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Surface phenomena are increasingly becoming important in exploring nanoscale materials growth and
characterization. Consequently, the need for atomistic based simulations is increasing. Recently, we pro-
posed a machine learning approach, known as AGNI, that allows fast and quantum mechanical accurate
atomic force predictions given an atom’s neighborhood environment. Here, we make use of such force
fields to study and characterize the nanoscale diffusion and growth processes occurring on an Al (111)
surface. In particular we focus on the adatom ripening phenomena, confirming past experimental find-
ings, wherein a low and high temperature growth regime were observed using entirely molecular
dynamics simulations.

� 2016 Elsevier B.V. All rights reserved.
As the fabrication of materials continually progresses towards
the atomic-scale, an interest in layer by layer growth methods
(such as molecular-beam epitaxy or atomic layer deposition), in
micro-electronics, catalysis, or biomedical applications, has risen
tremendously [1–6]. The high degree of control offered allows for
a sub-nanometer scale precision in the morphological structure
of the materials grown. Consequently, the need to better under-
stand and characterize such growth processes, at the atomic level,
has emerged.

Towards this cause, the advent of first-principles (also known as
ab initio) based in silico models has been instrumental. Methods
such as density functional theory, along with harmonic transition
state theory, are now commonly used to (i) map out the energetics
for the constitutive elementary reaction pathways, and (ii) then,
rely on coarser stochastic approaches (e.g. kinetic Monte Carlo),
to spatially and temporally evolve the state of a system, thus, help-
ing unravel the complex atomistic growth phenomena at signifi-
cantly larger length and time scales [7–9]. Nevertheless, building
a complete catalog of reaction pathways a priori is often challeng-
ing and non-trivial for low symmetry systems. An alternative, and
more natural, formalism is to use molecular dynamics simulations,
whereby the temporal state of an atomistic system is evolved by
solving Newton’s equations of motion. The key ingredient required
for such methods is a description of the forces between the inter-
acting atoms. Two methods – quantum mechanics or semi-
empirical potentials, allow access to these forces. Unfortunately,
the formidable computational cost of quantum mechanical meth-
ods restricts the time and length scales one can consider, while
semi-empirical approaches provide a cheaper alternative but often
lack the versatility and accuracy of quantum mechanical interac-
tions. If pathways to accelerate ab initio methods whilst retaining
accuracy existed, they would be highly desired.

Off late, the prominence of machine learning methods, when
used in tandem with quantum mechanical generated data, has
demonstrated to be a reasonable trade-off between the cost, accu-
racy, and versatility issues facing current methods [10–12].
Recently, we introduced one such framework, wherein, by encod-
ing an atom’s neighborhood environment numerically (its finger-
print), a mapping to the vectorial force components it
experiences can be established [13–15]. Such force based inter-
polative methods have been shown to be able to retain quantum
mechanical accurate force predictions, with errors<0.05 eV/Å. Fur-
ther, this high fidelity framework now comes at a fraction of the
cost compared to quantum mechanical methods, up to six orders
of magnitude faster. This allows us to explore long time scale
dynamical behavior, as done in this work. The premise of mapping
an atomic property (such as forces) and not the global potential
energy for a configuration of atoms, as done by a majority of meth-
ods, allows this class of force fields to be more adaptive and gener-
alizable for varying atomic environments. Consequently, the force
field is referred to as AGNI – an adaptive, generalizable, and neigh-
borhood informed methodology. For an extensive review on the
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Fig. 1. Elementary reaction pathways of monomer, dimer, trimer, and other island
features on an Al (111) surface that lead to the ripening phenomena. Grey and red
colored atoms correspond to the surface atoms and adatoms, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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force field itself, its scope and construction workflow, we refer the
readers to our recent manuscript [15].

This letter is intended to demonstrate the use of AGNI force
fields in exploring nanoscale growth phenomena. In particular,
we study the ripening of adatoms, whereby individual atoms clus-
ter together to form larger island features, that occurs during the
layer by layer growth process for an Al (111) surface, using true
molecular dynamics (MD) simulations. This goes well beyond our
previous work where we studied the dynamical behavior of a sin-
gle adatom on the same surface [14] The (111) surface was chosen
in particular as the barriers for the elementary processes allow for
the ripening phenomena to be explored in time scales achievable
with conventional MD simulations. The remainder of the letter is
structured as follows. First, a brief review on the construction of
AGNI force fields is provided. The force field is then validated by
computing energetic barriers for elementary reaction pathways
encountered on the surface. We then perform long time scale
MD simulations exploring the ripening process as a function of
two important parameters, time and temperature.

The construction of an accurate AGNI force field consists of 4
primary steps: (i) generating a diverse dataset of quantum
mechanical reference atomic environments and forces, (ii) choos-
ing a numerical representation for the atomic environments, (iii)
down selecting a representative set of training atomic environ-
ments, and (iv) identifying a learning method to map the environ-
ment to the force. A more detailed account of this workflow is
provided elsewhere [13–15]. We begin by compiling periodical
and non-periodical atomic configurations of Al, e.g., bulk, surfaces,
clusters, defects, etc. For each configuration, ab initio based MD
simulations, based on density functional theory (DFT), were per-
formed in the microcanonical ensemble at multiple initial temper-
atures to compile a diverse set of equilibrium and non-equilibrium
atomic environments, along with their corresponding vectorial
force components. All the DFT calculations were run using the
VASP code at a PBE level of theory [18–21]. Each atom and its envi-
ronment is then encoded in a numerical manner using a directional
dependent representation. The exact functional form is given
below as

Vu
i ðgÞ ¼

X
j–i

ruij
rij

� e�
rij
g

� �2

� f dðrijÞ: ð1Þ

Here, rij is the distance between atoms i and j (jjrj � rijj), while ruij is a

scalar projection of this distance along a direction û. g is the Gaus-
sian function width. Multiple such g values are needed to accurately
describe the environment around an atom. Here, 8 g values were
sampled on a logarithmic grid between [0.8 Å, 16 Å].

f dðrijÞ ¼ 0:5 cos prij
Rc

� �
þ 1

h i
, is a damping function for atoms within

the cutoff distance (Rc), and is zero elsewhere. An Rc of 8 Å is used
in the present work. From all the atomic environments compiled,
a subset of these are chosen with the help of dimensionality reduc-
tion methods and sampling techniques, to ensure that the informa-
tion content within these environments is diverse. Here 3000 such
environments are chosen.

To map an atomic fingerprint Vu
i

� �
to the individual force com-
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i
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we rely on a non-linear kernel ridge regression

framework,
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Here, t labels each reference atomic environment, and Vu
t ðgÞ is its

corresponding fingerprint. Nt is the total number of reference envi-
ronments considered. du

i;t ¼ jVu
i ðgÞ � Vu

t ðgÞ
�� ��j, is the Euclidean dis-
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tance between any two atomic fingerprints. ats and l are the
weight coefficients and Gaussian length scale parameter, respec-
tively, determined using standard machine learning cross-
validation practices [22]. The constructed AGNI force field has a
mean absolute prediction error (MAE) <0.05 eV/Å, on the order of
expected chemical and numerical accuracy of the reference quan-
tum mechanical calculations.

Moving on, a first step to the realization of the ripening process
is to ensure that the elementary reactions occurring on the surface,
such as translation, rotation and diffusion of adatoms, monomer,
dimer, trimer and beyond, as well as processes corresponding to
re-arrangement of islands, such as corner breaking, kink breaking,
terrace diffusion, edge evaporation etc., as illustrated in Fig. 1, are
correctly described. Here, we compute the reaction energy barriers
for all pathways, (a)–(i), shown in Fig. 1 using the AGNI force fields

EAGNI
a

� �
. The barriers are reported in Table 1. Given that AGNI force

fields provide access to the forces only we compute the energies
via thermodynamic integration of the forces [15]. For comparison
we report the corresponding DFT computed reaction barriers

EDFT
a

� �
, using the climbing-image nudged elastic band method

and those reported in the literature (highlighted by ⁄ in Table 1)
[16,17]. The errors are within 5% of the DFT computed values. In
principle, the accuracy can be improved upon by directly including
these atomic environments during force field training, though such
an undertaking is not considered here.

Having demonstrated an accurate description of the elementary
processes we now study the ripening of adatoms on the Al (111)
surface. To do so we construct a 35 � 30 Å2 asymmetric surface
model, with 6 layers, where, the bottom layer is fixed in position
and the remaining layers are considered during the dynamics.
The adatoms are then randomly distributed on the free surface,
and the concentration of adatoms is described by a coverage (h),
given as the ratio of adatoms on the surface to the maximum
acceptable number. The dynamic simulations were performed in
the canonical ensemble, with a timestep of 0.5 fs, using the popular
LAMMPS MD code [23]. A tarball containing the force field and
LAMMPS input files is provided in the supplemental information.

We start by exploring the temporal evolution of a system with
h = 0.14 at 300 K. Snapshots during the course of the dynamic sim-
ulation are illustrated in Fig. 2, up to a few nanoseconds. The ran-
ttp://dx.doi.org/10.1016/j.commatsci.2016.12.007
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Table 1
Activation energy barriers for reaction pathways plotted in Fig. 1, computed with
AGNI EAGNI

a

� �
and DFT. EAGNI

a were obtained by integrating the forces. EDFT
a were

computed using the climbing-image nudged elastic band method, or sourced from
literature as indicated by ⁄ [16,17].

Pathway EAGNIa EDFTa

(a) Monomer hopping 0.05 0.04
(b) Dimer rotation 0.12 0.11
(c) Dimer translation 0.13 0.07
(d) Trimer translation 0.19 0.21
(e) Trimer rotation 0.19 0.24
(f) Corner evaporation 0.71 0.60⁄

(g) Kink evaporation 0.67 0.65⁄

(h) Edge diffusion 0.48 0.45⁄

(i) Edge evaporation 0.91 0.80⁄

Fig. 3. Top panel: Island ripening as a function of temperature. Shown here is a
simulation at the end of 2.5 ns for 100 K, 200 K, 300 K, at h = 0.14. Grey and red
colored atoms correspond to the surface atoms and adatoms, respectively. Bottom
panel: Island density and size as a function of temperature. a2 refers to the surface
area of the basal plane. Two scaling regimes are observed with a transition
temperature of �200 K. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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domly distributed adatoms quickly (in a few picoseconds) form
small islands with a density �4–5 atoms, and once formed remain
intact. This is consistent with past theoretical studies where
dimers, trimers, and larger clusters were shown to be stable once
formed and prefer to move in a concerted manner [17,24–26]. As
island density increases, the mobility decreases, given the propor-
tional number of bonds that need to be broken, significantly
increasing the time between any relevant concerted displace-
ments. Nevertheless, at 300 K the thermal energy is sufficient to
overcome these barriers and the individual clusters ripen to form
an island after 2 ns. Also, the island formed is primarily 2D, with
no observable evaporation of adatoms (pathway (i) in Fig. 1).

Temperature plays a critical role in the morphological shape
and density of the islands formed. Past experimental studies, at
h = 0.11, by Busse et al. reveals distinct structural patterns for the
islands formed in a temperature range of 50–300 K [27,28]. At
low temperatures the lack of thermal energy results in hit and stick
islands, that are formed by aggregation of nearby atoms to form
several small clusters of islands, that transitions into compact
islands as the temperature increases. To better understand the role
of temperature, dynamical simulations between 50 K and 300 K
were performed, as shown in Fig. 3 (top panel). At 100 K, we
observe several small islands that remain immobile once formed.
At 200 K, the islands grow in a dendritic fashion, whereby clusters
Fig. 2. Snapshots of the time-evolution of adatoms on Al (111) surface using consta
distributed on the surface as shown at t = 0 ps, h = 0.14. The images shown are a 2 � 2 rep
adatoms, respectively. (For interpretation of the references to colour in this figure legen
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of atoms group together with no significant rearrangement. The
elementary processes, such as kink breaking and corner diffusion,
required to smoothen islands are activated only at high tempera-
tures, and in the case of Al (111) beyond 250 K. These findings
are consistent with past kinetic Monte Carlo results for other metal
surfaces, whereby, fractal patterns dominate at low temperature,
which transition into dendritic patterns, and culminate as compact
nt temperature (300 K) molecular dynamics simulation. Adatoms were randomly
eat of the unit cell. Grey and red colored atoms correspond to the surface atoms and
d, the reader is referred to the web version of this article.)
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islands as the temperature increases [16,29,30]. Note that the
shape of islands observed in the MD simulations will be governed
by the underlying reference theory used. It is known that a PBE
level theory fails to correctly capture the anisotropy behavior of
edge and corner diffusions, leading to triangular like rather than
compact islands [30]. Such deficiencies translate in our simulations
as well. Nevertheless, the data-driven nature of AGNI force fields
provides the flexibility of incorporating more accurate reference
data to overcome such deficiencies.

Further, in the case of an Al (111) surface Busse et al. experi-
mentally observed two distinct growth regimes, as measured by
the change in island density and temperature (T), one at
T < 200 K and one above T > 200 K [27]. We undertake a similar
such analysis for the structures generated by the molecular
dynamics simulations (c.f., bottom panel of Fig. 3). An identical
transition, consistent with the past experimental results, is
observed at T � 200 K. For the two regimes we compute the activa-
tion energy by measuring the slope, resulting in values of 1.2 K�1

and 4.2 K�1. The consistent features observed (island shapes and
growth regimes) suggests that the MD simulations undertaken
with AGNI force fields drives the dynamical evolution in a manner
consistent with both the thermodynamics and kinetics of the
ripening process.

To summarize, in this work we demonstrated the use of
machine learning force fields in studying the ripening phenomena
of adatoms on an Al (111) surface, using MD simulations. Here, we
confirm the two growth regimes observed experimentally in a
temperature range of 50–300 K. At low temperatures the ripening
phenomena is localized resulting in fractal like islands, and transi-
tions into more compact islands as the temperature increases. This
transition is observed at a temperature of �200 K, and is in excel-
lent agreement with past experimental data. Clearly, the simula-
tions undertaken by combining machine learning methods and
quantum mechanical data demonstrates the fidelity in describing
dynamical phenomena at larger length and time scales. The depen-
dence on such hybrid methodologies will become increasingly
more important, as we continually strive to push the envelope of
atomistic modeling capabilities to more interesting materials phe-
nomena, e.g., phase transformations or reactions on surfaces, all of
which require going beyond a purely quantum mechanical
description.
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