
Computational Materials Science 125 (2016) 123–135
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Critical assessment of regression-based machine learning methods
for polymer dielectrics
http://dx.doi.org/10.1016/j.commatsci.2016.08.039
0927-0256/Published by Elsevier B.V.

⇑ Corresponding author.
E-mail address: rampi.ramprasad@uconn.edu (R. Ramprasad).
Arun Mannodi-Kanakkithodi a, Ghanshyam Pilania b, Rampi Ramprasad a,⇑
aDepartment of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269, USA
bMaterials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 June 2016
Received in revised form 19 August 2016
Accepted 25 August 2016

Keywords:
Materials informatics
Density functional theory
Regression
The design of new and improved materials for different applications of interest is boosted by combining
computations or experiments with machine learning techniques. Materials scientists seek to use learning
algorithms that can easily and efficiently be applied to their data in order to obtain quantitative property
prediction models. Here, we utilize a first principles generated dataset of the electronic and dielectric
properties of a chemical space of polymers to test different kinds of regression algorithms used by the
machine learning community today. We explore several possibilities for the hyper-parameters that go
into such learning schemes, and establish optimal strategies and parameters for high-fidelity polymer
dielectrics property prediction models.
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1. Introduction

Materials science has greatly benefited in recent times from the
application of machine learning techniques to available or newly
generated materials data [1–7]. Whereas accurate computations
and careful experimental measurements are the standard treat-
ments for new materials discovery, machine learning can acceler-
ate the process significantly, and open up opportunities for
exploring complex chemical spaces efficiently. Given any robust
dataset of materials properties, learning approaches involve mak-
ing correlations and mappings between crucial but easily accessi-
ble features of materials on the one hand, and the properties of
interest on the other. Relationships formed between features and
properties can then be exploited for making qualitative, semi-
quantitative or quantitative predictions on unseen materials.

In a recent study of designing dielectric polymers for energy
storage applications [1,8], we applied machine learning techniques
on computational data to develop property prediction models.
With respect to high energy density capactitors, polymers suitable
to be used as dielectrics should show a high dielectric constant and
a large band gap, amongst other crucial features [9,10]. We used
density functional theory (DFT) computations to generate dielec-
tric constant (divided into two components, the electronic and
the ionic contributions) and band gap data for a selected chemical
space of organic polymers. These polymers were built by simple
linear combinations of chemical units opted out of a pool of 7 basic
blocks: CH2, NH, CO, C6H4, C4H2S, CS, and O. For each polymer, DFT
helps determine the ground state crystalline arrangement, for
which the properties are then computed using known formalisms.
Validation of the computed properties against experimental
measurements [9] for known polymers makes this a reliable
methodology.

Once the property data was generated for 284 polymers (all this
data is presented in Refs. [1,8]), it was possible to perform machine
learning via an intermediate polymer fingerprinting step. The fin-
gerprint is mapped to the properties—the band gap (in eV), the
electronic dielectric constant, and the ionic dielectric constant—
to develop an efficient prediction model, that will give as output
the properties of any new polymer by converting it into its finger-
print. Once a reasonably accurate prediction model is trained, one
can instantly predict the dielectric constants and band gaps of any
new polymers that were not considered during computations, thus
providing an accelerated materials design route.

Apart from the availability of robust, uniformly generated data,
there are a number of other essential factors in the machine learn-
ing process that need to be taken care of for optimal learning.
These include defining a suitable fingerprint, choosing a learning
algorithm, and determining the necessary subset of the data that
is needed for training the learning model [5]. The fingerprints we
chose and tested in Ref. [1] were chemo-structural in nature, that
is, they quantified the types and combinations of different con-
stituent blocks in the polymer. Three fingerprints were used: a
count of the different types of building blocks in the polymer,
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called fingerprint MI , a count of the types of block pairs (fingerprint
MII), and a count of the types of block triplets (fingerprint MIII). The
fingerprints were normalized and generalized for any number of
blocks in the polymer repeat unit, and used to train a regression
model for the three properties of interest.

Whereas all three fingerprints were tested in Ref. [1], the learn-
ing algorithm used was Kernel Ridge Regression (KRR) [11]—a non-
linear regression technique that works on the principle of
similarity. Euclidean distances between fingerprints were used to
quantify the similarity. A distance kernel goes into the definition
of the property here, for which a Gaussian kernel was used. Around
90% of the entire polymer dataset was used to train the KRR model,
and predictions were made on the remaining points as a test of the
performances. Mean absolute errors (MAE) in prediction of less
than 10% with respect to the DFT values were seen, which is satis-
factory for a statistical model and the best performance that could
be obtained using the current optimal learning parameters. The
optimal fingerprint used here was MIII , with MII and MI discarded
owing to larger prediction errors.

Although we obtained learning models as described above to
predict polymer properties with reasonable accuracies, a detailed
study of all the different possible machine learning (or regression)
parameters is due. Such a study can be very valuable in terms of
truly testing the capabilities of our machine learning philosophy
for the given polymer dataset, and indeed, improving the perfor-
mances. In Table 1, we try to capture all these different parameters,
mentioning the specific choices that we used in Ref. [1] as well as
the other possible options explored here. Whereas the fingerprint
choices were already rigorously tested, each of the other parame-
ters provide room for further testing, and thus possible perfor-
mance improvement.

In this paper, we take the same polymer dataset and analyze the
machine learning prediction performances for different regression
algorithms, different distance kernel choices, different training set
sizes and different error definitions. Possible alternative algorithms
to KRR include, but are not limited to: Linear Regression (LR), Sup-
port Vector Regression (SVR), Gaussian Process Regression (GPR)
and SVR with AdaBoost. Whereas we used KRR with a Gaussian
kernel in Ref. [1], Linear, Laplacian or Polynomial kernels can be
used as alternatives in any kernel-based regression algorithm. Fur-
ther, the training set size can be varied systematically to study the
prediction errors. The prediction errors can be quantified in differ-
ent ways, such as mean absolute error (MAE), root mean square
error (RMSE) and error based on the coefficient of determination
(1 � R2).

In the following sections, we present our results and discussions
based on the analysis of all these machine learning parameters. We
attempt to compare them critically with each other, and comment
on the best possible combination of parameters that must be used
given the present polymer dataset.
Table 1
A comparison of various choices of machine learning parameters used in Ref. [1] and
explored here. The acronyms used stand for: Kernel Ridge Regression (KRR), Support
Vector Regression (SVR), Mean Absolute Error (MAE), Root Mean Square Error (RMSE)
and goodness of fit (R2).

Machine learning
parameters

Choices used in
Ref. [1]

Choices explored here

Fingerprint MI , MII , MIII MIII

Regression algorithm KRR KRR, SVR, AdaBoost
Type of kernel Gaussian Gaussian, Laplacian, linear,

polynomial
Training set size 90% of Data Learning curves
Error definition MAE RMSE, 1 � R2
2. Kernel Ridge Regression (KRR)

In this section, we delve deeper into KRR, the algorithm that
formed the basis of all machine learning prediction models in
Ref. [1]. KRR is a similarity based regression algorithm that inher-
ently takes the nonlinearity of the system into account. The ‘simi-
larity’ between any two data points is defined using some standard
mathematical measure of distance, such as a Euclidean distance.

For any two polymers i and j having fingerprints x
!

i and x
!

j respec-

tively (where x
!

i is an m dimensional vector with components
x1i ; x

2
i ; x

3
i . . . x

m
i ), the Euclidean distance between them will be

defined as:

dðx!i; x
!
jÞ ¼ kx!i � x

!
jk2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1i � x1j
� �2

þ x2i � x2j
� �2

þ . . .þ xmi � xmj
� �2r

: ð1Þ

The smaller (larger) is this distance, the more similar (dissimilar)
the two polymers are. Now, KRR involves defining the property of
interest (the output) as a function of such a distance measure, so
that the property of any polymer can be estimated by taking its dis-
tances from all the other polymers. Mathematically, the predicted
property of polymer j, denoted by PðjÞ, will be defined as follows:

PpredðjÞ ¼
Xn
i¼1

aiKðx!i; x
!
jÞ: ð2Þ

The summation is performed over the entire training set size n, and

Kðx!i; x
!
jÞ is the kernel function that is defined in terms of dðx!i; x

!
jÞ, the

distance between polymer i (in the training set) and polymer j. The
purpose of the kernel function is to transform the points (the poly-
mers) from the fingerprint space to a higher dimensional space,
thus making nonlinear mapping possible [12]. The two crucial
parameters that need to be optimized here are the kernel coeffi-
cients ai and the parameters that go into the kernel definition—such
as the Gaussian width for a Gaussian kernel. Training of a KRR
model essentially involves an iterative minimization of prediction
errors leading to the optimal parameter choices.

In practice, as mentioned in the Introduction, the total available
dataset is divided into two parts—the training dataset and the test
dataset. When training the model using the former, an important
step that must be carried out is cross-validation, wherein the train-
ing set itself is divided into a number of subsets. One of the subsets
is used as a temporary test set while training is performed on the
remaining subsets, and this procedure is repeated for each of the
subsets. The optimal regression parameters are obtained corre-
sponding to minimum average prediction errors on the temporary
test sets; subsequently, the error computed over the entire training
set with these parameters is referred to as the ‘cross-validation
error’, or sometimes the cross-validated ‘training error’. The pur-
pose of cross-validation is to avoid overfitting in the data and to
make the model more generalizable—that is, to ensure that the
model predictions would work reasonably for points outside the
training dataset.

Mathematically, the training process involves a minimization of
the following expression:

argmin
a1 ;...;an

Xn
i¼1

ðPpredðiÞ � PactualðiÞÞ2 þ k
Xn
i¼1

kaik22: ð3Þ

where PpredðiÞ is the KRR model predicted property value of polymer
i as defined in Eq. (2) and PactualðiÞ is its actual property value;
ðPpredðiÞ � PactualðiÞÞ is thus a measure of the prediction error.
However, the second term in the expression involves the regulariza-
tion parameter k. Regularization [2] is an important step that is
again aimed at preventing overfitting, and involves adding extra
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information to the expression being minimized. The solution to Eq.
(3) is given by

a
! ¼ ðKtrain þ kIÞ�1 � P

!
actual: ð4Þ

where a
!

is the vector of all ai values, Ktrain represents the kernel
matrix for the entire training set, and Pactual represents the vector
of actual property values for all points in the training set. Based
on the above discussion, it would appear that the two important
parameters that need to be optimized during the training process
are the following: regularization parameter k, and the relevant ker-
nel parameters. A set of values for these parameters are tested here
towards the minimization of the expression in Eq. (3), thus yielding
the final form of Eq. (2) that can be used for predictions on the test
set.

2.1. Learning with different kernels

When applied in Eq. (3), any kernel function will be expressed
in terms of the distance between two polymers as defined by Eq.
(1). Whereas a given polymer i exists as xi in the fingerprint space,
implementing a kernel function is simply a way of projecting the
polymer to the kernel space, which is what makes the application
of a technique such as kernel ridge regression possible. Many dif-
ferent types of kernel definitions can be applied in Eq. (2), as
shown in Table 1, such as a linear kernel, polynomial kernel, Gaus-
sian kernel, and Laplacian kernel. Here, we consider three different
kinds of kernels and compare the KRR prediction performances
with each, with prediction errors given using two error definitions:
the root mean square error (RMSE) and 1� R2, where R2 is known
as the coefficient of determination and represents goodness of the
fit. We should thus be able to determine the best performing kernel
with respect to one regression algorithm: KRR.

2.1.1. Gaussian kernels
A Gaussian kernel (an example of a radial basis function kernel)

is defined for any two polymers i and j as:

KGðx
!
i; x

!
jÞ ¼ exp

�kx!i � x
!

jk22
2r2

 !
: ð5Þ

Here, the numerator inside the exponential term contains the Eucli-
dean distance measure, or the L2-norm, and the denominator con-
tains r, a kernel parameter known as the Gaussian width. One of
the most important things to note here is that r is an adjustable
parameter that affects the kernel performance in a major way.
Given the square scaling relationship, even a slight overestimation
of r can cause the exponential to start acting linearly, which leads
to a loss in nonlinearity of the kernel projection and thus, the KRR
algorithm. On the other hand, an underestimation of r can lead to
overfitting in the training data and consequently, poor prediction
performances on the test set. Estimating the optimal r value is thus
of utmost importance, and the two parameters that need to be opti-
mized while performing KRR with a Gaussian kernel are k and r.

2.1.2. Laplacian kernels
A Laplacian kernel is also a radial basis function kernel, and can

be expressed mathematically as:

KLðx
!
i; x

!
jÞ ¼ exp

�kx!i; x
!
jk1

r

 !
: ð6Þ

The distance measure in the numerator of the exponential term
here is the Manhattan distance, or the L1-norm. The observations
made about r in the discussion of Gaussian kernels are applicable
here as well.
2.1.3. Polynomial kernels
Whereas the two kernels described above are exponential func-

tions, yet another choice for a kernel could be a polynomial func-
tion. Such a kernel can be expressed as follows
Kpolyðx
!

i; x
!
jÞ ¼ ðchx!i; x

!
ji þ cÞ

d
: ð7Þ
where h�; �i denotes the dot product in the space of the input feature
vectors and the adjustable parameters are the constant term c and
the degree of the polynomial, d. Here, we take c = 0 and c ¼ 1 for
simplicity, which leaves d as the one important kernel parameter
to be optimized.

Figs. 1–3 show plots between two vital KRR parameters when
using the Gaussian, Laplacian and polynomial kernel respectively.
Whereas the plot is between r and k in Figs. 1 and 2 (on a logarith-
mic scale), the plot in Fig. 3 is between parameter d and k. Shown
in different colors (according to the adjoining color bar) in each of
the plots, for the three properties and using two different error def-
initions, are the respective prediction errors corresponding to any
combination of the two parameters. The prediction errors are esti-
mated for the training set points and the test set points respec-
tively, as the averaged RMSE or (1 � R2) errors over all the
points, and the test errors are depicted in Figs. 1–3.

The plots in Figs. 1–3 enable us to determine regions of unfavor-
able parameter values as well as the region where the optima will
be found. For example, a combination of r = 4 and k ¼ 2�7 appears
to provide the minimum 1� R2 and RMSE errors for band gap pre-
dictions. The optimal [r; k] or the optimal [d; k] values can similarly
be obtained for KRR models for each property, using each kind of
kernel. The lowest training and test prediction errors thus observed
for the optimal parameter choices with the three different kernels
are listed in Table 2. It should be noted that the optimal k values
obtained using the polynomial kernel, especially for the ionic
dielectric constant and the band gap, are many orders of magni-
tude smaller than those with the two exponential kernels. This
has important consequences, as we explain below.

The plots of most interest following this study are the ones pre-
sented in Fig. 4. KRR performances using the three kernels (based
on the optimal parameter choices for each) are shown here for
the three properties—electronic dielectric constant, ionic dielectric
constant or band gap—in the form of parity plots between the KRR
predicted values and the actual DFT values. Fig. 4a shows the KRR
performances using a Gaussian kernel, which is the same as the
machine learning models that were presented in Ref. [1]. It can
be seen that there is no clear improvement in the prediction per-
formances on the test set points upon going from the Gaussian to
the Laplacian (Fig. 4b) and the polynomial (Fig. 4c) kernels, which
vindicates the prior usage of the Gaussian kernel.

For the electronic dielectric constant, the performance worsens
with the polynomial kernel when compared to the exponential
kernels. For the two other properties, whereas the test prediction
errors are more or less the same with every kernel, there is a prob-
lem of overfitting in the data to some extent with the Laplacian
kernel, but to a large extent with the polynomial kernel. This is
because of the smaller values of the regularization parameter k
as pointed out earlier, which leads to a shrinkage of the second
term in Eq. (3). Given that our model selection is based on the low-
est cross-validation errors that can be obtained from the training
set, the scatter in the test set points seen in Fig. 4c shows the inad-
equacy of the polynomial kernel in representing the properties as a
function of the fingerprint. This further points towards the expo-
nential kernels, and specifically the Gaussian kernel, being the best
choice for KRR among the kernels and applications considered
here.



Fig. 1. Optimal parameter selection for the KRR ML models with Gaussian kernels.
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2.2. Optimal training set size: learning curves

While we have considered a training set size of 250 (approxi-
mately 90% of the entire dataset) in all the analyses presented so
far, a rigorous demonstration of how we obtained this particular
figure—or if 250 is indeed the optimal training set size—is missing.
In any statistical learning treatment, determining the minimum
number of data points necessary for training a satisfactory model
is of utmost importance. One may not possess sufficient data to
train a respectable model, or one may possess excess data, in which
case some points can safely be put aside for model testing pur-
poses. Here, we present a systematic study of the adequacy of



Fig. 2. Optimal parameter selection for the KRR ML models with Laplacian kernels.
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the training data set with respect to obtaining acceptable statistical
prediction errors, using KRR with the three different kinds of ker-
nels as before.

Shown in Fig. 5 for the three properties, for KRR with each ker-
nel, are plots between the prediction errors (1� R2) and the train-
ing set sizes, referred to in machine learning practices as learning
curves. [7] We increase the training set size from 50 (� 20% of
the dataset of 284) in steps of 5% of the entire dataset, all the
way to 250 (� 90% of the dataset); the test set is, of course, all
the remaining points in the dataset. In each of the 9 cases, we con-
sider 50 different randomly chosen training set populations for a
given training set size, and measure the prediction errors (errors



Fig. 3. Optimal parameter selection for the KRR ML models with polynomial kernels.
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on the test set points) using the respective trained models. What
we have plotted in Fig. 5 are the averaged test set prediction errors
as well as the standard deviation in errors, for different training
sizes.

As one would expect, the general trend exhibited in each of the
plots is a gradual decrease in the average error as the training set
size increases, which is simply owing to the improvement of the
prediction model with a higher number of points trained upon.
Whereas the standard deviations do not necessarily decrease the
same way, the maximum and minimum errors that are seen gener-
ally follow the same trend as the average errors. In fact, the stan-
dard deviations seem to be higher in many of the cases for a
large training set size, which happens because while some predic-
tion models are excellent (reflected in the lowminimum prediction



Table 2
Training and test prediction errors (RMSE and 1� R2) with all the regression algorithms. � represents dielectric constant. The reported rms error for band gaps is in eV.

Learning algorithm Kernel used rms error 1 � R2

�-electronic �-ionic Bandgap �-electronic �-ionic Bandgap

Performance on test set
KRR Gaussian 0.366 0.162 0.506 0.193 0.368 0.203
KRR Laplacian 0.457 0.161 0.519 0.187 0.361 0.214
KRR Polynomial 0.510 0.171 0.494 0.233 0.407 0.194
SVR Gaussian 0.527 0.136 0.480 0.250 0.259 0.183
SVR + Boosting Gaussian 0.465 0.325 0.494 0.310 0.667 0.155

Performance on training set
KRR Gaussian 0.112 0.107 0.196 0.013 0.051 0.026
KRR Laplacian 0.118 0.038 0.141 0.016 0.006 0.013
KRR Polynomial 0.292 0.000 0.001 0.097 0.000 0.000
SVR Gaussian 0.292 0.195 0.097 0.098 0.171 0.006
SVR + Boosting Gaussian 0.256 0.185 0.062 0.070 0.160 0.003
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errors observed), there could be possible data overfitting in some
others given the few remaining points that constitute the test set
may not be well predictable (reflected in the high maximum pre-
diction errors observed). The average errors steadily decrease all
the way to a training set size of 250, which justifies our optimal
training size selection in Ref. [1], with the exception of band gap
predictions with Gaussian kernel where the error minimum occurs
around 220 points.

The learning curves are, for most parts, very smooth in nature
and follow the average decreasing trend we expect. The standard
deviations we observe are a consequence of the dataset at hand,
where selection of the appropriate ‘number’ as well as ‘nature’ of
training set points has a strong effect on the prediction model.
For instance, the absence of certain combinations of constituent
polymer chemical blocks (as reflected in the polymer fingerprints)
in the training set would make predictions on the test set contain-
ing such polymers quite poor, despite perhaps a large number of
data points being present in the training set. This is what leads
to a high standard deviation in prediction errors in some cases;
nevertheless, the learning curves do tell us that a large enough
training set size would enable us to train regression models with
sufficiently low prediction errors.
3. Support Vector Regression (SVR)

While Kernel Ridge Regression has provided reasonable predic-
tion accuracies so far, the machine learning community has been
known to use many other learning algorithms with varying
degrees of success. One such algorithm is Support Vector Machines
(SVM), supervised learning techniques developed at AT&T Bell Lab-
oratories by Vapnik and co-workers [13,14] and widely used in
classification problems. When applied to regression and function
estimation problems, SVMs are called Support Vector Regression
(SVR) and constitute a very popular regression algorithm which
is implemented in most of the standard machine learning pack-
ages. SVMs are efficient tools for going beyond linear classification
or regression owing to the implementation of the ‘kernel trick’,
which as explained earlier, simply involves transforming data
points to a higher dimensional kernel induced feature space to
incorporate nonlinearity [12].

Given the input variables (the polymer fingerprint) and
the response variable (the polymer property), in the form of

training data f x
!

1; y1
� �

; . . . ; x
!

n; yn
� �

g � X � R, where X denotes a

d-dimensional feature space (e:g., X ¼ Rd), an �-SVR algorithm
tries to find a function f ðxÞ that has at most � deviation form the
targeted property values yi, and at the same time is as flat as
possible. Any deviation larger than � is not acceptable.
For linear regression, the function f ðxÞ can take the following
form:

f ðxÞ ¼ hw; xi þ b; ð8Þ
where w 2 X ; b 2 R. Flatness of the function f ðxÞ in this case means

that we seek a vector w with a small norm, i.e. kwk2 ¼ hw;wi. The
convex optimization problem can then be written as:

minimize
1
2
kwk2

subject to yi � hw; x
!
ii � b 6 �

hw; x
!

ii þ b� yi 6 �:

ð9Þ

In writing the above expression, we tacitly assume that the convex
optimization problem is feasible, or in other words, there exists a

function f that approximates all training pairs x
!
i; yi

� �
with at least

� precision. However, in practice, this may not be the case many a
times, and we have to allow for some errors. This is done by incor-
porating a ‘‘soft margin” loss function through slack variables ni and
n�i in the otherwise infeasible optimization problem. Introduction of
the slack variables in Eq. (9) leads to the following formulation:

minimize
1
2
kwk2 þ C

Xn
i¼1

ni þ n�i
� �

subject to yi � hw; x
!
ii � b 6 �þ ni

hw; x
!

ii þ b� yi 6 �þ n�i
ni; n

�
i P 0:

ð10Þ

where the positive constant C determines the trade-off between the
flatness of f and the amount up to which deviations larger than � are
tolerated through the slack variables. The objective presented in the
above minimization problem (Eq. (10)) is also referred to as the pri-
mal objective function, which is solved by constructing a Lagrange
function L, and accounting for the constraints through the posi-
tively constrained Lagrange multipliers ai;a�

i ;bi and b�
i , as follows:

L :

¼ 1
2
kwk2 þ C

Xn
i¼1

ni þ n�i
� ��Xn

i¼1

ai �þ ni � yi þ hw; x
!

ii þ b
� �

�
Xn
i¼1

a�
i �þ n�i þ yi � hw; x

!
ii � b

� �
�
Xn
i¼1

bini þ b�
i n

�
i

� �
: ð11Þ

In accordance with the saddle point condition, the partial deriva-
tives of L with respect to the variables w; b; ni, and n�i lead to linear
equations which when substituted back into Eq. (11) lead to the so
called dual optimization problem of SVR, as given below,
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maximize � 1
2

Xn
i;j¼1

ai � a�
i

� �
aj � a�

j

� �
hx!i; x

!
ji

� �
Xn
i¼1

ai þ a�
i

� �þXn
i¼1

yi ai � a�
i

� �

subject to
Xn
i;j¼1

ai � a�
i

� � ¼ 0 and ai;a�
i 2 ½0;C�:

ð12Þ

By solving the above dual optimization problem, ai;a�
i and b can be

determined, which can then be used to make predictions on new
systems with a given input x as:

f ðxÞ ¼
Xn
i¼1

ai � a�
i

� �hx!i; xi þ b: ð13Þ
Note that once the ais and a�
i s have been determined,w can be writ-

ten as
Pn

i¼1 ai � a�
i

� �
. This is known as Support Vector expansion,

which describes w as a linear combination of the training data
points. At this point it is important to note that the only data points
for which the Lagrange multipliers (i.e., either ai or a�

i ; both of them
can not be simultaneously non-zero) are non-zero play a role in
determining w and therefore enter Eq. (13). From Karush-Kuhn-
Tucker (KKT) conditions, [15,16] it also follows that only for training

data points for which the prediction error (i.e., f x
!
i

� �
� yi

��� ���) is

greater than �, the Lagrange multipliers may be nonzero. Therefore,

we have a sparse expansion of w in terms of x
!

i (i.e. not using all x
!
i

to describe w). These non-vanishing coefficients are called Support
Vectors.
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Thus far we have only considered a linear SVR problem. How-
ever, moving to a non-linear case from here is relatively straight-
forward and can be done by defining a kernel function UðxÞ that
takes a point x in the feature space and transforms it non-
linearly in the kernel space. Furthermore, since the SVR algorithm’s
dual optimization in Eq. (12) only depends on the dot products
between patterns xi, for the non-linear case, it should suffice to
know the analogous dot product Kðx; x0Þ in the kernel space given
by hUðxÞ;Uðx0Þi. This allows us to restate the non-linear SVR opti-
mization problem as:
maximize � 1
2

Xn
i;j¼1

ai � a�
i

� �
aj � a�

j

� �
Kðx!i; x

!
jÞ

� �
Xn
i¼1

ai þ a�
i

� �þXn
i¼1

yi ai � a�
i

� �

subject to
Xn
i;j¼1

ai � a�
i

� � ¼ 0 and ai;a�
i 2 ½0;C�:

ð14Þ

Note that in the nonlinear setting, the optimization problem corre-
sponds to finding the flattest function in feature space, not in input
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space. Furthermore, to be an admissible kernel, Kðx; x0Þ is required
to satisfy Mercer’s condition. [17] Finally, following an analogous
expression to the Eq. (13), predictions on new systems for the
non-linear case can be made as:

f ðxÞ ¼
Xn
i¼1

ai � a�
i

� �Kðx!i; xÞ þ b: ð15Þ

We take the bias term b to be zero, which leaves the Kernel
parameter and the tradeoff constant C as the parameters that need
to be optimized. In our case, after analyzing initial test perfor-
mance on several kernels (such as linear, polynomial and Gaussian;
all of which are admissible SVR kernels), we decided to go forward
with the Gaussian kernel. Our results for this kernel are presented
in Figs. 6 and 7. Given that the parameters being optimized are r
and C, we measure model prediction errors for each combination
of the two parameters and make plots showing the errors in
Fig. 6, similar to Figs. 1–3. It can be seen that the optimal r values
are always around 1, whereas C takes different optimal values from
4 to 25. These respective pairs of optimal parameters were taken
for the final SVR prediction models, whose performances are
shown in Fig. 7.

It can be seen from the parity plots in Fig. 7 that the regression
performances are slightly worse than with KRR using a Gaussian
kernel (shown in Fig. 4a). The training and test set prediction errors
for the three properties have been listed in Table 2. Whereas the
training performances are worse for the electronic and ionic dielec-
tric constants (than with Gaussian KRR), there is a clear problem of
overfitting in the data for the band gap, which is again owing to the
tradeoff constant C being higher (similar to the explanation for KRR
with a polynomial kernel, in Section 2.1). Conventional SVR thus
appears to not improve upon Gaussian kernel based ridge regres-
sion, and we attempt to rectify this in the following section with
a technique known as ‘AdaBoost’.

4. AdaBoost

Boosting refers to the general problem of coming up with an
accurate prediction algorithm by optimally combining a number
of weak learners. Belonging to this family, ‘AdaBoost’, short for
‘Adaptive Boosting’, is a Godel Prize winning machine learning
technique that has commonly been applied in conjunction with
regular regression algorithms (such as SVR, as we considered here)
for improving their performances. [18,19] Boosting involves focus-
ing on the particular points that have not been predicted well with
SVR, that is, the difficult data points. If certain parameters could be
modified so as to improve predictions on those points without
affecting the predictions on all other points, we would have a bet-
ter model than with regular SVR.

The AdaBoost algorithm is conceptually very simple. It is an
iterative process where during each iteration, a new regressor is
trained on the training set, with weights that are associated with
each data point in the training set. These weights are modified at
each iteration according to how successfully that data point has
been predicted in the past iterations. The data points in the train-
ing set with larger prediction errors (i.e., those that are difficult to
predict) are assigned larger weights. In practice, for a regressor
such as SVR the boosting procedure involves training the model a
number of times by changing the parameters r and C as explained
above, such that we will have different models with different accu-
racies of prediction on the poorly predicted points. There may be
some models where predictions are better than the others, and
these models deserve special attention. The overall prediction
model is reported as a weighted median of all these models (as
discussed below), with higher weights given to the specific models
where predictions on the difficult data points show low errors. This
means that the result of boosting is an optimal prediction model
that is a weighted combination of all the different models.

More specifically, the algorithm can be out lined as follows:

Input: an n–sample S = x
!
1; y1

� �
; x

!
2; y2

� �
; . . . ; x

!
N; yN

� �n o
training data, a learning algorithm I and an integer T.

Initialize: For each training pattern we assign a weight
wi ¼ 1=N, for i 2 ½1;N�

Do while the average loss L defined below is less than 1
2 or

t < T , maximum number of iterations:
	 Set probability that training sample i is in the training set is
pðtÞ
i ¼ wðtÞ

i

P
wðtÞ

i

.
where the summation is over all N mem-

bers of the training set.
	 Pick N1 samples (with replacement) to form the training
set according to the probabilities pðtÞ

i .
	 Construct a regression machine from this training set with
N1 samples. Call the learning algorithm I to get the
hypothesis ht : x ! y

	 Calculate an average loss: LðtÞ ¼PN1
i¼1p

ðtÞ
i LðtÞi , where

LðtÞi ¼ jht ðx
!
iÞ�yi j

maxjht ðx
!
iÞ�yi j

represents linear loss. In principle, other

types of loss functions such as square loss or exponential
loss can also be used here.

	 Compute b ¼ LðtÞ
i

1�LðtÞ
i

. b is a measure of confidence in the pre-

dictor. The lower the b the higher the confidence in the
prediction.

	 Update the weights: wðtþ1Þ
i ¼ wðtÞ

i b1�LðtÞ
i . Note that smaller

the loss, more is the weight reduction in the subsequent
iteration, thereby making the probability small enough so
that this pattern will be picked as a member of the training
set for the next iteration.

Output: For a particular input xi, each of the T machines
makes a prediction ht , with t = 1, . . ., T. The final cumulative
prediction hf is made by using the T predictors as follows:

hf = inf y 2 Y :
P

t:ht6ylogð1=btÞ P
P 1

2 logð1=btÞ
n o

, which is

essentially the weighted median of the predictions from the
T machines.

Based on the above algorithm as applied to our data, we obtain
the cumulative predictions for every point, and Fig. 8 shows parity
plots similar to Fig. 4. The respective training and test set errors
obtained here are again listed in Table 2. It can be seen that while
the training performances (as compared with regular SVR) have
definitely improved with Boosting for the three properties, the test
performance is only slightly better for the electronic dielectric con-
stant and worse for the ionic dielectric constant and the band gap.
This means that while boosting can possibly improve upon regular
SVR, there are some points that are quite poorly predicted with
SVR, especially for the ionic dielectric constant. Further, the test
errors with SVR + Adaboost are still higher than the errors with
KRR using a Gaussian kernel.

The performances with SVR and AdaBoost can be explained as a
consequence of the nature of the data we have. Whereas typical
materials science data mining problems would include large
amounts of data, [3,20,21] our dataset of 284 polymers and their
properties constitutes a ‘small dataset’. The regression perfor-
mances with both regular SVR and AdaBoost could be improved
for a larger, more diverse set of polymers, where the fraction of
poorly predicted points could perhaps be minimized. As such,
KRR with Gaussian kernel is the algorithm that performs better
on average than these techniques, as captured in Table 2, thus
bringing a measure of redemption to the practices followed by us
and others using materials science data in the recent past.



Fig. 6. Optimal parameter selection for the SVR ML models with Gaussian kernels.
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Fig. 7. Learning and prediction performances of the SVR ML models with a Gaussian kernel.

Fig. 8. Learning and prediction performances of the SVR ML models with ada boosting.
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5. Conclusions

In conclusion, we applied different kinds of machine learning
treatments on a dataset of organic polymers and gained some
insight on the appropriate choices for learning parameters. Given
our objective to develop accurate, robust prediction models by
mapping polymer fingerprints (the input) to the properties (the
output) using regression, we explored a number of different kinds
of regression strategies. Regression performed using different
learning algorithms, different distance kernel definitions and dif-
ferent training set sizes revealed that Kernel Ridge Regression with
a Gaussian kernel and a sufficient training set size resulted in the
best prediction performances. While KRR with a Laplacian kernel
performed almost as well, the polynomial kernel appeared to be
unsuitable. Another major algorithm, Support Vector Regression,
was also used and it was seen that SVR, even when used with Ada-
Boost, did not improve upon the best KRR performance.

The prediction accuracies are limited by the size and nature of
the computational data, as well as by the quality of the fingerprints
used. Since the polymer fingerprint only takes the population of
different combinations of chemical building blocks into account,
factors such as the conformation and the planarity of polymer
chains—which could have varying effects on the properties—are
ignored here. While KRR with a Gaussian kernel appears to be
the best regression algorithm to use on the given data, perfor-
mances can further be improved with larger datasets and an
improved fingerprint that contains more information than cur-
rently used.
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