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ABSTRACT: The dopant chemical space in LaMnO3 (LMO) is systematically explored using first-principles computations. We
study a range of cationic dopants including alkali, alkaline earth metals, 3d, 4d, and 5d transition metal elements without and with
an adjacent O vacancy. A linear programming approach is employed to access the energetically favorable decomposition pathway
and the corresponding decomposition energy of doped LaMnO3. The decomposition energy is then used to classify the dopants
for stability, site preference and tendency of O vacancy formation. We find that La site doping is more favored compared to Mn
site doping. We also identify dopants previously not considered, such as K, Rb, Cs, and In, which lead to stable doped LMO and
are also excellent O vacancy formers. Employing data mining techniques, we identify the dopant features that are critical to the
stability of a doped oxide.

■ INTRODUCTION

Oxide perovskites are an attractive class of materials with a
broad array of technological applications,1,2 owing to their
exceptional physical and chemical properties. The remarkable
ability of the perovskite structure with the generic formula
ABO3 to host a variety of A and B site cationic elements leads
to different materials with a host of interesting properties. In
addition, doping in either of the cationic sites opens up avenues
for further tailoring the material properties. Doped lanthanum
Manganite (LaMnO3 or LMO) is one such oxide perovskite
with an array of applications3−5 including in solid oxide fuel
cells,6,7 giant magneto resistance devices,8 and catalytic
combustion.9 Although a few dopants in LMO have been
explored,10−16 a comprehensive study of the many possible
dopants at a consistent level of theory is unavailable at this
time. Such a study will provide very useful insights pertaining to
the stability of a dopant in LMO or similar oxide.
In recent years, the community has resorted to large scale

chemical space searches (via high-throughput computing) in
which several possible candidates are initially considered in an
unbiased and uniform manner.17−29 Such a strategy is
particularly useful either when chemical intuition concerning

the relevant cases are unavailable (thereby preventing further
significant progress), or when predictive models based on
quantitative trends and correlations across a chemical series is
desired. Indeed, these strategies have led to several successful
discoveries of new materials.30−37

Here, we employ a systematic search of the dopant chemical
space to identify stable and desirable dopants in LMO. To aid
this search, we explore cationic dopants ranging from the alkali
and alkaline earth metals, 3d, 4d, and 5d series transition metals
through group VA of the periodic table (K−As, Rb−Sb, and
Cs−Bi) amounting to a total of 44 dopants. In order to probe
the role of the dopant on O chemistry, all doped cases were
considered without and with an O vacancy adjacent to the
dopant atom.
A linear programming approach was used to determine the

energetically most favorable decomposition pathway (or
products) if any, for each case, and the corresponding
decomposition energy. The dopants were then assessed based
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on the resistance of the doped oxide to decomposition, the
tendency of O vacancy formation and the site preference based
on the decomposition energy.
Our strategy correctly recovers dopants already known to be

efficacious for enhancing O vacancy formation in LMO.
Additionally, we identify new dopants, including K, Rb, Cs
and In, which are expected to lead to stable doped LMO that
are simultaneously superior O vacancy formers. This trend is
visually captured in Figure 1, which displays the stability of
doped LMO with the dopant in the A or B site and without or
with an adjacent O vacancy (green shades indicate cases and
situations with high stability). Data mining methods38 were
employed to identify trends and correlations between the
dopant properties and the stability of the compounds. It is
hoped that this work will spur future experimental studies of
these doped oxides.

■ METHODS
Models. The room temperature structure of LMO is

orthorhombic;39 however, applications involving high temper-
ature operations like SOFC, the structure becomes cubic.
Therefore, we chose the cubic perovskite structure for all our
calculations. We then substitutionally doped the cations K−As,
Rb−Sb, and Cs−Bi at the La or Mn sites in a 2 × 2 × 2
supercell, resulting in a dopant concentration of 12.5%. In
addition, a neutral O vacancy in the vicinity of each dopant was
considered. Altogether, four different sets of calculations with
dopants (D) in the La (La1‑aDaMnO3‑δ) and Mn (LaM-
n1‑aDaO3‑δ) sites without (δ = 0) and with (δ = 0.125) an O
vacancy were performed. For consistency, all of the compounds
were initialized in a ferromagnetic (FM) state and allowed to
relax to their ground state.
Computational Details. Spin polarized calculations were

performed using density functional theory as implemented in
the VASP40,41 code. The electron exchange-correlation
interaction was treated using the generalized gradient
approximation (GGA) with Perdew−Burke−Ernzerhof
(PBE)42 functional. The projector augmented wave (PAW)
potentials43 were used to describe the core states. All
calculations were performed with a cutoff energy of 520 eV

and a 4 × 4 × 4 Monkhorst−Pack k-point grid was used to
sample the brillouin zone. The atomic positions were relaxed in
the cubic supercell until the force on each atom fell below a
threshold of 0.02 eV/Å.

Stability. Conventionally, the thermodynamic stability of a
doped compound is estimated from the calculated formation
energy. The formation energy can be defined in multiple ways
depending on the reference chosen for elemental chemical
potentials.
However, what is more relevant to stability is the tendency of

a compound, once formed, to resist decomposition. The
decomposition energy of a compound such as doped LMO is
far more difficult to compute than an appropriately defined
formation energy, as there can be a plethora of decomposition
products, including some combination of the relevant metallic
elements/alloys, binary oxides and ternary oxides.
In order to find the most expected decomposition pathway,

all the possible combinations of the decomposition reactions
should be studied and their corresponding energies compared.
Alternatively, a constrained optimization can find the most
thermodynamically favored set of products subject to
stoichiometry preserving constraints (as described below).
The linear programming (LP) method44−48 offers an efficient

approach to find the most expected set and amounts of
products for the doped compounds. This involves listing the
possible product compounds (the “product pool”), which in
our case included the elemental metals, their binary oxides,
LMO and oxygen molecule. The coefficients ci corresponding
to each of these product compounds represent the amount of
each product compound contained in the final set of products.
The decomposition energy of a doped LMO with dopant D,
Ed
D, is then defined as
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Figure 1. Dopants from the periodic table considered in this study. The decomposition energy (Ed
D) of the compound with a substitutional dopant in

the La and Mn site both without and with an adjacent O vacancy in the vicinity of the dopants is represented by the left, bottom, top and right
triangles, respectively. The decomposition energy is color coded and the color bars shows the scale for the decomposition energy. The doped
compound is considered stable against decomposition when Ed

D < 0 eV. The gray line connecting the dots represents the string for Mendeleev
number ordering.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b04524
J. Phys. Chem. C 2016, 120, 22126−22133

22127

http://dx.doi.org/10.1021/acs.jpcc.6b04524


where ELMO
D is the DFT energy of the doped compounds (with

the dopant at the La or the Mn site, and with or without an
adjacent O vacancy) and all the Es in the second term are DFT
energies of all possible elemental, binary and ternary oxides
considered as products.
The ci coefficients that minimize the second term of eq 1 are

determined subject to the following stoichiometry preservation
constraints:

δ

+ + = −
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+ + + + = −
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To understand the above constraints, let us consider an
example. The stoichiometry of La in La1‑aDaMnO3‑δ is 1 − a;
thus, the sum of all cis of compounds involving La (namely c1,
c4, and c7) should be equal to 1 − a, leading to the first equality
of eq 2. The minimization of the second term in the right-hand
side of eq 1 subject to the constraints in eq 2 and 3 will lead to
the most expected products. For each choice of dopant D, 4
decomposition energies (corresponding to the dopant at the La
or the Mn site, and in each case with or without an adjacent O
vacancy) were computed. The energies and structures of all
elemental metals and binary oxides (all in their most favored
standard states) are contained in the Supporting Information
and are also available at the online repository (see Figure S1).49

As mentioned above, the formation energies of these
compounds can be calculated for different choices of the
elemental chemical potential references. We have calculated the
formation energy based on two such references and the
correlation of these energies with that of decomposition energy
is also discussed in the Supporting Information.
Factors Affecting the Accuracy of Energies. It is well-

known that GGA over binds the oxygen molecule.27 To correct
for this overbinding a shift of 1.38 eV/O2 molecule is used to
destabilize the total energy of the O2 molecule, consistent with
similar procedures adopted in the past.27,50,51

The conventional DFT treatment based on semilocal
exchange-correlation potentials is known to be insufficient in
highly correlated materials.52 Higher order methods like DFT
+U and hybrid methods could be employed to address this
concern. However, the determination of the U parameter in the
DFT+U method for each of the dopants included here is a
formidable task. Besides, the transferability of the U parameters
between different chemical environments is questionable.53

Similarly, the computational cost involved in employing hybrid
or other advanced exchange-correlation functionals is also
challenging considering the number of dopants studied here.
Therefore, we proceed with the GGA-PBE level of theory and
aim to give a consistent comparative description (across the
large chemical series considered) of the effect of the dopant and
defects in LMO. Nevertheless, in order to obtain an idea of the
sort of deviations one may obtain in the results if a higher level
theory was used, we adopted PBE+U calculations for a dozen
La-site dopant cases (with the U-J value for Mn taken to be 4
eV, following previous work12). We found that the PBE and
PBE+U results follow the same trends, with the standard
deviation in the decomposition energy between the two
treatments being 0.06 eV. We thus believe that the overall

trends across the chemical series as determined by the PBE
functional is reliable.
Two other factors that have not been considered here are the

entropic contributions to the energies, and non-neutral charged
states of O vacancies. While these factors indeed may be
important, we expect that their impact on the general trends we
obtain here will be minimal (insofar as the relative tendencies
for decomposition and O vacancy formation are concerned).
Moreover, given the vast dopant chemical space examined here,
consideration of all possible factors for every case is hardly
practical. Thus, our view is that such more detailed and in-
depth studies of promising specific cases can be taken up in
future studies.

■ RESULTS AND DISCUSSIONS
Stability of Doped LMO. The decomposition energy, Ed

D,
as defined in eq 1 may be used to draw several important and
useful conclusions, including those related to (1) whether a
doped LMO, once created, will remain stable, (2) whether a
dopant prefers to be in the La or the Mn site, and (3) whether a
dopant will lead to the formation of O vacancies. Below, we
address each of these points in a systematic manner.
The doped compound is considered stable if Ed

D < 0 eV, with
more negative values representing situations with higher levels
of stability. Figure 1 captures the trend displayed by the
decomposition energy across the range of dopants considered
in a visually obvious manner. For each choice of dopant, four
different Ed

D values are reported corresponding to (1) the
dopant in the La site (left quarter), (2) the dopant in the La
site with an adjacent O vacancy (top quarter), (3) the dopant in
the Mn site (bottom quarter), and (4) the dopant in the Mn
site with an adjacent O vacancy (right quarter). Each quarter is
color-coded so that positive and negative values of Ed

D are
represented using red and green gradients, respectively, and
whiter shades represents Ed

D values close to zero.
From Figure 1, it is immediately evident which doped oxides

can be expected to be stable. Of the 44 dopants considered (i.e.,
the 45 elements shown in Figure 1 minus the host element, be
it La or Mn), only a handful lead to stable doped oxides. These
are the ones represented using greenish shades in at least one of
the quarters in a given square. Focusing, for the moment, on
just the left and bottom quarters, we note that the dopants that
lead to stable doped LMO compounds include K, Rb, Cs, Ca,
Sr, Ba, Pd, Cu, Ag, Au, Cd, Hg, Tl, and Pb (in the La site) and
Co, Ni, Cu, and Zn (in the Mn site). Among these, the most
stable ones (i.e., those that display the darkest green quarters)
are those involving the alkali and alkaline earth elements (i.e.,
K, Rb, Cs, Ca, Sr, Ba). Indeed, all these findings are entirely
consistent with available experimental evidence for both
La54−59 and Mn4,60 site doping. We note though that K, Rb
and Cs have not been considered in experimental work in the
past, and hence, constitute new dopants identified by this study.
Our results are also collected in Table. 1.
A corollary to the above finding is the recognition of the site

preference of the dopants. From the above list, and from a
visual inspection of Figure 1, it is evident that La site doping is
far more favorable than Mn site doping, again, a notion
consistent with experience and experiments. Even those
dopants that do show a tendency to occupy the Mn site
(which include Co, Ni, Cu, and Zn) lead only to a marginal
level of stability of the doped compound.
Next, we comment about the tendency for a doped oxide to

support O vacancies, a point captured by the top and right
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quarters in the squares of Figure 1. Those dopants that lead to
greenish colors in these quarters are K, Rb, Cs, Ca, Sr, Ba, Ag,
Au, Hg, Tl, and In, all in the La site; these are also listed in
Table. 1. Interestingly, barring In, this is a subset of the La site
dopants encountered above. Not a single dopant in the Mn site
leads to an enhanced tendency for O vacancy formation. This is
not surprising as Mn site dopants, even without an O vacancy,
lead to only marginally stable doped compounds. It is worth
noting that the alkaline earth metal dopants in the La site are
already known to be good O vacancy promoters and are being
widely studied for SOFC applications.13 An important outcome
of this study is the identification of In as a potential dopant that
can encourage the formation of O vacancies. This, like the K,
Rb, and Cs cases mentioned above, have not been considered
previously in experimental studies.
In order to allow for a quantitative assessment of the

decomposition energy, we also plot Ed
D for all the cases

considered in Figure 2, in which the dopants are ordered as per
their Mendeleev number. This ordering is also shown using a
string connecting dots in Figure 1. It can be seen from Figure 2
that dopant elements with similar Mendeleev numbers lead to
similar Ed

D values (note, for instance, the alkali and alkaline
earth element cluster in the far left of Figure 2).
Finally, we comment about the likely decomposition

products in the case of doped LMO that are prone to
decomposition. Figure 3 portrays, using a bubble chart, the
amount of each of the compounds from the product pool that
will result if a doped LMO compound decomposes. Those
cases that are deemed stable have a bubble in the topmost row
of each panel (corresponding to the doped oxide). The size of
the bubble represents the amount of that particular product; we
note that pure LMO, by itself, does not display a tendency to
decompose to its simple oxides, La2O3 and Mn2O3, and is

hence stable against decomposition. While no generalization
can be made, it appears that those cases that are unstable
decompose to pure LMO, La2O3, and some combination of
Mn, D, and their oxides. Pure La is predominantly absent as a
decomposition product.

Data Mining. Data mining techniques provide powerful
ways to identify useful patterns and trends.38 Here we employ
such statistical (or machine) learning methods to identify
significant features that control the stability of a doped LMO
oxide.
Kernel ridge regression (KRR),38,61−64 a nonlinear and

regularized regression method was used as the learning model
here. KRR maps the input features to a higher dimensional
space so that a linear relation may be attained between the
features (e.g., properties of dopants) and the associated
properties (e.g., the decomposition energy of the doped
oxide). It uses the “distances” (or differences) between the
features rather than the features themselves and can be
regarded as a similarity-based method. This method has been
successful in many material property prediction efforts65−68 and
is used here to systematically find the combination of features
that lead to the best predictive models.
The target property here was Ed

D and features included the
relative deviation of properties of the dopants from that of the
host atom, including the oxidation state, Shannon’s ionic
radius,69 Pauling electronegativity, ionization energy, and
electron affinity. All possible combinations of the 5 features
were used in the model to learn from the training data. In each
case, 90% of the data set was classified as the training set while
the rest as the test set. The root-mean-square error (RMSE) for
the test set was then plotted against the number of features for
the La and Mn site dopants. The combination of features
leading to the least test error was then identified.
For the La-site dopants, a combination of four features

including the oxidation state mismatch (OSM), ionic radii
mismatch (IRM), ionization energy mismatch (IEM) and
electronegativity mismatch (ENM) leads to the minimum test
error of 0.070 eV (Figure 4a). However, for the Mn-site
dopants (Figure 4b), the test error is an order of magnitude
higher than that for the La site dopants. It is clear that the larger
radii Cs and Ba cations in the Mn site leads to higher Ed

D and
these outliers increase the test error (blue stars in Figure 4b).
Removing these outliers from the data set leads to significantly
reduced test error (blue triangles in Figure 4b). After excluding
the outliers, a features set including just IRM, OSM and IEM

Table 1. Summary of all Dopants with Decomposition
Energy (Ed

D) < 0, when Doped in the La or Mn site without
and with an Adjacent O Vacancya

dopants leading to
stable oxides

La-site K, Rb, Cs, Ca, Sr, Ba, Pd, Cu, Ag, Au,
Cd, Hg, Tl, Pb

Mn-site Co, Ni, Cu, Zn

O vac formers La-site K, Rb, Cs, Ca, Sr, Ba, Ag, Au, Hg, Tl, In
aThe table complements the Figure 1 and gathers all promising
dopants identified by this study.

Figure 2. Decomposition energy (Ed
D) for all the dopants considered in the study without and with an O vacancy. The elements in the x-axis are

arranged in the order of increasing Mendeleev number. The dashed horizontal line corresponds to Ed
D = 0.
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leads to the minimum test error of 0.105 eV. Subsequently, the
feature sets with minimum test error for each case were used to
perform Ed

D predictions on the entire data set. The parity plot in
Figure 4c compares the KRR predicted and DFT calculated Ed

D

values. The analysis reveals that a prediction model of the
decomposition energies of the doped oxides may indeed be
developed based on key dopant attributes.

■ CONCLUSION

A systematic exploration of a range of substitutional dopants in
LaMnO3 at either the La or the Mn site, without and with an
adjacent O vacancy was performed using DFT computations.

The energetically favorable decomposition pathways and the
corresponding decomposition energies of the doped oxides
were computed. The decomposition energy was then used to
evaluate the stability of the doped compounds, the dopant site
preference, and the tendency of O vacancy formation in the
doped compounds. Our findings are summarized below:

• The cationic dopants that lead to the most stable doped
compounds in the La site are the alkali and alkaline earth
elements. For the Mn site, only the transition metal
elements Co, Ni, Cu, and Zn lead to a stable doped
compound.

Figure 3. Bubble chart showing the ci coefficients of eq 1. The rows correspond to the parent doped compound and the eight reaction products
considered, and the columns represent the dopants. The bubble sizes are proportional to the ci values. The panels are for (a) the dopant in the La
site, (b) the dopant in the Mn site, (c) the dopant in the La site with an adjacent O vacancy, and (d) the dopant in the Mn site with an adjacent O
vacancy.

Figure 4. Ranking of features using kernel ridge regression (KRR). The root-mean-square error (RMSE) of the test set is plotted for all possible
combination of the five features (oxidation state, Shannon’s ionic radius, Pauling electronegativity, ionization energy, and electron affinity mismatch)
in the La and Mn site dopants (a and b). The stars and triangles in part b represent the Mn site dopants including and excluding the outliers
respectively in the data set. Panel c shows the parity plot of the KRR predicted decomposition energy using the best features vs the DFT calculated
decomposition energy. The outliers in the Mn site dopants are excluded in the KRR prediction, but shown as blue stars for comparison.
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• Doping in the La site is more favorable compared to Mn
site doping in general.

• The alkali and alkaline earth metals, and the element In
in the La site are strong O vacancy promoters whereas
none of the Mn site dopants favor O vacancy formation
in the doped compound.

• While a general, thermodynamically favorable decom-
position pathway is not revealed, most of the unstable
doped compounds decompose in to pure LMO, La2O3,
and some combination of Mn, dopant, and their oxides.

• A data-driven predictive model based just on the ionic
radius, oxidation state, electronegativity and the ioniza-
tion energy mismatch between the host and dopant is
shown to be sufficient to predict the decomposition
energy of the doped LMO compounds.

Our approach correctly predicts the dopants already known to
be effective O vacancy formers in LMO. We also identify
dopants previously not considered, such as K, Rb, Cs, and In,
which lead to stable doped LMO and are also excellent O
vacancy formers.
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