical
force fields.
A variety of DFT-based methods have already contributed to

the rational design of application-specific materials.1–3 Never-
theless, DFT-based MD simulations are not practical and routine at
the present time, especially to track chemical processes with long
time scales (≳1 nanosecond) and large length scales (≳10
nanometers). The repetitive and expensive DFT force computa-
tions during MD and the necessary small MD time steps (of the
order of femtoseconds), lead to the primary bottlenecks of DFT-
based MD simulations. Parameterized classical force fields (which
are 6–10 orders of magnitude faster than DFT) may be used to
access truly long time scales and large length scales. But, these
approaches are not satisfactory either, as such force fields lack
accuracy and versatility, i.e., they are not transferable to situations
that were not originally used in the parameterization.
Owing to this scenario, monitoring the atomistic details

underlying major classes of physical and chemical processes with
high fidelity is still beyond the reaches of modern computational

methods. Here, we attempt to take a step in remedying this
situation via a universal data-driven atomic force prediction recipe
that is as fast as classical force fields but as accurate and versatile
as quantum mechanics-based methods.4–9 Simply put, our
hypothesis is that the force experienced by an atom is purely a
function of the arrangement of the other atoms around it-a notion
inspired, and originally suggested, by Feynman within the context
of quantum mechanics, which has lead to the celebrated
Hellmann–Feynman theorem.10,11 If we are able to numerically
represent this atomic arrangement, and if we have sufficient
“atomic arrangement vs. force” examples, we should be able to
train a machine to learn the arrangement-force relationship, and
make future atomic force predictions based purely on atomic
arrangement information.
Machine learning (ML) methods using neural networks,

Gaussian processes, and other algorithms have been successful
in the development of ML potentials for MD simulations.12–24 The
approach of the present contribution, namely, learning to predict
atomic forces directly (from which the total potential energy of the
entire system can be determined through appropriate integra-
tion), as previously introduced in ref. 25, is far more powerful. This
is because the atomic force is a local quantity that can be formally
defined for atoms, whereas the potential energy can be formally
defined only for the entire system or unit cell. Other force fields
that directly predict the potential energy define this quantity as a
sum of atomic energies, for which a formal basis does not exist
within quantum mechanical treatments.
Figure 1 portrays the essential steps involved in the creation of

a ML force field, which are: (1) Generation of reference data, e.g.,
using DFT; (2) Fingerprinting the atomic environments, so that at
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the end of this step, the data has been reduced to a set of
numerical atomic fingerprints and the corresponding atomic
forces; (3) Creation of compact “training sets” from this data
through clustering and sampling; and (4) Learning from these
datasets, such that at the end of this step, a robust mapping is
established connecting fingerprints and forces. A rudimentary
version of this procedure has been recently demonstrated, leading
to a class of force fields we refer to as AGNI force fields. For the
case of Al, several static and dynamic applications, including
stress-strain behavior, melting, proper description of dislocation
core regions, point defect diffusion in bulk, adatom organization
(island formation) at surfaces, etc., were also explored with the
AGNI force field.4,5,7,8

In the present contribution, we establish the true power and
universality of this force field by applying it to a set of elemental
solids, displaying a diversity of chemical bonding, including Al, Cu,
Ti, W, Si, and C, encompassing metals and insulators occurring in a
variety of different crystal structures. We also show that
predictions of atomic forces and total potential energies (obtained
through appropriate integration of the forces along an MD
trajectory) reach unprecedented chemical accuracy levels for all
cases considered, provided fundamental improvements to each of
the four steps of Fig. 1 are made. For instance, the reference data
should have sufficiently low intrinsic errors, and the fingerprinting
scheme should have sufficient “resolving power” to represent the
atomic configurations with high fidelity, carrying as much
information about the atomic configuration as possible. Moreover,
an important innovation of the present development is the
clustering of the parent dataset so that different atomic
environments are separated into different clusters, and each of
them is sampled separately so that compact, non-redundant, and
diverse “training sets” can be collected. The ML force field thus
created can be improved progressively by including new
configurations (i.e., new clusters), as required.
The proposed class of enhanced AGNI force fields can

potentially (1) reach an arbitrary level of accuracy approaching
that of the reference data, (2) be about 6–8 orders of magnitude
faster than DFT calculations, (3) be systematically improved in
quality, transferability and versatility by progressively adding new
training set configurations, and (4) be generalized to any element
(or combination of elements) of the periodic table for which
reference (one-time) quantum mechanics-based calculations can
be done. Below, we describe the key steps of this strategy and the
results in detail.

RESULTS
Strategy
All four steps of the strategy, shown in Fig. 1, are crucial for the
fidelity of enhanced AGNI force fields. In what follows, the critical

aspects of these steps are discussed while the technical details can
be found in section Methods.

Reference data preparation
The reference data used for creating AGNI force fields must be
prepared accurately and consistently, ensuring sufficiently low
intrinsic errors.26–33 Except for the aforementioned computational
cost, first-principles-based methods for computing atomic forces
are considered to meet these requirements. Our reference data
was prepared using a two-step procedure. First, atomic config-
urations and forces were obtained from several DFT-based MD
simulations performed for bulk Al, Cu, Ti, W, Si, and C at a sufficient
level of accuracy. Then, by rotating the collected atomic
configurations and forces, new data was accumulated, making
the reference data truly large in volume, and providing access to a
lot more force components than in the original dataset.

Fingerprinting
A fingerprint is needed to numerically represent atomic config-
urations, especially for force field development.5–8,13,15,19,20

Typically, a fingerprint must be invariant with respect to
translations and rotations of the whole system, and to permuta-
tions of like atoms. To be useful for a ML force field, it must also be
directionally resolved and continuous, i.e., proportionately change
with small changes of the atomic arrangement. Our proposal is a
d-dimensional vector Vi,α, representing the atomic environment of
atom i viewed along the Cartesian α direction. For elemental
materials, the kth component (k ∈ {1, d}) of this vector is defined
as5,6,13

Vi;α;k ¼
X
j 6¼i

rαij
rij

1ffiffiffiffiffiffi
2π

p
w
exp � 1

2
rij � ak

w

� �2� �
fc rij
� �

: (1)

Here, ri and rj are the positions of atoms i and j, rij ¼ rj � ri
		 		, rαij is

the projection of rj − ri onto the α direction, and the sum runs over
the neighbor list {j} of atom i. In our strategy, Vi,α, schematically
illustrated in Fig. 2, is used to learn (and to predict) the Cartesian α
component of the atomic force exerted on atom i. The definition
(1) can readily be generalized to multi-element materials.
By construction, Vi,α satisfies the translation and permutation

invariants. Although this fingerprint is directionally specific, the
reference dataset is symmetrized by rotations, as described in the
previous section of “Reference data preparation”, thus the
force field, i.e., the ML model established in the training set, can
handle any orientation of the simulated system. Moreover,
three factors included in each term of (1) are designed to handle
those directly related to the ML force fields. First, rαij =rij
characterizes the contribution of atom j to the α component of
the force on atom i. Next, the Gaussian factor G ak ;w; rð Þ �

1ffiffiffiffi
2π

p
w
exp r � akð Þ2= 2w2ð Þ
h i

captures, in a continuous manner, the

Fig. 1 Strategy for the creation of machine learning force fields
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possibility of atom j falling within the kth spherical shell centered
at atom i. Finally, fc rij

� � � 1
2 cos πrij

Rc

� �
þ 1

h i
gradually diminishes

contributions from distant atoms, and setting them to zero when
rij > Rc, a cutoff radius. The last two terms, namely G(ak, w; r) and
fc(rij), have been used for radial symmetry function, a similar
fingerprint introduced to construct a neural-network potential.13

Starting from the same intuitive idea, a related fingerprint was
recently defined,5,6 leading to an early version of our AGNI ML
force fields.5–9 Instead of G(ak, w; r), G 0; ηk ; rð Þ � exp r2=η2k

� �
was

used in the previo′us work to handle atoms j residing within the
kth sphere centered at atom i. Consequently, the earlier
fingerprint, denoted by V′

i;a, was defined as5,6

V ′
i;α;k ¼

X
j 6¼i

rαij
rij
exp

r2ij
η2k

 !
fc rij
� �

: (2)

Two principal parameters of Vi,α (the new fingerprint defined in
(1)) are the dimensionality d and the width w of the Gaussian
factors (although the G(ak, w; r)s are not required to have the same
w, we use this simplification). The particular distribution of akf gdk¼1
is not important, especially for large d, given that the shells
occupied by G(ak,w;r)s cover the sphere of radius Rc from atom i.
Similarly, d is the main parameter of V′

i;α while the manner by
which fηkgdk¼1 is distributed is of minor importance when d is
large. The optimal parameters of Vi,α and V′

i;α can be determined
using the well-defined procedure described below. The funda-
mental difference between the two fingerprint schemes is
explained by using a principal component analysis discussed in
detail in the Supporting Information.

Sampling and clustering
An AGNI force field is a ML model established on a training dataset
selected from the reference data. The training data should be
compact and non-redundant, allowing the development and
applications of the force fields to be time-efficient. However, the
main assumption in training data selection is that the diversity of
the reference data could be properly captured. In the context of
generic ML, this work is non-trivial, especially when the original
dataset is big and diverse.34,35 Within the most common
approach, the training data is selected randomly from the
reference data.5–9,27–29 Such training data is likely dominated by
the configurations from the highly-populated domains while other
domains are under-represented. This scenario is visualized in
Fig. 3a, where the training data randomly selected from the
reference data contains essentially no configuration with large-
amplitude forces.
We propose several training data selection methods for better

capturing the diversity of the reference data we prepared. In the

force-binning method, we arrange the reference data into a
number of force amplitude intervals and select training data from
all the intervals, properly capturing the force amplitude profile of
the reference data. In the clustering approach, the reference data
is split into a given number of clusters in fingerprint space, from
each of which a part of the training data is selected. Figure 3b, c
visualize the improved diversity of the training set prepared by
these two methods.
In fact, the clustering technique can potentially lead to a far

more powerful concept in creating ML force fields. The current
idea used for creating baseline AGNI ML force fields5–9 and
predicting material properties27–31 is to use the predictive model
(mapping) created on a single training set for the whole domain
occupied by the reference data. The error of such a baseline ML
force field grows unavoidably when the reference data becomes
highly diverse, regardless of how big the training set size Nt is. Our
approach, as sketched in Fig. 1, is that for each data cluster
(domain), a separate training set is selected and then, a
fingerprint-force mapping is established. By assembling these
mappings, we obtain a ML force field, which is domain-specific in
the sense that the atomic force of an atomic configuration is
evaluated using the mapping created for the closest domain.
Because any domain is significantly less diverse than the reference
data, the domain-specific force fields can readily surpass the
aforementioned intrinsic limit of the baseline ML force fields. A
caveat though is that care must be taken to ensure that
discontinuities are not introduced in the predicted atomic forces,
say, during the course of an MD simulation, if the atomic
environment shifts from one cluster to another. This aspect has
not been explored in the present work. In the discussion below, all
of the approaches will be critically examined.

Machine learning
Given a set of training data, a learning algorithm is needed to
establish the fingerprint-force mapping. Here, we use kernel ridge
regression (KRR),36,37 a powerful method that has widely been
used in materials informatics.5–9,27–29,38 KRR predicts the atomic
force Fi corresponding to the configuration i as

Fi ¼
XNt

j¼1

αj exp � 1
2

dij
σ


 �2
" #

: (3)

Here, the sum runs over Nt configurations, indexed by j, of the
training set while dij is the “distance” between configurations i and
j, chosen to be the Euclidean norm, in fingerprint space. The
“length” scale in this space is specified by σ. During the training
phase, the regression weights αj and σ are evaluated by
optimizing a regularized objective function via 5-fold cross-
validation.

Fig. 2 The k-dimensional fingerprint vector, Vi,α, of reference atom i, (determined by the positions rij of other atoms j with respect to atom i), to
be mapped to its α Cartesian force component. As shown in a, rij makes a θ angle with the α direction. In b, the first term of Eq. (1), i.e.,
rαij =rij ¼ cos θ, is represented. The distance rij � rij

		 		 is projected onto a series of Gaussian functions, yielding G(ak, w; rij), as depicted in c. The
damping factor fc(rij) is represented in d and a schematic illustration of Vi,α is given in e
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Critical assessment of force fields
Fingerprint optimization. We consider five classes of ML models
categorized in terms of fingerprint type and sampling method.
These include using (I) V′

i;α with random sampling, (II) Vi,α with
random sampling, (III) Vi,α with fingerprint space clustering, (IV) Vi,α

with force binning sampling, and (V) Vi,α with the domain-specific
learning approach. In the last class, each force field includes five
fingerprint-force mappings established on five data clusters. When
a new atomic configuration is encountered, the cluster whose
centroid is closest to this point in fingerprint space is identified,
and the ML model established for this cluster is used to evaluate
the force desired. Since (I) and (II) differ only by the fingerprint
choice, we use these two classes to critically compare fingerprints
Vi,α and V′

i;α, and also to determine the optimal choices of the
fingerprint parameters.
Vi,α and V′

i;α were optimized by determining the primary
parameters that minimize the error of the ML force field
predictions. Although d can be arbitrarily large, we examined d
= 4, 8, 16, 32, or 48. For Vi,α, w was chosen to be 0.05, 0.10, 0.20,
0.30, 0.40, 0.50, or 0.60 Å while ak were uniformly distributed
between a half of the nearest-neighbor distance of the material
considered to Rc, chosen to be 8 Å following refs. 5–8. In the case
of V′

i;α, ηk were uniformly distributed on the log scale between a
half of the nearest-neighbor distance to ηmax, ranging up to Rc. A
training set of Nt = 1,000 atomic configurations was prepared
using the random sampling method, leaving the complement as
the test set. Baseline ML force fields were then created, utilizing Vi,

α and V′
i;α. The root-mean-square error δRMS of the force predicted

on the test set was used to identify the optimal parameters.
Details of this procedure can be found in Fig. S1 and related
discussions.
We now summarize our findings for these baseline ML force

fields. First, the general trend is that the higher the dimensionality
d, the better the fingerprint, i.e., d = 48 is optimal for both Vi,α and
V′
i;α. Second, the optimized Vi,α is superior to the optimized V′

i;α in
terms of δRMS. Finally, for a given d, the optimal w is of the order of
ak+1 − ak, the spacing between the centers of two adjacent
Gaussian functions. Such a value allows for some overlap between
these radial basis functions, maximizing the sensitivity of Vi,α with
respect to changes of the atomic environment (for more
information, see Fig. S2 and related discussions for a principal
component analysis of Vi,α and V′

i;α).
Figure 4 shows the learning curves, constructed from δRMS, for

the baseline ML force fields (i.e., those of classes (I) and (II), which
are based on random data sampling) created for Al, Cu, Ti, W, Si,
and C using the optimized Vi,α and V′

i;α. For both fingerprints, δRMS

scales inversely with Nt initially
39 but reaches a limit at Nt≳ 500. By

using Vi,α instead of V′
i;α, δRMS drops from ≃0.16 eV/Å to ≃0.09 eV/

Å in case of C. Significant improvement was also obtained for W,
Ti, and Cu. For Al and Si, whose δRMS obtained with V′

i;α is
consistent with that reported in refs. 6,9, the reduction of δRMS is
smaller but remains noticeable.

Force field performance
In this section, we critically examine the five classes of AGNI ML
force fields considered via their prediction error. Because the
forces to be evaluated may span over several orders of magnitude,
δRMS may not be sufficient for describing its performance. We
propose a few other error metrics. They are (1) the absolute error
δABS, (2) the standard deviation of the error distribution (assumed
to be normal) δSTD and (3) the average of the top 1% of the force
errors δMAX. While δABS should be examined on the whole range of
force amplitude (see Fig. 5), δSTD and δMAX capture the regimes of
small and large errors, respectively.
We first focus on the ML force fields created by four recipes that

employ different fingerprints and sampling methods, i.e., (I), (II),
(III), and (IV), whose δRMS, δSTD, and δMAX are summarized in
Table 1. The evolution of the error measures from (I) to (II)
demonstrates that Vi,α is clearly better than V′

i;α, especially for W
and C. The errors associated with force binning and clustering
methods are comparable, being significantly smaller than those of
the force fields created using the random sampling method,
especially for Ti. As shown in Fig. 5, the absolute error δABS of
these ML force fields falls within 0.02 − 0.09 eV/Å in the whole
range of force magnitude. This respectable level of error is
equivalent or better than those of other contemporary ML force
fields, e.g., ≃0.1 eV/Å for bulk Si,25 ≃0.2 eV/Å for Sin clusters,

19 and
≳0.04 eV/Å for W.18

Next, we discuss the applicability of the AGNI force fields within
MD simulations, especially pertaining to our ability to obtain total
potential energies by appropriate integration of the atomic forces
along a MD trajectory, and the stability of such simulations with
respect to total energy conservation. In fact, the force field of class
(I) created for Al (employing V′

i;α) has been successfully used for a
variety of MD simulations.5,7,8 Herein, we tested the ML force fields
created using (IV), combining Vi,α and the force binning sampling
method [we note that (III) and (IV) offer essentially similar
performance]. For this purpose, we carried our several micro-
canonical (NVE) and canonical (NVT) MD simulations, employing
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).40 The simulations were performed at 200 and 400 K
over 500 ps, using Δt = 0.5 fs for the time step. Along the MD
trajectories, the total potential energy Epot at a time (t) is

Fig. 3 An illustration of three methods for selecting a training set, including random a, force amplitude sampling b, and fingerprint space
clustering c. In this Figure, the reference dataset is projected onto a 2-dimensional manifold spanned by the first two principal components
(Component 1 and Component 2), identified by a principal component analysis. Different colors are used in a, b for representing force
magnitude while in c, they are used to label different data clusters
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computed from that of the previous step (t − Δt) as7

EpotðtÞ ¼ Epot t � Δtð Þ � Δt
X
i;α

Fαi v
α
i ; (4)

where the sum runs over the atom index i and the Cartersian
index α (with Epot(t = 0) = 0). The kinetic energy Ekin, the potential
energy Epot, and the total energy Etot of the NVE and NVT
simulations performed on a 256 atom supercell of Cu are shown in
Fig. 6a, b, respectively, while those for other materials are given in
the Supporting Information. For the NVE simulations, Etot is clearly

conserved, presumably due to the intrinsic error cancellation of
the ML force fields used, evidenced by the symmetric distribution
of the prediction errors frequently reported.5,7 The NVT simula-
tions suggest that Epot constructed from Eq. (4) works well with
the thermostats implemented in LAMMPS. The agreement
between Epot computed using Eq. (4) and those computed using
DFT for several snapshots taken at 100, 200, 300, 400, and 500 ps,
is shown in Fig. 6c, strongly supporting the accuracy of our force
fields (with respect to both atomic force and total potential energy
predictions) and their applicability in MD simulations.

Fig. 5 Atomistic forces evaluated by the domain-specific force fields developed for Al, Cu, Ti, W, Si, and C, shown against the reference DFT
forces. The absolute errors of the force predictions are shown in insets as a function of reference force magnitudes. These force fields are
created with the training set size Nt= 1000

Fig. 4 Learning curves constructed from δRMS, the root-mean-square error of the AGNI force field created for Al, Cu, Ti, W, Si, and C using the
random sampling method and either optimized Vi,α (with d= 48 and w= 0.1 Å) or optimized V′

i;α (with d= 48). Each data point (and its error
bar) is obtained from 10 force fields created on 10 independently selected training sets
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Table 1 and Fig. 5 also show that the domain-specific force
fields created by (V) are superior to (I), (II), (III), and (IV) in terms of
the considered error measurements, approaching chemical
accuracy for all the materials considered. Learning curves for the
domain-specific force field recipe (V) (analogous to those shown in
Fig. 4 for the (I) and (II) recipes) are provided in the Supporting
Information. The applicability of the domain-specific force fields
within MD simulations has not been tested extensively at this
point. As alluded to earlier, as configurations evolve during the
course of an MD simulation, atomic environments may shift from
one domain to another, and it is imperative that the force
prediction during such shifts do not go through discontinuities.
These aspects have to be addressed appropriately before recipe
(V) can be reliably used within MD simulations. Nevertheless, as
the reference dataset grows in size, and the scaling of training and
prediction times become intensive, domain-specific learning
approaches may become a necessary alternative in the future,
and may be a powerful pathway for the creation of adaptive and
high-fidelity force fields.

DISCUSSION
ML has emerged as a powerful approach for developing a new
generation of highly accurate force fields.5–9,12–16,23 Accuracy and
transferability are not the only advantages of ML force fields. Their
most appealing aspect is that they can be created and improved
in a highly automatic manner with minimal human intervention
within one unified framework. This contribution discusses one
such force field, using which atomic forces can be efficiently and

accurately computed given just the configuration of atoms. The
total potential energy during the course of an MD simulation may
then be computed through appropriate integration of the atomic
forces along the trajectory. The true versatility of the present
single unified strategy is rigorously demonstrated in this work for
a variety of elemental solids, displaying a diversity of chemical
bonding types, namely Al, Cu, W, Ti, Si, and C. For all of them, the
ML force fields reach chemical accuracy while being several orders
of magnitude faster than corresponding quantum mechanics-
based computations. The accuracy and applicability of the ML
force fields can be systematically improved without adversely
affecting their efficiency. This maybe accomplished by (1)
preparing the reference data at a higher level of theory for
computing the force more accurately and/or (2) including new
training datasets selected from new domains that have not been
considered yet. We hope that after being fully developed, such ML
force fields may provide a pathway for high-fidelity MD
simulations to enter the regimes of time scales (≳ nanoseconds)
and/or length scales (≳10 nanometers) presently difficult to reach
using purely quantum mechanical simulations.

METHODS
Reference data preparation with DFT
Our reference data was prepared by first-principles computations
performed using the DFT,41,42 a plane-wave basis set, and the projector
augmented wave (PAW) method43 as implemented in the Vienna Ab initio
simulation package 44–48 The Perdew, Burke, and Ernzerhof functional49

was used for the exchange-correlation energies.
The elemental (bulk) materials considered are face-centered cubic (fcc)

aluminum Al, fcc copper Cu, hexagonal close packed Ti, body-centered
cubic, tungsten (W), diamond silicon (Si), and diamond carbon (C). For each
of them, we constructed a suitable supercell of nscat atoms, and then
performed DFT-based MD simulations at two temperatures, T = 300 K and
T = 600 K (for the purpose of data accumulation, the temperature is a
parameter for spanning diverse environments). Atomic configurations and
forces were then extracted from the MD trajectories obtained. We note
that to create a reliable force field for a specific application, e.g., for
systems with defects, vacancies, and grain boundaries, the reference data
should be more comprehensive, including the atomic environments
expected to be encountered during the MD simulations.7,8

The convergence of force calculations by DFT is generally slower than
that of energy calculations. To ensure the convergence of our data, the
kinetic energy cutoff Ec was taken to be 130% of the default value while
the projection operators (involved in the calculations of the non-local part
of the PAW pseudopotentials) were evaluated in the reciprocal space. The
convergence of the forces with respect to the k-point mesh, generated
without considering possible symmetries of the crystals, was carefully
tested. We note that the accuracy level adopted for the reference data
generation is significantly higher than used for typical DFT-based MD
simulations (see, for example, refs. 50,51). All the parameters used for the
data generation step are given in Table 2.

Details of sampling and clustering
The key idea underlying the force binning method is that the training set
should reflect the force-amplitude profile of the reference dataset while
ensuring sparsely populated domains have their own representatives.
Therefore, this procedure involves splitting the reference dataset into a
given number of equal-size bins, covering the entire range of force
amplitude. Then, 30% of the desired training set was equally selected from
the prepared bins. The contribution of each bin to the remaining 70% of
the training set was proportional to the population of this bin. Similarly, the
clustering method makes sure that any domain in fingerprint space that is
occupied by the reference dataset has their own representatives in the
training set. In this work, we used the k-means method to cluster the
reference dataset into five clusters in fingerprint space based on the
distance used in KRR. Then, 20% of the desired training set was selected
from each data cluster. The number of clusters was specified beforehand.

Table 1. Force evaluation errors of the force fields developed,
obtained for a training set size Nt= 1000

FF Al Cu

δRMS δMAX δSTD δRMS δMAX δSTD

(I) 0.025 0.100 0.025 0.024 0.093 0.024

(II) 0.023 0.096 0.023 0.017 0.071 0.017

(III) 0.023 0.092 0.023 0.017 0.074 0.017

(IV) 0.025 0.097 0.025 0.018 0.076 0.017

(V) 0.021 0.082 0.021 0.016 0.056 0.016

FF Ti W

δRMS δMAX δSTD δRMS δMAX δSTD

(I) 0.065 0.290 0.065 0.094 0.398 0.094

(II) 0.054 0.306 0.054 0.063 0.268 0.063

(III) 0.045 0.173 0.045 0.065 0.244 0.065

(IV) 0.047 0.162 0.047 0.068 0.253 0.068

(V) 0.035 0.149 0.034 0.049 0.200 0.049

FF Si C

δRMS δMAX δSTD δRMS δMAX δSTD

(I) 0.081 0.296 0.081 0.161 0.778 0.161

(II) 0.074 0.251 0.074 0.088 0.373 0.088

(III) 0.074 0.260 0.074 0.083 0.322 0.083

(IV) 0.074 0.263 0.074 0.087 0.339 0.087

(V) 0.074 0.253 0.074 0.085 0.326 0.085

For each material, three error measures, i.e., δRMS, δMAX, and δSTD are
reported in eV/Å for (I), (II), (III), (IV), and (V), five recipes of force field
creation (described in the text)
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Data availability
All the data used for this work, i.e., the MD trajectories of the six materials,
is freely available in http://khazana.uconn.edu with record identification
number ranging from 3,278 to 3,283.
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